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Abstract

There are a number of frameworks for modelling argumenta-
tion in logic. They incorporate a formal representation of in-
dividual arguments and techniques for comparing conflicting
arguments. A common assumption for logic-based argumen-
tation is that an argument is a pair 〈Φ, α〉 where Φ is minimal
subset of the knowledgebase such that Φ is consistent and Φ
entails the claim α. However, real arguments (i.e. arguments
presented by humans) usually do not have enough explicitly
presented premises for the entailment of the claim. This is be-
cause there is some common knowledge that can be assumed
by a proponent of an argument and the recipient of it. This
allows the proponent of an argument to encode an argument
into a real argument by ignoring the common knowledge, and
it allows a recipient of a real argument to decode it into an ar-
gument by drawing on the common knowledge. If both the
proponent and recipient use the same common knowledge,
then this process is straightforward. Unfortunately, this is not
always the case, and raises the need for an approximation of
the notion of an argument for the recipient to cope with the
disparities between the different views on what constitutes
common knowledge.

Introduction
Argumentation is a vital aspect of intelligent behaviour by
humans. Consider diverse professionals such as politicians,
journalists, clinicians, scientists, and administrators, who all
need to collate and analyse information looking for pros and
cons for consequences of importance when attempting to un-
derstand problems and make decisions.

There are a number of proposals for logic-based formal-
isations of argumentation (for reviews see (Chesnevar, Ma-
guitman, & Loui 2000; Prakken & Vreeswijk 2002)). These
proposals allow for the representation of arguments for and
against some claim, and for attack relationships between ar-
guments. In a number of key examples of argumentation
systems, an argument is a pair where the first item in the
pair is a minimal consistent set of formulae that proves the
second item which is a formula. Furthermore, in these ap-
proaches, a key form of counterargument is an undercut:
One argument undercuts another argument when the claim
of the first argument negates the premises of the second ar-
gument.
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Unfortunately, real arguments do not normally fit this
mould. Real arguments (i.e. those presented by people in
general) are normally enthymemes (Walton 1989). An en-
thymeme only explicitly represents some of the premises for
entailing its claim. So if Γ is the set of premises explicitly
given for an enthymeme, and α is the claim, then Γ does not
entail α, but there are some implicitly assumable premises
Γ′ such that Γ ∪ Γ′ is a minimal consistent set of formulae
that entails α.

For example, for a claim that you need an umbrella today,
a husband may give his wife the premise the weather report
predicts rain. Clearly, the premise does not entail the claim,
but it is easy for the wife to identify the common knowledge
used by the husband in order to reconstruct the intended ar-
gument correctly.

Whilst humans are constantly handling examples like this,
the logical formalization that characterizes the process re-
mains underdeveloped. Therefore, we need to investigate
enthymemes because of their ubiquity in the real world, and
because of the difficulties they raise for formalizing and au-
tomating argumentation. If we want to build agents that can
understand real arguments coming from humans, they need
to identify the missing premises with some reliability. And
if we want to build agents that can generate real arguments
for humans, they need to identify the premises that can be
missed without causing undue confusion.

In this paper, we present real arguments as approximate
arguments. For this, we start with an existing framework for
argumentation based on classical logic, and extend it into a
framework for approximate arguments. We will represent
each real argument as an approximate argument. Then by
using common knowledge we show how real arguments can
be encoded by a proponent for consignment to a recipient,
and how they can be decoded by a recipient. For this, a
proponent of a real argument can miss premises from the
intended argument that it preceives to be common knowl-
edge, and a recipient of a real argument can aim to identify
the missing premises for the intended argument from what it
perceives to be common knowledge.

Logical Argumentation
In this section, we review an existing proposal for logic-
based argumentation (Besnard & Hunter 2001). We consider
a classical propositional language L with classical deduction



denoted by the symbol �. We use α, β, γ, . . . to denote for-
mulae and ∆,Φ,Ψ, . . . to denote sets of formulae.

