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Abstract. A key goal for a scientist is to find evidence to argue for
or against universal statements (in effect first-order formulae) about the
world. Building logic-based tools to support this activity could be po-
tentially very useful for scientists to analyse new scientific findings using
experimental results and established scientific knowledge. In effect, these
logical tools would help scientists to present arguments and counterargu-
ments for tentative scientific knowledge, and to share and discuss these
with other scientists. To address this, in this paper, we explain how ten-
tative and established scientific knowledge can be represented in logic,
we show how first-order argumentation can be used for analysing scien-
tific knowledge, and we extend our framework for evaluating the degree
of conflict arising in scientific knowledge. We also discuss the applicabil-
ity of recent developments in optimizing the impact and believability of
arguments for the intended audience.

1 Introduction

Argumentation is a vital aspect of intelligent behaviour by humans. There are a
number of proposals for logic-based formalisations of argumentation (for reviews
see [14, 7]). These proposals allow for the representation of arguments for and
against some claim, and of attack or undercut relationships between arguments.
Whilst many proposals are essentially propositional, there are argumentation
formalisms for reasoning with full first-order classical logic [3].

In many professional domains, such as science, it is apparent that there is
a need to support first-order argumentation. For example, one of the key goals
of scientists is to find evidence to argue for/against universal statements (in
effect first-order formulae) about the world. Scientists have much knowledge
about their area of expertise, and they have new findings which they want to
consider with respect to the established knowledge. With this “knowledgebase”,
a scientist will often identity arguments and counterarguments for new proposals
for scientific knowledge (tentative scientific knowledge). This presentation of
arguments and counterarguments will be for their own analytical purposes, and
for other scientists to consider and to counter.



Arguments and counterarguments can be systematically, though not neces-
sarily exhaustively, identified by hand in the free text of individual scientific
papers using anotation methodologies [15]. Tools have also been developed to
support scientists in analysing free text arguments obtained from a collection
of papers, allowing the scientist to flag relationships between evidence from dif-
ferent papers such as “supports”, “contradicts”, etc., using a graphical notation
(see for example ClaimMaker [6]).

However, logic-based argumentation has not been adequately harnessed for
capturing arguments and counterarguments from scientific knowledge. Potential
advantages would include a more a precise representation of scientific knowledge
that is tolerant of conflicts that inevitably arise, and automated reasoning for in-
corporation in tools for checking or generating arguments and counterarguments
from scientific knowledge.

To address this need, we present a new framework for first-order argumenta-
tion with scientific knowledge. However, we are not intending to consider scien-
tific theory formation here. Whilst argumentation theory is being considered for
the process of generating new scientific theories [13], we assume that the scientist
has generated a theory, and wants to analyse it with the respect to the rest of
the relevant scientific knowledge.

In the following, we explain how tentative and established scientific knowl-
edge can be represented in logic, we review our framework for first-order ar-
gumentation, we show how first-order argumentation can be used for analysing
scientific knowledge, and we extend our framework for evaluating the degree of
conflict arising in scientific knowledge.

2 Scientific Knowledge in Logic

Much established scientific knowledge can be represented by statements in first-
order logic such as the following universal statements concerning cell biology.

∀x.(cell(x) → contains(x, chromosomes))
∀x.(chromosomes(x) → contains(x, dna))

Here we assume much established scientific knowledge derived from experi-
mental research is represented by a set of formulae each of which is a scientific
statement as defined below.

Definition 1. A scientific statement is a closed formula of first-order logic
of the following format where (1) for 0 ≤ i ≤ m, µi is either a ∀ or a ∃ quantifier
and xi is a variable; and (2) α and β are conjunctions of literals.

µ0x0, ..., µmxm.(β → α)

So the formulae concerning cell biology are examples of scientific statements.
This is a simplistic format for scientific knowledge, but it is useful for capturing
a wide range of generalities obtained from experiments or clinical drug trials,
and will serve us for developing the role of logic-based argumentation in science.



A key issue in science is that established scientific knowledge is not without
inconsistencies. There are competing theories and interpretations in established
scientific knowledge. Furthermore, these conflicts lead to further research and
hence new discoveries causing the established scientific knowledge to change
over time. This is particularly so in biomedical sciences where even the more
established knowledge evolves dramatically with much refinement and some es-
tablished knowledge being rejected after a relatively short time period. This is
manifested by the rate at which new editions of substantially revised standard
undergraduate textbooks in biomedical sciences are published. It can also be
seen in the rapidly evolving practices in healthcare. Some established practices
are rejected in the space of a few years in the light of newly established scientific
knowledge. As a result, the process of science routinely involves dealing with
uncertain and conflicting information.

Scientists who consider their own experimental results in the context of the
established scientific knowledge, as reflected in the scientific literature, need to
reason with the conflicts arising, and determine the net results that they should
put forward into the public domain, hopefully to become established scientific
knowledge. But before scientific knowledge can be regarded as established, it
is treated with much caution. We therefore regard findings from research as
conditional knowledge, called scientific proposals, of the following form.

Definition 2. A scientific proposal is a closed formula of first-order logic of
the following format where (1) for 0 ≤ i ≤ n, µi is either a ∀ or a ∃ quantifier and
xi is a variable; (2) γ is a conjunction of literals; and (3) µ0x0, ..., µnxn.(β → α)
is a scientific statement.

