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Abstract

There are a number of frameworks for modelling argumenta-
tion in logic. They incorporate a formal representation of in-
dividual arguments and techniques for comparing conflicting
arguments. A common assumption for logic-based argumen-
tation is that an argument is a pair〈Φ, α〉 whereΦ is minimal
subset of the knowledgebase such thatΦ is consistent andΦ
entails the claimα. Different logics are based on different
definitions for entailment and consistency, and give us dif-
ferent options for argumentation. For a variety of logics, in
particular for classical logic, the computational viability of
generating arguments is an issue. Here, we propose amelio-
rating this problem by using approximate arguments.

Introduction
Argumentation is a vital aspect of intelligent behaviour by
humans. Consider diverse professionals such as politicians,
journalists, clinicians, scientists, and administrators, who all
need to collate and analyse information looking for pros and
cons for consequences of importance when attempting to un-
derstand problems and make decisions.

There are a number of proposals for logic-based for-
malisations of argumentation (for reviews see (Prakken &
Vreeswijk 2000; Chesnevar, Maguitman, & Loui 2001)).
These proposals allow for the representation of arguments
for and against some claim, and for attack relationships be-
tween arguments. In a number of key examples of argumen-
tation systems, an argument is a pair where the first item in
the pair is a minimal consistent set of formulae that proves
the second item which is a formula. Furthermore, in these
approaches, the notion of attack is a form of undercut, where
one argument undercuts another argument when the claim of
the first argument negates the premises of the second argu-
ment.

In this paper, we consider how we can undertake argu-
mentation more efficiently. Let us start by considering the
construction of individual arguments. If∆ is a knowledge-
base, and we are interested in a claimα, we look for an
argument〈Φ, α〉 whereΦ ⊆ ∆. Deciding whether a set of
propositional classical formulae is classically consistent is
an NP-complete decision problem and deciding whether a
set of propositional formulae classically entails a given for-
mula is a co-NP-complete decision problem. However, if
we consider the problem as an abduction problem, where

we seek the existence of a minimal subset of a set of for-
mulae that implies the consequent, then the problem is in
the second level of the polynomial hierarchy (Eiter & Gott-
lob 1995). Even worse deciding whether a set of first-order
classical formulae is consistent is an undecidable decision
problem. So even finding the basic units of argumentation is
computationally challenging.

Proof procedures and algorithms have been developed for
finding preferred arguments from a knowledgebase follow-
ing for example Dung’s preferred semantics (see for exam-
ple (Prakken & Sartor 1997; Kakas & Toni 1999; Cayrol,
Doutre, & Mengin 2001; Dimopoulos, Nebel, & Toni 2002;
Dung, Kowalski, & Toni 2006)). However, these tech-
niques and analyses do not offer any ways of ameliorating
the computational complexity inherent in finding arguments
and counterarguments even though it is a significant source
of computational inefficiency.

A possible approach to ameliorate the cost of entailment
is to use approximate entailment: Proposed in (Levesque
1984), and developed in (Schaerf & Cadoli 1995), classical
entailment is approximated by two sequences of entailment
relations. Approximate entailment has been developed for
anytime coherence reasoning (Koriche 2002). However, the
approach still needs to be further developed and evaluated
for finding arguments and counterarguments in argumenta-
tion. This would need to start with a conceptualization of
the notions of argument and counteragument derived using
approximate entailment and approximate coherence.

In this paper, we take a different approach by presenting
a new solution that uses approximate arguments. First we
review an existing version of logic-based argumentation in
order to illustrate our ideas, and then we present our frame-
work for approximate arguments.

Logical argumentation
In this section we review an existing proposal for logic-
based argumentation (Besnard & Hunter 2001). We consider
a classical propositional language with classical deduction
denoted by the symbol̀. We useα, β, γ, . . . to denote for-
mulae and∆,Φ,Ψ, . . . to denote sets of formulae.