For the following definitions, we first assume a knowl-
edgebase ∆ (a finite set of formulae) and use this ∆ through-
out. We further assume that every subset of ∆ is given an
enumeration 〈α1, . . . , αn〉 of its elements, which we call its
canonical enumeration. This really is not a demanding con-
straint: In particular, the constraint is satisfied whenever we
impose an arbitrary total ordering over ∆. Importantly, the
order has no meaning and is not meant to represent any re-
spective importance of formulae in ∆. It is only a convenient
way to indicate the order in which we assume the formulae
in any subset of ∆ are conjoined to make a formula logically
equivalent to that subset.

The paradigm for the approach is a large repository of in-
formation, represented by ∆, from which arguments can be
constructed for and against arbitrary claims. Apart from in-
formation being understood as declarative statements, there
is no a priori restriction on the contents, and the pieces
of information in the repository can be arbitrarily complex.
Therefore, ∆ is not expected to be consistent. It need not
even be the case that every single formula in ∆ is consistent.

The framework adopts a very common intuitive notion of
an argument. Essentially, an argument is a set of relevant
formulae that can be used to classically prove some claim,
together with that claim. Each claim is represented by a for-
mula.

Definition 1. An argument is a pair 〈Φ, α〉 such that: (1)
Φ ⊆ ∆; (2) Φ �� ⊥; (3) Φ � α; and (4) there is no Φ′ ⊂ Φ
such that Φ′ � α. We say that 〈Φ, α〉 is an argument for α.
We call α the claim of the argument and Φ the support of
the argument (we also say that Φ is a support for α).

Example 1. Let ∆ = {α, α → β, γ → ¬β, γ, δ, δ →
β,¬α,¬γ}. Some arguments are:

〈{α, α→ β}, β〉
〈{¬α},¬α〉

〈{α→ β},¬α ∨ β〉
〈{¬γ}, δ → ¬γ〉

Arguments are not independent. In a sense, some encom-
pass others (possibly up to some form of equivalence). To
clarify this requires a few definitions as follows.

Definition 2. An argument 〈Φ, α〉 is more conservative
than an argument 〈Ψ, β〉 iff Φ ⊆ Ψ and β � α.

Example 2. 〈{α}, α ∨ β〉 is more conservative than
〈{α, α→ β}, β〉.

Some arguments directly oppose the support of others,
which amounts to the notion of an undercut.

Definition 3. An undercut for an argument 〈Φ, α〉 is an
argument 〈Ψ,¬(φ1 ∧ . . . ∧ φn)〉 where {φ1, . . . , φn} ⊆ Φ.

Example 3. Let ∆ = {α, α → β, γ, γ → ¬α}.
Then, 〈{γ, γ → ¬α},¬(α ∧ (α → β))〉 is an undercut
for 〈{α, α → β}, β〉. A less conservative undercut for
〈{α, α→ β}, β〉 is 〈{γ, γ → ¬α},¬α〉.
Definition 4. 〈Ψ, β〉 is a maximally conservative under-
cut of 〈Φ, α〉 iff 〈Ψ, β〉 is an undercut of 〈Φ, α〉 such that

no undercuts of 〈Φ, α〉 are strictly more conservative than
〈Ψ, β〉 (that is, for all undercuts 〈Ψ′, β′〉 of 〈Φ, α〉, if Ψ′ ⊆
Ψ and β � β′ then Ψ ⊆ Ψ′ and β′ � β).

The value of the following definition of canonical under-
cut is that we only need to take the canonical undercuts into
account. This means we can justifiably ignore the potentially
very large number of non-canonical undercuts.

Definition 5. An argument 〈Ψ,¬(φ1∧. . .∧φn)〉 is a canon-
ical undercut for 〈Φ, α〉 iff it is a maximally conservative
undercut for 〈Φ, α〉 and 〈φ1, . . . , φn〉 is the canonical enu-
meration of Φ.

An argument tree describes the various ways an argument
can be challenged, as well as how the counter-arguments to
the initial argument can themselves be challenged, and so on
recursively.

Definition 6. An argument tree for α is a tree where the
nodes are arguments such that

1. The root is an argument for α.
2. For no node 〈Φ, β〉 with ancestor nodes

〈Φ1, β1〉, . . . , 〈Φn, βn〉 is Φ a subset of Φ1 ∪ · · · ∪ Φn.
3. Each child node of a node N is a canonical undercut for
N that obeys 2.