µ0x0, ..., µnxn.(γ → (β → α))

We call γ the meta-condition and µ0x0, ..., µnxn.β → α the tentative scien-
tific statement for the scientific proposal. If fs is a scientific statement, then
Metacondition(fs) = γ and Proposal(fs) = µ0x0, ..., µnxn.(β → α).

Whilst we do not impose any typing on the language for scientific proposals,
it should be clear in the following that we intend meta-conditions to use literals
that are not available for scientific statements. In general, we see a number
of dimensions that we would want to define qualification (meta-conditions) for
a scientific proposal. We briefly consider some examples: (1) the investigators
who made the scientific contribution need to have the right qualificiations and
experience; (2) the methods used in the experiments and the interpretation of
the experiments need to be appropriate; and (3) the experimental results from
which the tentative contribution is based do justify the tentative contribution.

We assume scientific knowledge is represented by a set of formulae of classical
logic and that includes scientific statements, scientific proposals, together with
subsidiary information such as details on particular experiments and particular
techniques. Later we will define an argument as a minimal set of formulae (called
the support) that classically implies a formula (called the consequent).



Example 1. The formula below, denoted f1, is a scientific proposal concerning
drug trial “trial78” on drug “p237” for “reducing blood cholesterol” .

f1 ∀x.(validDrugTrial(trial78) →
(healthy(x) ∧ under75(x) ∧ treatment(x, p237, 50mg, daily)

→ decreaseBloodCholesterol(x)))

The formulae f2 and f3 are subsidiary formulae.

f2 ∀x, y.((numberOfPatients(x, y) ∧ y > 1000 ∧ trialAtGoodHospital(x))
→ validDrugTrial(x))

f3 numberOfPatients(trial78, 2479) ∧ 2479 > 1000
∧ trialAtGoodHospital(trial78)

Assuming {f1, f2, f3} we obtain f4 by implication.

f4 ∀x.(healthy(x) ∧ under75(x) ∧ treatment(x, p237, 50mg, daily)
→ decreaseBloodCholesterol(x))

This can be summarized by the following argument, where {f1, f2, f3} is the
support for the argument, and f4 is the consequent.

〈{f1, f2, f3}, f4〉

We now turn to the kinds of counterarguments for arguments. We shall fo-
cus on undercuts. An undercut Aj for an argument Ai is an argument with a
consequent that negates the support for Ai. By recursion, undercuts may be
subject to undercuts. We formalize this in the next section, and then provide a
framework for scientific argumentation.

3 First-order Argumentation

In this section, we review a recent proposal for argumentation with first-order
classical logic [3]. For a language, the set of formulae L that can be formed is
given by the usual inductive definitions for classical logic. Deduction in classical
propositional logic is denoted by the symbol ` and deductive closure by Cn so
that Cn(Φ) = {α | Φ ` α}.

For the following definitions, we first assume a knowledgebase ∆ (a finite set
of formulae) and use this ∆ throughout. We further assume that every subset
of ∆ is given an enumeration 〈α1, . . . , αn〉 of its elements, which we call its
canonical enumeration. This really is not a demanding constraint: In particular,
the constraint is satisfied whenever we impose an arbitrary total ordering over
∆. Importantly, the order has no meaning and is not meant to represent any
respective importance of formulae in ∆. It is only a convenient way to indicate
the order in which we assume the formulae in any subset of ∆ are conjoined to
make a formula logically equivalent to that subset.



The paradigm for the approach is a large repository of information, repre-
sented by ∆, from which arguments can be constructed for and against arbitrary
claims. Apart from information being understood as declarative statements,
there is no a priori restriction on the contents, and the pieces of information
in the repository can be as complex as possible. Therefore, ∆ is not expected
to be consistent. It need even not be the case that every single formula in ∆ is
consistent.

The framework adopts a very common intuitive notion of an argument. Es-
sentially, an argument is a set of relevant formulae that can be used to classically
prove some claim, together with that claim. Each claim is represented by a for-
mula.

Definition 3. An argument is a pair 〈Φ,α〉 such that: (1) Φ 6` ⊥; (2) Φ `
α; and (3) there is no Φ′ ⊂ Φ such that Φ′ ` α. We say that 〈Φ,α〉 is an
argument for α. We call α the consequent of the argument and Φ the support of
the argument (we also say that Φ is a support for α). For an argument 〈Φ,α〉,
Support(〈Φ,α〉) = Φ, and Consequent(〈Φ,α〉) = α.

Example 2. For ∆ = {∀x.(p(x) → q(x)), p(a),¬∀x.p(x),¬∃x.(p(x) → q(x))}
some arguments include

〈{p(a),∀x.(p(x) → q(x))}, q(a)〉
〈{¬∀x.p(x)},¬∀x.p(x)〉

〈{¬∃x.(p(x) → q(x))},∀x.(p(x) ∧ ¬q(x))〉

Arguments are not independent. In a sense, some encompass others (possibly
up to some form of equivalence). To clarify this requires a few definitions as
follows.

Definition 4. An argument 〈Φ,α〉 is more conservative than an argument
〈Ψ, β〉 iff Φ ⊆ Ψ and β ` α.

Example 3. 〈{p(a),∀x.(p(x) → q(x) ∨ r(x))}, q(a) ∨ r(a)〉 is more conservative
than 〈{p(a),∀x.(p(x) → q(x) ∨ r(x)),¬∃x.r(x)}, q(a)〉.

Some arguments directly oppose the support of others, which amounts to the
notion of an undercut.

Definition 5. An undercut for an argument 〈Φ,α〉 is an argument 〈Ψ,¬(φ1 ∧
. . . ∧ φn)〉 where {φ1, . . . , φn} ⊆ Φ.