For the following definitions, we first assume a knowl-
edgebase∆ (a finite set of formulae) and use this∆ through-
out. We further assume that every subset of∆ is given an
enumeration〈α1, . . . , αn〉 of its elements, which we call its



canonical enumeration. This really is not a demanding con-
straint: In particular, the constraint is satisfied whenever we
impose an arbitrary total ordering over∆. Importantly, the
order has no meaning and is not meant to represent any re-
spective importance of formulae in∆. It is only a convenient
way to indicate the order in which we assume the formulae
in any subset of∆ are conjoined to make a formula logically
equivalent to that subset.

The paradigm for the approach is a large repository of in-
formation, represented by∆, from which arguments can be
constructed for and against arbitrary claims. Apart from in-
formation being understood as declarative statements, there
is no a priori restriction on the contents, and the pieces of
information in the repository can be as complex as possible.
Therefore,∆ is not expected to be consistent. It need even
not be the case that every single formula in∆ is consistent.

The framework adopts a very common intuitive notion of
an argument. Essentially, an argument is a set of relevant
formulae that can be used to classically prove some claim,
together with that claim. Each claim is represented by a for-
mula.
Definition 1. An argument is a pair 〈Φ, α〉 such that: (1)
Φ ⊆ ∆; (2) Φ 6` ⊥; (3) Φ ` α; and (4) there is noΦ′ ⊂ Φ
such thatΦ′ ` α. We say that〈Φ, α〉 is an argument forα.
We callα the claim of the argument andΦ the support of
the argument (we also say thatΦ is a support forα).

Example 1. Let ∆ = {α, α → β, γ → ¬β, γ, δ, δ →
β,¬α,¬γ}. Some arguments are:

〈{α, α → β}, β〉
〈{¬α},¬α〉

〈{α → β},¬α ∨ β〉
〈{¬γ}, δ → ¬γ〉

Arguments are not independent. In a sense, some encom-
pass others (possibly up to some form of equivalence). To
clarify this requires a few definitions as follows.
Definition 2. An argument〈Φ, α〉 is more conservative
than an argument〈Ψ, β〉 iff Φ ⊆ Ψ andβ ` α.

Example 2. 〈{α}, α ∨ β〉 is more conservative than
〈{α, α → β}, β〉.

Some arguments directly oppose the support of others,
which amounts to the notion of an undercut.
Definition 3. An undercut for an argument〈Φ, α〉 is an
argument〈Ψ,¬(φ1 ∧ . . . ∧ φn)〉 where{φ1, . . . , φn} ⊆ Φ.

Example 3. Let ∆ = {α, α → β, γ, γ → ¬α}.
Then, 〈{γ, γ → ¬α},¬(α ∧ (α → β))〉 is an undercut
for 〈{α, α → β}, β〉. A less conservative undercut for
〈{α, α → β}, β〉 is 〈{γ, γ → ¬α},¬α〉.
Definition 4. 〈Ψ, β〉 is a maximally conservative under-
cut of 〈Φ, α〉 iff 〈Ψ, β〉 is an undercut of〈Φ, α〉 such that
no undercuts of〈Φ, α〉 are strictly more conservative than
〈Ψ, β〉 (that is, for all undercuts〈Ψ′, β′〉 of 〈Φ, α〉, if Ψ′ ⊆
Ψ andβ ` β′ thenΨ ⊆ Ψ′ andβ′ ` β).

The value of the following definition of canonical under-
cut is that we only need to take the canonical undercuts into
account. This means we can justifiably ignore the potentially
very large number of non-canonical undercuts.

Definition 5. An argument〈Ψ,¬(φ1∧. . .∧φn)〉 is acanon-
ical undercut for 〈Φ, α〉 iff it is a maximally conservative
undercut for〈Φ, α〉 and 〈φ1, . . . , φn〉 is the canonical enu-
meration ofΦ.

An argument tree describes the various ways an argument
can be challenged, as well as how the counter-arguments to
the initial argument can themselves be challenged, and so on
recursively.