The second condition in Definition 6 ensures that each ar-
gument on a branch has to introduce at least one formula
in its support that has not already been used by ancestor ar-
guments. This is meant to avoid making explicit undercuts
that simply repeat over and over the same reasoning pattern
except for switching the role of some formulae (e.g. in mu-
tual exclusion, stating that α together with ¬α ∨ ¬β entails
¬β is exactly the same reasoning as expressing that β to-
gether with ¬α ∨¬β entail ¬α, because in both cases, what
is meant is that α and β exclude each other).

Example 4. Let ∆= {α ∨ β, α → γ,¬γ,¬β, δ ↔ β}. For
this, an argument tree for the consequent α ∨ ¬δ is given.

〈{α ∨ β,¬β}, α ∨ ¬δ〉
↑

〈{α→ γ,¬γ},¬((α ∨ β) ∧ ¬β)〉
A complete argument tree (i.e. an argument tree with all

the canonical undercuts for each node as children of that
node) provides an efficient representation of the arguments
and counterarguments. Furthermore, if ∆ is finite, there is
a finite number of argument trees with the root being an ar-
gument with consequent α that can be formed from ∆, and
each of these trees has finite branching and a finite depth
(the finite tree property). Note, also the definitions presented
in this section can be used directly with first-order classical
logic, so ∆ and α are from the first-order classical language.
Interestingly, the finite tree property also holds for the first-
order case (Besnard & Hunter 2005).

Approximate Arguments
An approximate argument is a pair 〈Φ, α〉 where Φ ⊆ L
and α ∈ L. This is a very general definition. It does not
assume that Φ is consistent, or that it even entails α.



For an approximate argument 〈Φ, α〉, let Support(〈Φ, α〉)
be Φ, and let Claim(〈Φ, α〉) be α. For a set of approximate
arguments Λ, Args(Λ) = {A ∈ Λ | A is an argument}.

In this paper, we restrict consideration to particular kinds
of approximate arguments that relax the definition of an ar-
gument: If Φ � α, then 〈Φ, α〉 is valid; If Φ �� ⊥, then
〈Φ, α〉 is consistent; If Φ � α, and there is no Φ′ ⊂ Φ such
that Φ′ � α, then 〈Φ, α〉 is minimal; And if Φ � α, and
Φ �� ⊥, then 〈Φ, α〉 is expansive (i.e. it is valid and consis-
tent, but it may have unnecessary premises).

In addition, we require a further kind of approximate ar-
gument that has the potential to be transformed into an argu-
ment: If Φ �� α, and Φ �� ¬α, then 〈Φ, α〉 is a precursor (i.e.
it is a precursor for an argument). Therefore, if 〈Φ, α〉 is a
precursor, then there exists some Ψ ⊂ L such that Φ∪Ψ � α
and Φ ∪ Ψ �� ⊥, and hence 〈Φ ∪ Ψ, α〉 is expansive.

Example 5. Let ∆ = {α,¬α ∨ β, γ,¬β, β,¬γ,¬β ∨ γ}.
Some approximate arguments from ∆ that are valid include
{A1, A2, A3, A4, A5} of which {A1, A3, A5} are expansive,
{A2, A5} are minimal, and A5 is an argument. Also, some
approximate arguments that are not valid include {A6, A7}
of which A6 is a precursor.

A1 = 〈{α,¬α ∨ β, γ, β}, β〉
A2 = 〈{γ,¬γ}, β〉
A3 = 〈{α,¬α ∨ β, γ}, β〉
A4 = 〈{α,¬α ∨ β, γ,¬γ}, β〉
A5 = 〈{α,¬α ∨ β}, β〉
A6 = 〈{¬α ∨ β}, β〉
A7 = 〈{¬α ∨ β,¬β ∨ γ,¬γ}, β〉

Some observations that we can make concerning approx-
imate arguments include: (1) If 〈Γ, α〉 is expansive, then
there is a Φ ⊆ Γ such that 〈Φ, α〉 is an argument; (2) If
〈Φ, α〉 is minimal, and 〈Φ, α〉 is expansive, then 〈Φ, α〉 is an
argument; (3) If 〈Φ, α〉 is an argument, and Ψ ⊂ Φ, then
〈Ψ, α〉 is a precursor; and (4) If 〈Γ, α〉 is a precursor, then
〈Γ, α〉 is consistent.