Example 4.

〈{∀x.p(x)}, p(a)〉 is undercut by 〈{¬∃x.p(x)},¬∀x.p(x)〉
〈{∀x.p(x)}, p(a)〉 is undercut by 〈{∃x.¬p(x)},¬∀x.p(x)〉
〈{∀x.p(x)}, p(a)〉 is undercut by 〈{¬p(a)},¬∀x.p(x)〉
〈{∀x.p(x)}, p(a)〉 is undercut by 〈{¬p(b)},¬∀x.p(x)〉



Example 5. Let ∆ = {p(a), p(a) → q(a), r(a), r(a) → ¬p(a)}. Then,

〈{r(a), r(a) → ¬p(a)},¬(p(a) ∧ (p(a) → q(a)))〉

is an undercut for
〈{p(a), p(a) → q(a)}, q(a)〉

A less conservative undercut for it is

〈{r(a), r(a) → ¬p(a)},¬p(a)〉

Definition 6. 〈Ψ, β〉 is a maximally conservative undercut of 〈Φ,α〉 iff
〈Ψ, β〉 is an undercut of 〈Φ,α〉 such that no undercuts of 〈Φ,α〉 are strictly more
conservative than 〈Ψ, β〉 (that is, for all undercuts 〈Ψ ′, β′〉 of 〈Φ,α〉, if Ψ ′ ⊆ Ψ
and β ` β′ then Ψ ⊆ Ψ ′ and β′ ` β).

The value of the following definition of canonical undercut is that we only
need to take the canonical undercuts into account. This means we can justifiably
ignore the potentially very large number of non-canonical undercuts.

Definition 7. An argument 〈Ψ,¬(φ1 ∧ . . .∧φn)〉 is a canonical undercut for
〈Φ,α〉 iff it is a maximally conservative undercut for 〈Φ,α〉 and 〈φ1, . . . , φn〉 is
the canonical enumeration of Φ.

Proposition 1. Given two different canonical undercuts for the same argument,
none is more conservative than the other.

Proposition 2. Any two different canonical undercuts for the same argument
have distinct supports whereas they do have the same consequent.

An argument tree describes the various ways an argument can be challenged,
as well as how the counterarguments to the initial argument can themselves be
challenged, and so on recursively.

Definition 8. An argument tree for α is a tree where the nodes are arguments
such that

1. The root is an argument for α.
2. For no node 〈Φ, β〉 with ancestor nodes 〈Φ1, β1〉, . . . , 〈Φn, βn〉 is Φ a subset

of Φ1 ∪ · · · ∪ Φn.
3. Each child of a node A is an undercut for A that obeys 2.

A canonical argument tree is an argument tree where each undercut is a
canonical undercut. A complete argument tree is a canonical argument tree
for each node A, s.t. if A′ is a canonical undercut for A, then A′ is a child of
A. For a tree T , Nodes(T ) is the set of nodes in T and Depth(T ) is the number
of arcs on the longest branch of T .



The second condition in Definition 8 ensures that each argument on a branch
has to introduce at least one formula in its support that has not already been used
by ancestor arguments. As a notational convenience, in examples of argument
trees, the 3 symbol is used to denote the consequent of an argument when that
argument is a canonical undercut.

Example 6. Consider the following knowledgebase.

∆ = {∀x.(p(x) ∨ q(x)),∀x.(p(x) → r(x)),∀x.¬r(x),∀x.¬q(x),∀x.(s(x) ↔ q(x))

Below is an argument tree from ∆ for the consequent ∀x.(p(x) ∨ ¬s(x)).

〈{∀x.(p(x) ∨ q(x)),∀x.¬q(x)},∀x.(p(x) ∨ ¬s(x))〉
↑

〈{∀x.(p(x) → r(x)),∀x.¬r(x)},3〉

Example 7. Let f5 and f6 be the following formulae.

f5 ∀x, y.(irregularitiesDuringTrial(X)
→ ¬validDrugTrial(x))

f6 irregularitiesDuringTrial(trial78)

Hence we have the argument 〈{f5, f6}, �〉 which is an undercut for the argument
〈{f1, f2, f3}, f4〉 given in Example 1. This is summarized as follows.

〈{f1, f2, f3}, f4〉
↑

〈{f5, f6}, �〉

A complete argument tree is an efficient representation of all the important
arguments and counterarguments.

Proposition 3. Let α ∈ L. If ∆ is finite, there is a finite number of argument
trees with the root being an argument with consequent α that can be formed from
∆, and each of these trees has finite branching and a finite depth.

4 Scientific Argumentation

After delineating some conflicting (i.e. inconsistent) scientific knowledge, we as-
sume a scientist wants to see if an argument of interest has undercuts, and by
recursion, undercuts to undercuts. So when a scientist considers a scientific pro-
posal, undercuts to an argument using the scientific proposal indicate reasons to
doubt the proposal, and undercuts to an undercut indicate reasons to doubt that
undercut. Argument trees therefore provide a systematic means for representing
caution in scientific knowledge. We focus on three types of undercut that arise
with a clear aetiology.