Definition 6. A complete argument treefor α is a tree
where the nodes are arguments such that

1. The root is an argument forα.
2. For no node 〈Φ, β〉 with ancestor nodes
〈Φ1, β1〉, . . . , 〈Φn, βn〉 is Φ a subset ofΦ1 ∪ · · · ∪ Φn.

3. The children nodes of a nodeN consist of all canonical
undercuts forN that obey 2.

The second condition in Definition 6 ensures that each ar-
gument on a branch has to introduce at least one formula
in its support that has not already been used by ancestor ar-
guments. This is meant to avoid making explicit undercuts
that simply repeat over and over the same reasoning pattern
except for switching the role of some formulae (e.g. in mu-
tual exclusion, stating thatα together with¬α ∨ ¬β entails
¬β is exactly the same reasoning as expressing thatβ to-
gether with¬α ∨¬β entail¬α, because in both cases, what
is meant is thatα andβ exclude each other). As a notational
convenience, in examples of argument trees the3 symbol
is used to denote the claim of an argument when that argu-
ment is a canonical undercut (no ambiguity arises as proven
in (Besnard & Hunter 2001)).

Example 4. Let ∆= {α ∨ β, α → γ,¬γ,¬β, δ ↔ β}. For
this, two argument trees for the consequentα∨¬δ are given.

〈{α ∨ β,¬β}, α ∨ ¬δ〉 〈{δ ↔ β,¬β}, α ∨ ¬δ〉
↑ ↑

〈{α → γ,¬γ},3〉 〈{α ∨ β, α → γ,¬γ},3〉

A complete argument tree is an efficient representa-
tion of the counterarguments, counter-counterarguments,
. . . Furthermore, if∆ is finite, there is a finite number of
argument trees with the root being an argument with con-
sequentα that can be formed from∆, and each of these
trees has finite branching and a finite depth (the finite tree
property). Note, also the definitions presented in this sec-
tion can be used directly with first-order classical logic, so
∆ andα are from the first-order classical language. Inter-
estingly, the finite tree property also holds for the first-order
case (Besnard & Hunter 2005).

Motivation for approximation
We now turn to the potential for approximation when build-
ing argument trees. When building arguments, and hence
argument trees, it is tempting to think that automated rea-
soning technology can do more for us than it is guaranteed
to. For each argument, we need a minimal set of formu-
lae that proves the claim. An automated theorem prover
(an ATP) may use a “goal-directed” approach, bringing in
extra premises when required, but they are not guaranteed



to be minimal. For example, supposing we have a knowl-
edgebase{α, α ∧ β}, for provingα ∧ β, the ATP may start
with the premiseα, then to proveβ, a second premise is
required, which would beα ∧ β, and so the net result is
{α, α ∧ β} ` α ∧ β, which does not involve a minimal set
of premises. In addition, an ATP is not guaranteed to use a
consistent set of premises since by classical logic it is valid
to prove anything from an inconsistency.

So if we seek arguments for a particular claimδ, we need
to post queries to an ATP to ensure that a set of premises
entailsδ, that the set of premises is minimal for this, and that
it is consistent. So finding arguments for a claimα involves
considering subsetsΦ of ∆ and testing them with the ATP
to ascertain whetherΦ ` α and Φ 6` ⊥ hold. ForΦ ⊆
∆, and a formulaα, let Φ?α denote a call (a query) to an
ATP. If Φ classically entailsα, then we get the answerΦ `
α, otherwise we get the answerΦ 6` α, In this way, we
do not give the whole of∆ to the ATP. Rather we call it
with particular subsets of∆. So for example, if we want
to know if 〈Φ, α〉 is an argument, then we have a series of
calls Φ?α, Φ?⊥, Φ \ {φ1}?α,...,Φ \ {φk}?α, whereΦ =
{φ1, .., φk}. So the first call is to ensure thatΦ ` α holds,
the second call is to ensure thatΦ 6` ⊥ holds, the remaining
calls are to ensure that there is no subsetΦ′ of Φ such that
Φ′ ` α holds. Now ifΦ ` α holds, but some of the further
calls fail (i.e. Φ is not minimal or it is inconsistent) we still
have an “approximate argument”. So rather than throwing
this away, we can treat it as an intermediate finding, and use
it as part of an “approximate argument tree” which we can
build with fewer calls to the ATP than building a complete
argument tree, and this approximate argument tree can then
be refined, as required, with the aim of getting closer to a
complete argument tree. We formalize this next.