Framework for Real Arguments
Given an argument, an enthymeme is simply a precursor that
can be generated from it.

Definition 7. Let 〈Φ, α〉 be a precursor and 〈Ψ, α〉 be an
argument. 〈Φ, α〉 is an enthymeme for 〈Ψ, α〉 iff Φ ⊂ Ψ.

So if a proponent has an argument that it wishes a recipi-
ent to be aware of, (we refer to this argument as the intended
argument), then the proponent may send an enthymeme in-
stead of the intended argument to the recipient. We refer to
whatever the proponent sends to the recipient (whether the
intended argument or an enthymeme for that intended argu-
ment) as the real argument.

Example 6. Let α be “you need an umbrella today”, and
β be “the weather report predicts rain”. So for an intended
argument 〈{β, β → α}, α〉, the real argument sent by the
proponent to the recipient may be 〈{β}, α〉

We can see the use of enthymemes both in monological
argumentation, for example by a politician giving a lecture
(as illustrated next) or a journalist writing an article, and

in dialogical argumentation, for example lawyers arguing in
court, or academics debating in a seminar.

Example 7. Consider a politician who says “The govern-
ment will support the expansion of JFK airport with new
legislation because it will be good for the local and national
economy. And we will address the disturbance to local peo-
ple with tighter regulations on night time flights and on older
more polluting aircraft”. This short speech can be analysed
as follows: Let α be “The government will support the ex-
pansion of JFK airport with new legislation”, let β be “the
expansion of JFK airport will be good for everyone”, let
γ be “expansion will improve the local and national econ-
omy”, let δ be “the local environment will suffer pollution”,
let φ be “there will be tighter regulations on night time
flights”, and let ψ be “there will be tighter regulations on
older more polluting aircraft”. So in the first sentence of
the speech, the politician effectively gives the enthymeme
〈{γ}, α〉, and then in the second sentence, the politician
gives the enthymemes 〈{δ → ¬β},¬β〉, and 〈{φ, ψ},¬δ〉.
The intended arguments for each of these enthymemes are
as follows.

A1 = 〈{γ, γ → β, β → α}, α〉
A2 = 〈{δ, δ → ¬β},¬β〉
A3 = 〈{φ, ψ, φ ∧ ψ → ¬δ},¬δ〉

In general, since there can be more than one real argument
that can be generated from an intended argument, a propo-
nent i needs to choose which to send to a recipient j. To
facilitate this selection, the proponent consults what it be-
lieves is common knowledge for i and j. We assume that
each agent i has a knowledgebase ∆i of knowledge, called a
perbase, that is its personal knowledgebase, and so if i is a
proponent, the support of the intended argument comes from
∆i. In addition, agent i has a function µi,j : L �→ [0, 1],
called a cobase, that represents what an agent i believes is
common knowledge for i and j. For α ∈ L, the higher the
value of µi,j(α), the more that i regards α as being common
knowledge for i and j. So if µi,j(α) = 0, then i believes
that α is not knowledge in common for i and j, whereas if
if µi,j(α) = 1, then i believes that there is no knowledge as
being more in common for i and j than α.

Example 8. In Ex. 6, with β, β → α ∈ ∆i, proponent i
could have the cobase µi,j where µi,j(β → α) = 1 repre-
senting that the premise β → α is superfluous in any real
argument consigned by proponent i to recipient j.

Note, µi,j reflects the perception i has of the common
knowledge between i and j, and µj,i reflects the perception
j has of the common knowledge between i and j, and so it
is not necessarily the case that µi,j = µj,i. Furthermore, it
is not necessarily the case that i regards the common knowl-
edge between i and j as being consistent, and so it is possi-
ble, for some α, that µi,j(α) > 0 and µi,j(¬α) > 0.