One way to reflect caution in a scientific proposal is to consider the meta-
conditions for the scientific proposal. This is an important aspect of scientific
reasoning, and it may involve considering the reliability of sources, and the be-
lievability, plausibility, or quality of information used. The quality of putative
scientific knowledge derived from experiments may be questionable in a number
of ways based on the quality of the experimental environment, the quality of
the starting materials, the nature of any subjects being studied, and the nature
of the scientific methodology. The quality may also be questionable in terms
of the interpretation of the scientific results, so that cause-effect relationships
are claimed for results that should be interpreted as coincidence. Alternatively,
incorrect statistical techniques may have been used. So a scientific proposal can
be qualified in a number of ways, and arguments against these qualifications can
then be represented.

Definition 9. Let Aj be an undercut for Ai. Aj is a meta-condition vio-
lation of Ai iff there is a scientific proposal fi ∈ Support(Ai) and there is a
ground version γ′ of Metacondition(fi) such that Support(Ai) \ {fi} ` γ′ and
Support(Aj) ∪ {γ′} is inconsistent.

So an argument is subject to a meta-condition violation when the support of
the argument includes a scientific proposal and there is an undercut that negates
the meta-condition of the scientific proposal. An illustration of a meta-condition
violation is given in Example 7.

A second way to reflect caution in a scientific proposal is to consider ex-
ceptions. As formalized next, an argument is subject to an exception violation
when the support of the argument includes a scientific proposal and there is an
undercut which has a support that negates the tentative scientific statement for
the scientific proposal. As a result, since the consequent is a tentative scientific
statement, the ground atoms satisfy the antecedent but negate the consequent
of the tentative scientific statement as illustrated in Example 8.

Definition 10. Let Aj be an undercut for Ai. Aj is an exception violation
of Ai iff Support(Aj) contains only ground formulae and there is a scientific
proposal fi ∈ Support(Ai) such that Support(Aj)∪{Proposal(fi)} is inconsistent.

Example 8. Consider f4 given in Example 1. Suppose we have nine exceptions
f21,..,f29 as follows.

f21 (healthy(patient33) ∧ under75(patient33)
∧treatment(patient33, p237, 50mg, daily)
∧¬decreaseBloodCholesterol(patient33)))

:
f29 (healthy(patient89) ∧ under75(patient89)

∧treatment(patient89, p237, 50mg, daily)
∧¬decreaseBloodCholesterol(patient89)))



Then we have the argument tree

〈{f1, f2, f3}f4〉
↗ ↖

〈{f21}, �〉.............〈{f29}, �〉

A problem with this type of violation is that there may be a significant
number of exceptions of the same form, and so we may wish to abbreviate the
information we have about these exceptions. To support this, a useful conserva-
tive extension of the first-order language is qualified statements. These allow us
to represent a specific set of examples for which a general statement holds.

Definition 11. A qualified statement is a formula of the following form ∀x ∈
{t1, .., tn}.α, where {t1, .., tn} is a set of ground terms, and α is a formula.

Definition 12. We extend the ` consequence relation with the following holding
for all formulae α where α[x/ti] denotes the grounding of all free occurrences of
the x variable by the ground term ti.

` (∀x ∈ {t1, .., tn}.α) ↔ (α[x/t1] ∧ .. ∧ α[x/tn])

Example 9. Let ∆ = {∀x ∈ {a, b, c}.(∀y ∈ {c, d}.(p(x, y) → q(x, a))}. Hence,
∆ ` p(b, c) → q(b, a). If ∆′ comprises the formulae below, then Cn(∆) = Cn(∆′).

p(a, c) → q(a, a) p(b, c) → q(b, a)
p(c, c) → q(c, a) p(a, d) → q(a, a)
p(b, d) → q(b, a) p(c, d) → q(c, a)

Qualified statements are useful shorthand for a set of statements. Also if
∆ ` ∀x ∈ X.α and X ′ ⊆ X, then ∆ ` ∀x ∈ X ′.α.

Example 10. Let us denote f30 by the following formula.

∀x ∈ {patient33, .., patient89}.
(healthy(x) ∧ under75(x)

∧treatment(x, p237, 50mg, daily)
∧¬decreaseBloodCholesterol(x)))

Using f1, f2, and f3, from Example 1, with f30, the following is an argument
tree for f4.

〈{f1, f2, f3}, f4〉
↑

〈{f30},3〉

A third way of expressing caution in a scientific proposal is to identify con-
flicts with the established scientific knowledge used. As discussed earlier, there
are numerous inconsistencies of various kinds in the established literature, and
so even though a scientific statement may be assumed to be part of the es-
tablished knowledge, it does not necessarily mean it is absolutely correct, and



such conflicts may need to be highlighted when they are relevant to a scientific
proposal under consideration. As formalized next, an argument is subject to pre-
supposition violation when there is a counterargument that negates a scientific
statement used in the support of the argument.

Definition 13. Let Aj be an undercut for Ai. Aj is a presupposition vi-
olation of Ai iff there is a scientific statement fi ∈ Support(Ai) such that
Support(Aj) ∪ {fi} is inconsistent.

Example 11. For the formula below, h1 is a scientific proposal, h2 is an estab-
lished piece of scientific knowledge, and h3 and h4 are subsidiary formulae.

h1 ∀x.(validDrugTrial(trial990) →
(decreaseChronicAnxiety(x) → increasedLifeExpectancy(x)))

h2 ∀x.(treatment(x, daloxopin, 4mg, daily) → decreaseChronicAnxiety(x))

h3 validDrugTrial(trial990))

h4 ∀x ∈ {patient1, .., patient241}.(treatment(x, daloxopin, 4mg, daily)

Assuming {h1, hh, h3, h4} we obtain h5 by implication.

h5 ∀x.(decreaseChronicAnxiety(x) → increasedLifeExpectancy(x))

In addition, assume we have the formula h6 that says that it is not the case, for
any patient, any dose, or any frequency of treatment, that daloxopin decreases
chronic anxiety. This formula is therefore negating some established scientific
knowledge used above.

h6 ∀x, y, z.¬(treatment(x, daloxopin, y, z) → decreaseChronicAnxiety(x)

From this, we get the following argument tree that reflects the presupposition
violation.