Approximate argumentation
An approximate argument is a pair[Φ, α] whereΦ ⊆ L and
α ∈ L. This is a very general definition. It does not assume
that Φ is consistent, or that it entailsα, or that it is even a
subset of the knowledgebase∆.

To focus our presentation in this paper, we will restrict
consideration to a particular class of approximate argu-
ments, namely entailments. IfΦ ⊆ ∆ and Φ ` α, then
[Φ, α] is anentailment. Furthermore, we will consider some
subclasses of entailments defined as follows: If[Φ, α] is an
entailment, and there is noΦ′ ⊂ Φ such thatΦ′ ` α, then
[Φ, α] is aminiment; If [Φ, α] is an entailment, andΦ 6` ⊥,
then[Φ, α] is analtoment; And if [Φ, α] is a miniment, and
[Φ, α] is an altoment, then[Φ, α] is a preargument. Each
of these kinds of entailment is defined as a relaxation of
the definition for an argument: The support of an entail-
ment implies the consequent, but neither an entailment nor
an altoment has a support that is necessarily a minimal set
of assumptions for implying the consequent and neither an
entailment nor a miniment is necessarily a consistent set of
assumptions for implying the consequent.

Example 5. Let ∆ = {α,¬α ∨ β, γ,¬β,¬γ}. So en-
tailments for β include {A1, A2, A3, A4, A5} of which
{A1, A3, A5} are altoments,{A2, A5} are miniments, and

A5 is a preargument.

A1 = [{α,¬α ∨ β, γ, β}, β]
A2 = [{γ,¬γ}, β]
A3 = [{α,¬α ∨ β, γ}, β]
A4 = [{α,¬α ∨ β, γ,¬γ}, β]
A5 = [{α,¬α ∨ β}, β]

An altoment is a “potentially overweight proof” in the
sense that there are more assumptions in the support than
required for the consequent, and a miniment is a “minimal
proof” in the sense that if any formula is removed from the
support there will be insufficient assumptions in the support
for the consequent to be entailed.

Some simple observations that we can make concerning
entailments include: (1) If[Γ, α] is an altoment, then there
is aΦ ⊆ Γ such that〈Φ, α〉 is an argument; (2) If[Γ, α] is
an entailment, then there is aΦ ⊆ Γ such that[Φ, α] is a
miniment; and (3) If[Φ, α] is a preargument, then〈Φ, α〉 is
an argument.

An approximate undercut for an approximate argument
[Φ, α] is an approximate argument[Ψ, β] such thatβ `
¬(∧Φ) (where ifΦ = {φ1, .., φn}, and〈φ1, . . . , φn〉 is the
canonical enumeration ofΦ, then∧Φ is φ1 ∧ .. ∧ φn).

An approximate tree is a treeT where each node is an
approximate argument from∆. There are various kinds of
approximate tree. Here we define three particular kinds: (1)
An entailment tree for α is an approximate tree where each
node is an entailment and the root is forα; (2) An altoment
tree for α is an approximate tree where each node is an alto-
ment and the root is forα; and (3) Apreargument tree for
α is an approximate tree where each node is a preargument
and the root is forα. For these trees, we do not impose that
the children of a node are approximate undercuts, but in the
way we construct them, we will aim for this.

Example 6. In the following,T1 is an entailment tree,T2 is
an altoment tree, andT3 is a preargument tree.