Now consider an agent i who has an intended argument
〈Φ, α〉 that it wants agent j to be aware of. So Φ is a subset
of ∆i, and i is the proponent of the argument and j is the re-
cipient of the argument. By reference to its representation of
the common knowledge µi,j , agent iwill remove premises φ



from Φ for which µi,j(φ) is greater than a particular thresh-
old τ . The result of this encodation process is either the
intended argument or an enthymeme for that argument.

Definition 8. For an argument 〈Φ, α〉, the encodation
of 〈Φ, α〉 from a proponent i for a recipient j, denoted
C(〈Φ, α〉, µi,j , τ), is the approximate argument 〈Ψ, α〉,
where Ψ = {φ ∈ Φ | µi,j(φ) ≤ τ} for threshold τ ∈ [0, 1].

Example 9. In Ex. 8, when µi,j(β → α) = 1, and
µi,j(β) = 0.5, and τ = 0.7, C(〈{β, β → α}, α〉, µi,j , τ)
is 〈{β}, α〉.

So given a cobase µi,j , it is simple for a proponent i to
obtain an encodation for a recipient j. Note, for an intended
argument A, it is possible that C(A,µi,j , τ) = B where
Support(B) = ∅. This raises the question of whether a
proponent would want to send a real argument with empty
support to another agent since it is in effect “stating the ob-
vious”. Nevertheless, there may be a rhetorical or pragmatic
motivation for such a real argument. For example when a
husband issues a reminder like don’t forget your umbrella
to his wife when the common knowledge includes the facts
that the month is April, the city is London, and London has
many showers in April. Hence, don’t forget your umbrella
is the claim, and the support for this real argument is empty.

Generalizing Argument Trees
An annotated tree is a tree where each node is an approxi-
mate argument. This is a generalization of an argument tree.
So, if T is an argument tree, then T is an annotated tree.
Furthermore, given an argument tree and a cobase, we can
obtain an annotated tree composed of real arguments. For
this, let Nodes(T ) be the set of nodes in a tree T .

Definition 9. Let µi,j be a cobase, let T be an argument
tree, and let T ′ be an annotated tree. T ′ is a µi,j abstraction
of T iff there is a bijection f : Nodes(T ) �→ Nodes(T ′) s.t.
∀A ∈ Nodes(T ), f(A) is C(A,µi,j , τ).

Example 10. Consider the following argument tree T
formed from ∆i = {β, γ, β ∧ γ → α, δ,¬δ ∨ ¬β,¬β ∨
¬γ, ε, ε→ ¬δ}, and where φ denotes β ∧ γ ∧ (β ∧ γ → α)
and ψ denotes δ ∧ (¬δ ∨ ¬β).

〈{β, γ, β ∧ γ → α}, α〉
↗ ↖

〈{δ,¬δ ∨ ¬β},¬φ〉 〈{¬β ∨ ¬γ},¬φ〉
↑

〈{ε, ε→ ¬δ},¬ψ〉
Let µi,j be such that µi,j(β∧γ → α) = 1, µi,j(¬δ∨¬β) =
1, µi,j(ε) = 1, µi,j(θ) = 0.5 for all other θ. So we get the
following µi,j abstraction with τ = 0.8.

〈{β, γ}, α〉
↗ ↖

〈{δ},¬φ〉 〈{¬β ∨ ¬γ},¬φ〉
↑

〈{ε→ ¬δ},¬ψ〉
We now consider a widely used criterion in argumenta-

tion theory for determing whether the argument (intended or

real) at the root of the annotated tree is warranted (adapted
from (Garcı́a & Simari 2004)). For this, each node is marked
as either U for undefeated or D for defeated.

Definition 10. The judge function, denoted Judge, from the
set of annotated trees to {Warranted,Unwarranted} such
that Judge(T ) = Warranted iff Mark(Ar) = U where Ar is
the root node of T . For all Ai ∈ Nodes(T ), if there is child
Aj of Ai such that Mark(Aj) = U , then Mark(Ai) = D,
otherwise Mark(Ai) = U .

So the root is undefeated iff all its children are defeated.

Example 11. For T in Ex. 10, Judge(T ) = Unwarranted.

A direct consequence of the definition of abstraction is
the following which indicates that by abstraction the overall
judgement of the tree remains the same.