〈{h1, h2, h3, h4}, h5〉
↑

〈{h6}, �〉

As stated earlier, undercuts can also be undercut by recursion. These under-
cuts may also include circumstantial undercuts which are undercuts based on
special circumstances arising when undertaking the trial or experiment or when
drawing up the scientific proposal. For example, an exception may be undercut
because it arises from a possibly faulty observation or an incorrect experimental
set-up.

5 Degree of Undercut

An argument conflicts with each of its undercuts, by the very definition of an
undercut. Now, some may conflict more than others, and some may conflict a
little while others conflict a lot. To illustrate, consider the following trees.



T1 T2 T3

〈{P (a)}, P (a)〉 〈{∀x.P (x)}, P (a)〉 〈{∀x.P (x)}, P (a)〉
↑ ↑ ↑

〈{¬P (a)}, �〉 〈{¬P (a)}, �〉 〈{¬P (b)}, �〉

All of T1, .., T3 have P (a) as the conclusion. In T1, the support for root is
{P (a)} and the support for the undercut is {¬P (a)}. This can be described as a
propositional conflict where P (a) is against ¬P (a). In T2, the support for root is
{∀x.P (x)} and the support for the undercut is {¬P (a)}. This can be described
as equivalent to T1 since the conflict is only with respect to one grounding of
x, viz. the grounding by a. In T3, the support for the root is {∀x.P (x)} but the
support for the undercut is {¬P (b)}. This can also be described as equivalent to
T1 since the conflict is only with respect to one grounding of x, viz. the grounding
by b.

T4 T5 T6

〈{∀x.P (x)},∀x.P (x)〉 〈{∀x.P (x)},∀x.P (x)〉 〈{∀x.P (x)},∀x.P (x)〉
↑ ↑ ↑

〈{¬P (a)}, �〉 〈{¬∀x.P (x)}, �〉 〈{∀x.¬P (x)}, �〉

All of T4, .., T6 have ∀x.P (x) as the conclusion. In T4, the support for the
root is {∀x.P (x)} and the support for the undercut is {¬P (a)}. So this can be
described as having the same degree of conflict as T2. In T5, the support for
the root is {∀x.P (x)} and the support for the undercut is {¬∀x.P (x)}. Since
¬∀x.P (x) is logically equivalent to ∃x.¬P (x), the conflict only necessarily in-
volves one grounding for x. Hence, this can also be described as as having the
same degree of conflict as T2. In T6, the support for the root is {∀x.P (x)} and
the support for the undercut is {∀x.¬P (x)}. Here, the conflict is much more
substantial since it involves all possible groundings for x.

By these simple examples, we see there is an intuitive difference in the degree
of conflict between supports, and hence an intuitive starting point for defining
the degree of undercut that an argument has against its parent. This degree
of undercut depends on the logical nature of the supports involved. Above we
have considered this informally for some examples of monadic literals. In the
following, we review a formal conceputalization of this for formulae involving
n-predicates and involving logical connectives [3], and then consider how it can
used for analysing scientific arguments. For this, the conflict of an argument
with each of its undercuts is reflected by a position in an ordering (possibly a
partial one) but not necessarily a numerical value in some interval (i.e., orders
of magnitude are not necessarily needed).



Definition 14. A degree of undercut is a mapping Degree : Ω × Ω → O
where 〈O,≤〉 is some poset such that for Ai = 〈Φ,α〉 and Aj = 〈Ψ, β〉 in Ω,

(1) Degree(Aj , A) ≤ Degree(Ai, A) for all A ∈ Ω if Φ ` Ψ

(2) Degree(Ai, Aj) is minimal iff Φ ∪ Ψ 6` ⊥

The last clause in Definition 14 means that Degree(A,A′) is minimal when
A and A′ are two arguments which do not conflict with each other (so, none is
an undercut of the other, as Degree is rather a degree of conflict but it is called
degree of undercut here because we are only interested in its value when A′ is an
undercut of A). Definition 14 allows for many possibilities, leaving you to choose
a suitable mapping.

We now introduce labelled argument trees. I.e., we label each arc with the
degree of undercut. In the rest of the paper, we assume that O is the interval
[0, 1].

Definition 15. A labelled argument tree is an argument tree such that if
Aj is a child of Ai in the argument tree, then the arc from Aj to Ai is labelled
with Degree(Ai, Aj).

Example 12. A labelled argument tree for ∀x.α[x] is:

〈{∀x.α[x]},∀x.α[x]〉
↗ 1/n ↖ m/n

〈{¬α[a]},3〉 〈{¬α[b1] ∧ . . . ∧ ¬α[bm]},3〉

From now on, n is some reasonable upper bound for the size of the universe of
discourse (it is supposed to be finite).

One conceptualization for degree of undercut is based on Herbrand Interpre-
tation. For the rest of the paper, we assume that the non-logical language for ∆ is
restricted to predicate, variable, and constant symbols, and so function symbols
are not used. We also assume that ∆ includes at least one constant symbol, and
normally, numerous constant symbols. Note, there are other conceptualizations
of degree of undercut where we do not restrict ourselves to a finite universe, and
can use an unrestricted first-order classical language [4].