T1 [{β,¬β, δ, δ ∨ β, (β ∨ δ) → α}, α]
↗ ↖

[{φ,¬δ, δ ∨ ¬β},¬β] [{φ,¬φ},¬δ]

T2 [{β, δ, δ ∨ β, (β ∨ δ) → α}, α]
↗ ↖

[{φ,¬δ, δ ∨ ¬β},¬β] [{φ,¬β,¬δ ∨ β},¬δ]

T3 [{β, β → α}, α]
↑

[{γ, γ → ¬β},¬(β ∧ (β → α))]
Obviously, all preargument trees are altoment trees, and

all altoment trees are entailment trees.

Definition 7. A complete preargument treeis a preargu-
ment tree where (1) for no node[Φ, β] with ancestor nodes
[Φ1, β1], . . . , [Φn, βn] is Φ a subset ofΦ1∪· · ·∪Φn and (2)
for each node with a preargument[Φ, β], the children nodes
consist of all the prearguments of the form[Ψ,¬(∧Φ)].

The first condition above ensures that the support of each
preargument on a branch has to include at least one premise
that has not been used by its ancestors. The second condi-
tion above ensures that the children nodes of a node consist



of all prearguments that are approximate undercuts negating
the conjunction of the support of the parent. This mirrors the
definition for an argument tree (Definition 6) and the follow-
ing result shows they are isomorphic. As an illustration,T3

in Example 6 is a complete preargument tree.

Proposition 1. If T is a complete preargument tree, then
there is an argument treeT ′ and there is a bijectionf from
the nodes inT to the nodes inT ′ such that for all the prear-
guments[Φ, α] in T , f([Φ, α]) = 〈Φ, α〉.

From the above result, we see that not only is each prear-
gument effectively equivalent to an argument (i.e. each
preargument[Φ, α] is corresponds to an argument〈Φ, α〉),
but that also the constraints on the definition are sufficient
for each approximate undercut to behave equivalently to a
canonical undercut.

The following definition of refinement is a relationship
that holds between some altoment trees. It holds when each
altoment inT2 uses the same or fewer assumptions than
its corresponding altoment inT1 and its claim is weaker
or the same as its corresponding altoment inT1. For this,
let Support([Φ, α]) beΦ, and letClaim([Φ, α]) beα, where
[Φ, α] is an entailment.

Definition 8. Let T1 and T2 be altoment trees. T2 is
a refinement of T1 iff there is a bijectionf from the
nodes ofT1 to the nodes ofT2 such that for all nodes
A in T1, Support(f(A)) ⊆ Support(A) and Claim(A) `
Claim(f(A)). We callf therefinement function.

Proposition 2. If T2 is a refinement ofT1 with refinement
function f , then for all [Φ1, α1] ∈ T1, if f([Φ1, α1]) =
[Φ2, α2], then〈Φ2, α2〉 is more conservative than〈Φ1, α1〉.

Refinement is useful because we can build a tree using
altoments, and then refine those altoments as part of a pro-
cess of obtaining a better approximate tree, and if required,
a complete preargument tree. We consider this process more
generally for entailments in the next section.

Constructing approximate trees
To render the construction, and improvement, of approxi-
mate trees implementable, we define therevision stepsthat
can be undertaken on a treeT as follows whereT ′ is the re-
sult of the revision step, and all entailments come from the
knowledgebase∆.

1. T ′ is obtained byresupport from T by taking an entail-
ment[Φ, α] in T and removing one formula, sayφ, such
that[Φ \ {φ}, α] is an entailment.

2. T ′ is obtained byreconsequentfrom T by replacing
an entailment[Φ, α] in T with entailment[Φ, α′] where
[Ψ, β] is the parent of[Φ, α] in T and[Ψ, β] is the parent
of [Φ, α′] in T ′ andα 6≡ α′ andα′ ≡ ¬(∧Ψ).

3. T ′ is obtained byexpansionfrom T by taking an entail-
ment[Φ, α] in T and adding an entailment[Ψ, β] such that
[Ψ, β] is an approximate undercut of[Φ, α] and it has not
been shown thatΨ ` ⊥.