Proposition 1. Let µi,j be a cobase, let T be an argument
tree, and let T ′ be an annotated tree. If T ′ is a µi,j abstrac-
tion of T , then Judge(T ) = Judge(T ′).

Whilst an argument tree, with the judge function, is useful
for analysing arguments, as we discuss next, abstraction is
not always an ideal way of analysing real arguments.

Sequences of Real Arguments
Real arguments do not occur in isolation. Normally, there is
some sequence of them (including counterarguments) pre-
sented by a proponent. Consider for example a speech by a
politician or an article by a journalist. Furthermore, as we
see in the next example, such a sequence is not necessarily
an abstraction of an argument tree.

Example 12. In Ex 7, the sequence of real arguments A4 =
〈{γ}, α〉, A5 = 〈{δ → ¬β},¬β〉 and A6 = 〈{φ, ψ},¬δ〉,
can be composed into an annotated tree T ′ below.

〈{γ}, α〉
↑

〈{δ → ¬β},¬β〉
↑

〈{φ, ψ},¬δ〉
However, this annotated tree involving A4, .., A6 is not an
abstraction of an argument tree because the claim of each
child is not of the right form: It is not the negation of the
support of its parent. In other words, there is no argument
tree T and no µi,j such that T ′ is a µi,j abstraction of T .
Furthermore, the intended arguments A1, .., A3 (as given in
Ex 7), are such that none is a canonical undercut of any
other, and so cannot be used together in an argument tree.

So we need a way for a proponent to send a sequence
of real arguments, without them being constrained to be an
abstraction of an argument tree. To faciliate this, we use the
following notion of a realization.

Definition 11. Let µi,j be a cobase, let T be an argument
tree, and let T ′ be an annotated tree. T ′ is a µi,j realization
of T iff there is a bijection f : Nodes(T ) �→ Nodes(T ′) s.t.
∀A ∈ Nodes(T ), Support(f(A)) is Support(C(A,µi,j , τ))
and Claim(f(A)) � Claim(A).

If T ′ is an abstraction of T , then T ′ is a realization of T .



Example 13. Consider the following arguments which give
an argument tree T , where A7 is the root, A8 is the child of
A7, and A9 is the child of A8.

A7 = 〈{γ, γ → β, β → α}, α〉
A8 = 〈{δ, δ → ¬β},¬(γ ∧ (γ → β) ∧ (β → α))〉
A9 = 〈{φ, ψ, φ ∧ ψ → ¬δ},¬(δ ∧ (δ → ¬β))〉

So for the real arguments given in Ex 7, A4 = 〈{γ}, α〉),
A5 = 〈{δ → ¬β},¬β〉), and A6 = 〈{φ, ψ},¬δ〉), let
f(A7) = A4, f(A8) = A5, and f(A9) = A6. So T ′ as
given in Example 12 is a realization of T .

So we envisage that given a perbase ∆i, a proponent may
construct an argument tree T , and then from this construct
an annotated tree of real arguments T ′ such that T ′ is a re-
alization of T . Indeed, implicity, it is a two step process:
From the argument tree T , each argument is turned into an
intended argument (by strengthening the claim perhaps by
negating just one of the formulae in the support of the ar-
gument being undercut), and then each intended argument
is turned into a real argument (by simplifying the support).
The tree structure may then be sent by the proponent with
the real arguments to the recipient. So if we consider Ex.
13, from the argument tree T involving A7, A8, and A9, we
form an isomorphic annotated tree with the intended argu-
ments A1, A2, and A3 (of Ex. 7), and then from this we
form the isomorphic tree T ′ (as in Ex. 12) with the real ar-
guments A4, A5, and A6.

Starting with a complete argument tree gives the disci-
pline for ensuring that all the canonical undercuts are con-
sidered. Then, using real arguments in a realization offers
an intuitive simplification of the argument tree, with the ad-
vantage of the evaluation via the judge function remaining
the same.

Proposition 2. Let µi,j be a cobase, let T be an argument
tree, and let T ′ be an annotated tree. If T ′ is a µi,j realiza-
tion of T , then Judge(T ) = Judge(T ′).