Definition 16. Let Π be the set of ground atoms that can be formed from the
predicate symbols and constant symbols used in ∆. Π is the base for ∆. Each
w ⊆ Π is an interpretation s.t. each atom in w is assigned true and each atom
in Π \ w is assigned false. For a set of formulae X, let M(X, Π) be the set of
models of X that are in ℘(Π). So M(X, Π) = {w |= ∧X | w ∈ ℘(Π)} where
|= is classical satisfaction.

Example 13. Let X = { q(b)∧q(c), ¬r(c), ∀x.p(x), ∃x.(r(x)∧q(x)) } ⊆ ∆ and so
Π = {p(a), p(b), p(c), q(a), q(b), q(c), r(a), r(b), r(c)}. Hence M(X, Π) contains



exactly the following models.

{p(a), p(b), p(c), q(a), q(b), q(c), r(a), r(b)}
{p(a), p(b), p(c), q(b), q(c), r(a), r(b)}
{p(a), p(b), p(c), q(a), q(b), q(c), r(a)}
{p(a), p(b), p(c), q(a), q(b), q(c), r(b)}
{p(a), p(b), p(c), q(b), q(c), r(b)}

We now recall the definition for Dalal distance for comparing a pair of models
which is the Hamming distance between the two models [8].

Definition 17. Let wi, wj ∈ ℘(Π). The Dalal distance between wi and wj,
denoted Dalal(wi, wj), is the difference in the number of atoms assigned true:

Dalal(wi, wj) = |wi − wj |+ |wj − wi|

To evaluate the conflict between two theories, we take a pair of models, one
for each theory, such that the Dalal distance is minimized. The degree of conflict
is this distance divided by the maximum possible Dalal distance between a pair
of models (i.e. log2 of the total number of models in ℘(Π) which is |Π|).

Definition 18. For X, Y ⊆ ∆ s.t. X 6` ⊥ and Y 6` ⊥, let Distances(X, Y,Π) be

{Dalal(wx, wy) | wx ∈ M(X, Π) and wy ∈ M(Y,Π)}

The degree of conflict, denoted Conflict(X, Y,Π), is:

Conflict(X, Y,Π) =
Min(Distances(X, Y,Π))

|Π|

Example 14. Let Π = {p(a), p(b), p(c), q(a), q(b), q(c), r(a), r(b), r(c)}.

Conflict({∀x.p(x)}, {∃x.¬p(x)},Π) = 1/9
Conflict({∀x.p(x)}, {¬(p(a) ∨ p(b))},Π) = 2/9
Conflict({∀x.p(x)}, {∀x.¬p(x)},Π) = 3/9

For X, Y ⊆ ∆, such that X 6` ⊥ and Y 6` ⊥, we can show the following:
(1) 0 ≤ Conflict(X, Y,Π) ≤ 1; (2) Conflict(X, Y,Π) = Conflict(Y,X,Π); and (3)
Conflict(X, Y,Π) = 0 iff X ∪ Y 6` ⊥.

Definition 19. Let Ai = 〈Φ,α〉 and let Aj = 〈Ψ, β〉 be arguments. The Dalal-
Herbrand degree of undercut by Aj for Ai, denoted Degreedh(Ai, Aj ,Π), is
Conflict(Φ, Ψ,Π).

Clearly, if Ai is an undercut for Aj , then Degreedh(Ai, Aj ,Π) > 0.

Example 15. Let A1 = 〈{¬∃x.p(x)},¬∀x.p(x)〉, A2 = 〈{∃x.¬p(x)},¬∀x.p(x)〉,
A3 = 〈{¬p(a1)},¬∀x.p(x)〉, A4 = 〈{∀x.p(x)}, p(a1)〉, and Π = {p(a1), ..., p(an)}.

Degreedh(A4, A1,Π) = n/n
Degreedh(A4, A2,Π) = 1/n
Degreedh(A4, A3,Π) = 1/n



A scientist can use the degree of undercut to compare arguments and coun-
terarguments. We can regard each argument in a tree as either an attacking
argument or a defending argument. The root is a defending argument. If an
argument Ai is a defending argument, then any child Aj of Ai is an attacking
argument. If an argument Aj is an attacking argument, then any child Ak of Aj

is a defending argument. For a scientific proposal used in the root, a scientist
could publish a scientific proposal in the public domain with more confidence,
if the undercuts to defending arguments have a low degree of undercut, and the
undercuts to attacking arguments have a high degree of undercut.

Example 16. Consider the argument tree given in Example 10. Suppose the
knowledgebase from which the tree is constructed contains just the formulae
f1, f2, f3, f30, together with the following 2479 formulae.

g1 (healthy(patient1) ∧ under75(patient1)
g2 (healthy(patient2) ∧ under75(patient2)
g3 (healthy(patient3) ∧ under75(patient3)
: :

g2479 (healthy(patient2479) ∧ under75(patient2479)

Hence the Dalal-Herbrand degree of undercut by 〈{f30}, �〉, for 〈{f1, f2, f3}, f4〉
is 9/2479.

Labelled argument trees provide extra information that leads to a useful
abstraction of the original argument tree.

Example 17. Let A0, A1, A2, ...., A5 be arguments, and let k < n and m < n
hold. For this, the following is a labelled argument tree.