4. T ′ is obtained bycontraction from T by removing an
entailment[Ψ, β] (and all its offspring) such that[Ψ, β] is
a miniment andΨ ` ⊥.

5. T ′ is obtained bydeflation from T by removing an en-
tailment[Ψ, β] (and all its offspring) such that[Ψ, β] is a
child of [Φ, α] andΨ ∪ Φ 6` ⊥.

We explain the revision steps as follows: Resupport weak-
ens the support of an entailment to remove an unnecessary
premise; Reconsequent strengthens the claim of an entail-
ment so that it negates the conjunction of its parents support;
Expansion adds a new approximate undercut to the tree (as-
suming that it has not been shown to have an inconsistent
support); Contraction removes a node which has become an
inconsistent miniment (after previously being subject to re-
support); and Deflation removes a node with a support that
is consistent with the support of its parent (after previously
one or other being subject to resupport). Illustrations of us-
ing revision steps are given in Example 7 and Example 8.

Example 7. Each of the following three trees is an altoment
tree. Furthermore,T2 is a resupport ofT1 and T3 is an
expansion ofT2.

T1 [{α, α → β,¬γ, δ}, β] T2 [{α, α → β, δ}, β]
↑ ↑

[{γ, γ → ¬α, σ},¬α] [{γ, γ → ¬α, σ},¬α]

T3 [{α, α → β, δ}, β]
↑

[{γ, γ → ¬α, σ},¬α]
↑

[{¬γ},¬γ]
The next result shows that we can obtain a complete prear-

gument tree by some finite sequence of revision steps.

Theorem 1. If Tn is a complete preargument tree forα, then
there a sequence〈T1, ..., Tn〉 of approximate trees forα, s.t.
T1 is an altoment tree with just a root node, and for eachi,
wherei < n, Ti+1 is obtained by a revision step fromTi.

Starting with an altoment tree forα that contains one
node, and then using a sequence of revision steps to obtain
a complete preargument tree, does not necessarily offer any
computational advantages over constructing a complete ar-
gument tree directly (by finding an argument for the root,
and then finding canonical undercuts to the root, and then
by recursion, finding canonical undercuts to the canonical
undercuts). To revise an approximate tree involves calls to
the ATP, and so the more we revise an approximate tree,
the less there is an efficiency advantage over constructing
a complete argument tree. The real benefit of approximate
argumentation is that an intermediate tree (in the sequence
above) is more informative (than a partially constructed ar-
gument tree) since it tends to have more nodes, and thereby
better indicate the range of potential conflicts arising in∆.
So, in comparison with an argument tree, an approximate
tree is less cautious (it compromises on the correctness of
the arguments used), is less expensive (it uses fewer calls to
an ATP and each call made would also be made to construct
each argument in the corresponding argument tree), and is
more informative (in reporting on potential conflicts in∆).

To obtain an entailment tree, we use the following algo-
rithm which has an upper limit on the number of revision
steps used.



Definition 9. The algorithmGenerate(∆,Φ, α, λ) returns
an entailment tree that is constructed in a fixed number of
cycles (delineated by the numberλ), for a knowledgebase
∆, and an altoment[Φ, α] for the root of the entailment tree
that is returned.

Generate(∆,Φ, α, λ)
Let T be the node [Φ, α]
Let counter = 0
While counter ≤ λ and there is

a revision step T ′ of T
Let T = T ′

Let counter = counter + 1
Return T

The aim of using the above algorithm is to start with an
entailment forα as the root, and then incrementally revise
this entailment tree to get as close as possible to a complete
preargument tree within an acceptable number of iterations.

Example 8. Let∆ = {α, α → β, δ, γ,¬α∨¬β, β} For trees
T1, .., T7 below,Ti+1 is obtained fromTi by the revision step
given in brackets. Let� denote the claim that is the negation
of the conjunction of the support of its parent.