Finally, as a by-product of sending a set of real arguments,
the agents can augment their common knowledge. For in-
stance, if agent i sends the real argument 〈Φ, α〉 to agent j,
then Φ can be used to update µi,j and µj,i. Indeed, we could
refine the above framework to allow the common knowledge
to grow with each real argument sent.

Decoding Enthymemes
When 〈Ψ, α〉 is an encodation of 〈Φ, α〉, it is either the in-
tended argument or an enthymeme for the intended argu-
ment. If it is an enthymeme, then the recipient has to decode
it using the common knowledge µj,i (i.e. the knowledge
that j believes is common knowledge between i and j) by
adding formulae Ψ′ to the support of the enthymeme, creat-
ing 〈Ψ∪Ψ′, α〉, which will be expansive but not necessarily
minimal. It would be desirable for 〈Ψ ∪ Ψ′, α〉 to be the
intended argument, but this cannot be guaranteed. It may
be that the wrong formulae from µj,i are used, or it could
be that common knowledge as viewed by agent i is not the
same as that viewed by agent j (i.e. µi,j �= µj,i). Neverthe-
less, using the ranking information in a cobase, we can aim

for a reasonable decoding of an enthymeme. For this, we
use the following ordering over ℘(L) (adapted from (Cay-
rol, Royer, & Saurel 1993)) which is just one of a number of
possible definitions for ranking ℘(L) given a cobase.

Definition 12. Let Φ and Ψ be two non-empty subsets of L.
Φ is preferred to Ψ, denoted Φ >i,j Ψ iff for all φ ∈ Φ \ Ψ,
there is a ψ ∈ Ψ \ Φ s.t. µi,j(φ) > µi,j(ψ). For all non-
empty subsets Φ of L, ∅ >i,j Φ.

Definition 13. For an encodation 〈Ψ, α〉 from a proponent
i for a recipient j, a decodation is of the form 〈Ψ ∪ Ψ′, α〉,
where Ψ′ ⊆ L, and 〈Ψ∪Ψ′, α〉 is expansive, and there is no
Ψ′′ such that Ψ′′ >j,i Ψ′ and 〈Ψ ∪ Ψ′′, α〉 is expansive. Let
D(〈Ψ, α〉, µj,i) denote the set of decodations of 〈Ψ, α〉.
Example 14. If 〈{α, α → β}, β〉 is an intended argu-
ment from proponent i to recipient j, where µi,j(α) = 0,
µi,j(α → β) = 1, and τ = 0.9, then the encodation is
〈{α}, β〉. Now suppose, µj,i(α → β) = 1, µj,i(α → ε) =
1, and µj,i(ε → β) = 1, and for all other φ, µj,i(φ) = 0.
So for 〈{α}, β〉, the decodations are 〈{α, α → β}, β〉 and
〈{α, α → ε, ε → β}, β〉. If we change the cobase so that
µj,i(α → β) = 0.5, then we get the second decodation as
the unique decodation.

Example 15. If 〈{β, γ, β ∧ γ → α}, α〉 is an intended ar-
gument from proponent i to recipient j, where µi,j(β) =
µi,j(γ) = 0, µi,j(β ∧ γ → α) = 1, and τ = 0.9, then the
encodation is 〈{β, γ}, α〉. Now suppose, µj,i(β∧γ → α) =
0.5, and µj,i(β → α) = 0.9, and for all other φ, µj,i(φ) =
0. So for 〈{β}, α〉, the decodation is 〈{β, γ, β → α}, α〉.
Proposition 3. If 〈Ψ, α〉 is a real argument, then
|D(〈Ψ, α〉, µj,i)| ≥ 1 and |Args(D(〈Ψ, α〉, µj,i))| ≥ 0.

So when a recipient decodes an enthymeme, it does not
know for certain what the intended argument is, and it is
not guaranteed to find it even if Args(D(〈Ψ, α〉, µj,i)) =
1. However, if the proponent and recipient have identical
common knowledge, then the intended argument is one of
the decodations.