A0

1/n ↗ ↖ m/n
A1 A2

1/n ↗ ↖ 1/n ↑ k/n
A3 A4 A5

In the above labelled argument tree, if n is significantly greater than 1, then
it may be natural to ignore the left subtree rooted at A1 and to concentrate on
the right-most branch of the tree. If m is close to n, then A2 is an important
undercut of A0, whereas if it is close to 1, then it may be natural to ignore this
branch also.

The tension of an argument tree is the cumulative conflict obtained from
all the undercuts in the tree. As tension rises, the more the scientist has to be
careful how a new scientific proposal is presented.

Definition 20. Let T be an argument tree, and let Ar be the root node. The
degree of tension in T , denoted Tension(T ), is given by the value of Retension(Ar),



where for any node Ai in the tree, if Ai is a leaf, then Retension(Ai) = 0 otherwise
Retension(Ai) is ∑

Aj s.t. Aj undercuts Ai

Retension(Aj) + Degree(Ai, Aj ,Π)

Clearly, Tension(T ) < |Nodes(T )|. Furthermore, |Nodes(T )| = 1 if and only
if Tension(T ) = 0. Tension is maximized when each formula in ∆ has to be
inconsistent with every other formula, such as {α∧ β, α∧¬β,¬α∧ β,¬α∧¬β},
so that every argument is an undercut to every other argument.

We conclude this section by sketching another conceptualization of degree of
undercut. Here, we assume O is N∪{∞}×N∪{∞} (and so for this paragraph we
suspend our general assumption in this section of O being [0, 1]). Informally, for
arguments Ai and Aj , the degree of undercut of Aj for Ai is a pair (n, k) where
n is the number of situations where the support of Aj is regarded as holding
(and thereby justifying the support), and k is the number of situations where
the support of Ai is regarded as holding (and thereby justifying the support).
Now, consider an argument tree about clinical drug trials, the number of situa-
tions where a support holds can be defined in terms of the number of patients
involved in the trial. If we consider Example 1, for the argument 〈{f1, f2, f3}, f4〉,
the support is justified by 2479 patients, and if we consider Example 10, for the
argument 〈{f30}, �〉 the support is justified by 9 patients. So the degree of under-
cut is (9, 2479). For supports that use only established scientific knowledge, we
use the value ∞ to denote the understanding that the support uses only estab-
lished scientific knowledge. So an argument with support containing knowledge
from a trial involving a 1000 patients that undercuts an argument that uses only
established scientific knowledge, the degree of undercut is (1000,∞). Similarly,
for an argument that uses only established scientific knowledge undercutting an
argument with support containing knowledge from a trial involving a 1000 pa-
tients, the degree of undercut is (∞, 1000). Finally, for an argument that uses
only established scientific knowledge undercutting an argument that uses only
established scientific knowledge, the degree of undercut is (∞,∞).

6 Editing Argument Trees

Even for small first-order knowledgebases, the number of arguments generated
may be overwhelming for a scientist to be able to study at any one time. To
address this problem, we review some proposals for rationalization of argument
trees [3, 4] including (1) Pruning arguments that have a degree of undercut that
is below a certain threshold; and (2) Merging arguments to create fewer under-
cuts but without losing vital information. Rationalization is part of a process of
editing a set of arguments and counterarguments to allow a scientist to focus on
key issues.

For pruning, we choose a threshold for a minimum degree of undercut. If an
undercut has a degree of undercut below the threshold, then the undercut is
dropped, together with any offspring of that undercut.



Definition 21. A threshold, denoted τ , is a value in [0, 1] such that if T is an
argument tree, Prune(T, τ) is the pruned argument tree obtained from T by
removing every undercut Aj for an argument Ai if Degree(Ai, Aj ,Π) ≤ τ and
for any undercut removed, all the offspring of that undercut are also removed.

Example 18. Let T be the following labelled argument tree.

A1

↗ 80/100 ↖ 1/100
A2 A3

↑ 40/100 ↗ 10/100 ↖ 75/100
A4 A5 A6

Below, the left argument tree is Prune(T, 0.3) and the right one is Prune(T, 0.5).

A1 A1

↑ 80/100 ↑ 80/100
A2 A2

↑ 40/100
A4

So pruning of argument trees allows us to focus our attention on the most
conflicting undercuts.

Proposition 4. For i ∈ [0, 1], if T ′ = Prune(T, i) then Tension(T ′) ≤ Tension(T )
and |Nodes(T ′)| ≤ |Nodes(T )| and Depth(T ′) ≤ Depth(T ).

Also, Prune(T, 0) = T and Prune(T, 1) returns a tree containing just the
root of T . For all i ∈ [0, 1], if T is a canonical argument tree, then Prune(T, i)
is a canonical argument tree. However, if T is a complete argument tree, then
Prune(T, i) is not necessarily a complete argument tree.

For merging, we use the following notion of compression which combines
arguments without loss of essential information. Compression merges siblings in
order to reduce the number of arguments and to reduce the “redundancy” arising
by having numerous similar arguments or logically equivalent arguments, and to
make appropriate “simplifications” of the syntax of some arguments.

Definition 22. Let T1 and T2 be argument trees. T2 is a compression of T1 iff
there is a surjection G :Nodes(T1) → Nodes(T2) such that for all B ∈ Nodes(T2),

Cn(Support(B)) = Cn(
⋃

A∈G−1(B)

Support(A))

We call G the compression function.

The argument tree in Example 10 is a compression of the argument tree in
Example 8. Logical simplification of supports of arguments, as illustrated in the
example below, may also be useful in some circumstances. Such simplifications
may be important in focussing on the main issues, and removal of less relevant
concepts.