[{α, α → β, δ}, α ∧ β]

(3) [{α, α → β, δ}, α ∧ β]
↑

[{α,¬α ∨ ¬β},¬β]

(3) [{α, α → β, δ}, α ∧ β]
↗ ↖

[{α,¬α ∨ ¬β},¬β] [{¬α ∨ ¬δ, δ},¬α]

(1) [{α, α → β}, α ∧ β]
↗ ↖

[{α,¬α ∨ ¬β},¬β] [{¬α ∨ ¬δ, δ},¬α]

(2) [{α, α → β}, α ∧ β]
↗ ↖

[{α,¬α ∨ ¬β}, �] [{¬α ∨ ¬δ, δ},¬α]

(1) [{α, α → β}, α ∧ β]
↗ ↖

[{¬α ∨ ¬β}, �] [{¬α ∨ ¬δ, δ},¬α]

(2) [{α, α → β}, α ∧ β]
↗ ↖

[{¬α ∨ ¬β}, �] [{¬α ∨ ¬δ, δ}, �]

The following shows that if we run the
Generate(∆,Φ, α, λ) algorithm for sufficient time, it
will eventually result in a complete preargument tree forα.

Theorem 2. For all propositional knowledgebases∆
and altoment [Φ, α], there is a λ ∈ N such that
Generate(∆,Φ, α, λ) returns an altoment treeT for α, and
T is a complete preargument tree forα.

Corollary 1. Let 〈T1, ..., Tn〉 be a sequence of entailment
trees forα such thatT1 is an altoment tree with just a root
node, and for eachi, where1 ≤ i < n, Ti+1 is obtained by

a revision step fromTi. If Tn is such that no further revision
steps are possible on it, thenTn is a complete preargument
tree forα.

We can improve the algorithm by incorporating selection
criteria to prefer some revision steps over others. For ex-
ample, we may prefer: (1) an expansion that adds a node
higher up the tree rather than lower down the tree; (2) re-
support steps on nodes with large supports rather than those
with small supports; (3) as many expansion steps as pos-
sible in order to get an impression of as many as possible
of the conflicts that potentially exist. By adopting selection
criteria, we aim to have more meaningful (from a user’s per-
spective) approximate trees returned when the threshold for
the number of revision steps undertaken by the algorithm.

Bias in approximate trees
In this section, we consider another way to bias the construc-
tion of approximate trees by amending the revision steps
available. To explain and motivate this, we first require some
further definitions. For an approximate treeT , each node in
T is either anattacking node or a defending node. If a
nodeAr is the root, thenAr is a defending node. If a node
Ai is a defending node, then any childAj of Ai is an attack-
ing node. If a nodeAj is an attacking node, then any child
Ak of Aj is a defending node. The intuition of this nomen-
clature is apparent in the following definition for judging.
Definition 10. Thewin judge is a function, denotedWin,
from the set of approximate trees to{yes, no} such that
Win(T ) = yes iff mark(Ar) = U whereAr is the root
node ofT . For a nodeAi, mark(Ai) = U when it is
undefeated, andmark(Ai) = D it is defeated. Decid-
ing whether a node is defeated or undefeated depends on
whether or not all its children are defeated: For all non-leaf
nodesAi, mark(Ai) = D iff there is a childAj of Ai s.t.
mark(Aj) = U . For all leavesAl, mark(Al) = U .

SoWin(T ) is yes when the approximate argument at the
root is defended from all attacks. This is a well-studied crite-
rion for argumentation (e.g. (Garcı́a & Simari 2004)) though
there are some interesting alternatives. However we stress
at this point that we believe the primary purpose of logical
argumentation is to highlight the key arguments and coun-
terarguments in the knowledgebase∆ rather than applying
a judge function. Nonetheless, the win judge is a useful way
of assessing the conflicts in a knowledgebase.
Example 9. Consider the following preargument treeT
whereA1 = [{δ, δ → σ}, σ], A2 = [{¬γ,¬γ → ¬δ}, �], A3

= [{α, β, α∧β → γ}, �], A4 = [{γ∨δ}, �], A5 = [{¬α}, �],
andA6 = [{¬β}, �].