Example 19. T3 is a compression of T2:

T2 T3

〈{∀x.Px},∀x.Px〉 〈{∀x.Px},∀x.Px〉
↗ ↖ ↑

〈¬Pa ∨ ¬Pb,3〉 〈¬Pa ∧ ¬Pb, 3〉 〈¬Pa ∧ ¬Pb,3〉

while each of T2 and T3 is a compression of T1:

T1

〈{∀x.Px},∀x.Px〉
↗ ↗ ↖ ↖

〈¬Pa ∨ ¬Pb, 3〉 〈¬Pa, 3〉 〈¬Pb,3〉 〈¬Pa ∧ ¬Pb,3〉

Proposition 5. If T ′ is a compression of T , then Tension(T ′) ≤ Tension(T ) and
|Nodes(T ′)| ≤ |Nodes(T )| and Depth(T ′) = Depth(T ).

Compression is not necessarily unique, and there are limits to compression,
for example when an argument tree is a chain, and when all pairs of siblings have
supports that are mutually contradictory. If compression is restricted to just
replacing ground formulae with qualified formulae, then the tension is constant.
Alternatively, we may choose to just use compressions that do not change the
tension. For more details on compression, and for alternatives, see [3, 4].

A presentation of arguments and counterarguments can also be edited in
order to improve the impact of the argumentation [12], and/or to increase the
believability of the argumentation [11], from the perspective of the intended
audience of argumentation.

For increasing the impact of argumentation, we have developed an evaluation
of arguments in terms of how the arguments resonate with the intended audience
of the arguments. For example, if a scientist wants to present results from a
research project, the arguments used would depend on what is important to the
audience: Arguments based on the potential economic benefits of the research
would resonate better with an audience from the business community and from
the funding agencies, whereas arguments based on the scientific results would
resonate better with an audience of fellow scientists. By analysing the resonance
of arguments, we can prune argument trees to raise their impact for an audience.

For increasing the believability of argumentation, we have developed a model-
theoretic evaluation of the believability of arguments. This extension assumes
that the beliefs of a typical member of the audience for argumentation can be
represented by a set of classical formulae (a beliefbase). We compare a beliefbase
with each argument to evaluate the empathy (or similarly the antipathy) that
an agent has for the argument. On the basis of believability, a scientist may wish
to ignore arguments for which the audience has antipathy.

The use of pruning, of rationalization, and of selectivity based on raising
impact and optimizing believability, is part of a trend to consider the audience
in argumentation, and present constellations of arguments and counterarguments



that are appropriate for the audience. For example, formalising persuasion has
a role in modelling legal reasoning [2].

7 Discussion

The primary aim of this paper has been to provide a framework for presenting
scientific arguments and counterarguments based on first-order predicate logic.
We can view the framework in this paper as a specification for a decision-support
system for scientists to evaluate new scientific proposals. To use it, a scientist
would be responsible for adding the relevant scientific knowledge together with
the scientific proposal of interest. The decision-support system would then con-
struct the labelled argument trees. Scientists are a user community who may
be highly amenable to learning and using predicate logic to use this system.
Alternatively, we may need to look towards developments in natural language
processing for translating free text into logical formulae.

One of the key advantages of undertaking meta-analysis of scientific knowl-
edge using logic-based argumentation is that when we do not have access to all
the original data, we need to deal with the arguments that can be constructed
from the publically available information. Consider for example comparing clin-
ical trials undertaken at different hospitals where it may be difficult to have
access to all the primary data and/or there may be heterogeneity arising from
differing protocols or differing usages of language.

Another way of looking at this is that often the results of an experiment can
be captured by a conditional probability statement P (α | β). This says that the
proportion of examples that meet condition β also meet condition α. So a con-
ditional probability statement also captures the proportion of counterexamples
which is given by P (¬α | β). However, dealing with conditional probabilities
cannot be easily extended to dealing with established scientific knowledge, to
dealing with exceptions to exceptions, or to dealing with conflicting informa-
tion, without recourse to a much more comprehensive knowledge of the total
probability distribution. This is often impractical or impossible. Scientists do
not normally have access to the full experimental data for established scien-
tific knowledge. They normally only have access to the universal statements as
an abstraction. So representing conditional probability statements of the form
P (α | β) by statements of the form β → α when the probability value is greater
than say 0.9, is an efficient format. We can reason with the logical formulae
using argumentation and represent exceptions by counterarguments. Moreover,
we can directly represent inconsistencies in the established scientific knowledge.

Scientific knowledge can also be compared with the commonly considered us-
age of a default (or defeasible) knowledge. It is noteworthy that human practical
reasoning relies much more on exploiting default information than on a myriad
of individual facts. Default knowledge tends to be less than 100% accurate, and
so has exceptions [5]. Nevertheless it is intuitive and advantageous to resort to
such defaults and therefore allow the inference of useful conclusions, even if it
does entail making some mistakes as not all exceptions to these defaults are



necessarily known. Furthermore, it is often necessary to use default knowledge
when we do not have sufficient information to allow us to specify or use universal
laws that are always valid. This paper raise an opportunity to revisit the notion
of default knowledge, and consider its relevance to scientific knowledge.

The secondary aim of the paper has been to extend logic-based proposals for
argumentation with techniques for first-order argumentation. Degree of under-
cut, labelled argument trees/graphs, and pruning and compressing arguments,
could be adapted for other logic-based proposals such as [10, 1, 9].
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