A1

↗
A2

↗ ↖
A3 A4

↗ ↖
A5 A6

Hence,Win(T ) = yes holds. The intuition in this example
is thatA4 is sufficient to defeatA2 irrespective ofA3. And



so the existence ofA5 and/orA6 does not affect the ability
of A4 to defeatA2 and hence allowA1 to be undefeated.

We now consider how we can incorporate bias into the
construction of altoment trees. For this, we adapt the revi-
sion step of resupport as follows:T ′ is obtained byattack-
resupport from T by taking an entailment[Φ, α] for an at-
tacking node inT and removing one formula, sayφ, such
that [Φ \ {φ}, α] is an entailment. Using this alternative to
resupport, we can define the following type of biased tree.

Definition 11. Let 〈T1, ..., Tn〉 be a sequence of altoment
trees forα such thatT1 is a node with an altoment[Φ, α],
and for eachi, where1 ≤ i < n, Ti+1 is obtained by
an attack-resupport, reconsequent, contraction, or deflation
step fromTi, and when no such step is possible forTi, then
Ti+1 is obtained by an expansion step ofTi. If Tn is such
that no further step is possible, thenTn is an attack-bias
tree for α started from[Φ, α].

For purposes of comparison, suppose we have aλ s.t.
Generate(∆,Φ, α, λ) returns a complete preargument tree
T for α. In this case, we say thatT is a complete preargu-
ment tree forα started from[Φ, α].

Proposition 3. If T is an attack-bias tree, then each attack-
ing node is a preargument, whereas each defending node is
an altoment but not necessarily a preargument.

The above result means that in an attack-bias tree it is
easier to undercut a defending node than an attacking node.
This leads us to the following result.

Proposition 4. Let Ta be a attack-bias tree started from
[Φ, α], and letTp be a complete preargument tree started
from [Φ, α]. If Win(Ta) = yes, thenWin(Tp) = yes.

Constructing an attack-bias tree may involve fewer revi-
sion steps than constructing a complete preargument tree,
and from the above, it provides a bound on the outcome of
the corresponding complete preargument tree. We can de-
fine further biased constructions such as for a defence-bias
tree by restricting resupport steps to the defending nodes.

Discussion
Much progress has been made on developing formalisms
for argumentation. Some algorithms for argumentation
have been developed (for example (Kakas & Toni 1999;
Cayrol, Doutre, & Mengin 2001; Baroni & Giacomin 2002;
Garćıa & Simari 2004)). However, relatively little progress
has been made in developing techniques for overcoming the
computational challenges of constructing arguments. Even
though there is a proposal for storing information about pre-
vious calls to an ATP in a form of lemma generation called
contouring (Hunter 2006), and there are proposals for mak-
ing defeasible logic programming more efficient by storing
non-instantiated arguments in a database, again for reducing
the number of called to an ATP (Capobianco, Chesnevar, &
Simari 2005), and by the use of prunning strategies (Ches-
nevar, Simari, & Godo 2005), there does appear to be a
pressing need to look more widely for approaches for im-
proving the efficiency of argumentation.

In this paper, we have introduced a framework for approx-
imate arguments that can be used as useful intermediate re-
sults when undertaking argumentation using an ATP. Find-
ing approximate arguments requires fewer calls to an ATP,
but it involves compromising the correctness of arguments.
Our next step is to undertake empirical studies with the al-
gorithm to investigate this efficiency-correctness trade-off.

Approximate arguments may also be a useful vehicle for
studying approximate arguments as arising in human cog-
nition, and may be important for characterising some kinds
of discussions and negotiations in multi-agent dialogue sys-
tems where agents may put forward approximate arguments
that are not altoments, or even not entailments (perhaps for
competitive reasons or through ignorance).

Whilst our presentation is based on a particular approach
to logic-based argumentation, we believe the proposal could
be adapted for a range of other logic-based approaches
to argumentation (for example (Garcı́a & Simari 2004;
Amgoud & Cayrol 2002)) by adapting our definitions for
approximate arguments and for revision steps.
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