Proposition 4. Let µi,j = µj,i, and for all φ ∈ L, µi,j(φ) =
1 or µi,j(φ) = 0. For 〈Φ, α〉, if C(〈Φ, α〉, µi,j , τ) = 〈Ψ, α〉,
then 〈Φ, α〉 ∈ D(〈Ψ, α〉, µj,i).

If there is a unique decodation that is an argument, and
a high confidence that µi,j = µj,i, then the recipient may
have high confidence that the decodation is the same as the
intended argument. Furthermore, if the real argument is an
argument, then the decodation is unique and correct.

Proposition 5. For any 〈Φ, α〉, if 〈Φ, α〉 is an argument,
then D(〈Φ, α〉, µj,i) = {〈Φ, α〉}.

No decodation has a support that is a subset of any other.

Proposition 6. If 〈Φ1, α〉 ∈ D(〈Ψ, α〉, µj,i), and 〈Φ2, α〉 ∈
D(〈Ψ, α〉, µj,i), then Φ1 �⊂ Φ2.

If a sequence of real arguments are given with tree struc-
ture (i.e. a µi,j realization), the constraint that the intended
argument for a child has to undercut the intended argument
for its parent, can substantially simplify the choice of which
decodations to use.



Quality of Enthymemes
When a recipient gets a real argument, it seeks a decodation
of it. The decodation may be a mutation of the intended
argument, by which we mean some of the support for the
decodation may be different from the intended argument. So
as part of the process of encodation and decodation, some of
the premises may have changed.

To quantify mutation, we can compare the supports of an
intended argument and its decodation. Since, we are com-
paring a pair of theories, we can harness a model-theoretic
way to compare them. Each interpretation is represented by
a subset of the atoms of the language. For a set of formulae
V , let M(V ) be the set of models of V .

Example 16. For the atoms {α, β, γ}, let X = {α} and let
Y = {α ∧ β ∧ γ}. So M(X) = { {α, β, γ}, {α, β}, {α, γ},
{α} } and M(Y ) = { {α, β, γ} }.

The degree of entailment of X for Y is the number of
models in common divided by the number of models for X .

Definition 14. Let X and Y be sets of classical proposi-
tional formulae each of which is consistent (i.e. X �� ⊥ and
Y �� ⊥). The degree of entailment of X for Y , denoted
E(X,Y ), is defined as follows:

E(X,Y ) =
|M(X ∪ Y )|
|M(X)|

To simplify the example, the brackets have been dropped.

Example 17. E(α, α ∧ β) = 1/2, E(α, α ∧ β ∧ γ) = 1/4,
E(α, α∧β∧γ∧δ) = 1/8, E(α∧β, α∨β) = 1, E(α∧β, α∧
ε) = 1/2, E(α∧β∧γ, α∧ε) = 1/2, E(α∧β∧γ∧δ, α∧ε) =
1/2, E(α∧ ε, α∧ β ∧ γ ∧ δ) = 1/8, E(α∧ β, α∧¬β) = 0.

Proposition 7. Let X , Y , and Z be sets of classical propo-
sitional formulae: (1) 0 ≤ E(X,Y ) ≤ 1; (2) X �
∧Y iff E(X,Y ) = 1; (3) X � ¬∧ Y iff E(X,Y ) = 0;
(4) If E(X,Y ) = 1 then 0 < E(Y,X); and (5) E(X,Y ) =
0 iff E(Y,X) = 0.

We quantify mutation with the following measures.

Definition 15. For an intended argument 〈Φ, α〉, and a
decodation 〈Ψ, α〉, the efficiency of 〈Ψ, α〉 for 〈Φ, α〉 is
E(Φ,Ψ) and the adequacy of 〈Ψ, α〉 for 〈Φ, α〉 is E(Ψ,Φ).
Example 18. Let A = 〈{β, β → α}, α〉 be an intended
argument, and let B = 〈{β, β → γ, γ → α}, α〉 be a
decodation. So the efficiency of B for A is E({β, β →
α}, {β, β → γ, γ → α}) = 1/2 and the adequacy of B
for A is E({β, β → γ, γ → α}, {β, β → α}) = 1.

Efficiency of less than 1 means that some premises of the
decodation do not follow from the intended argument. So
the decodation is inefficient as the extra premises are not re-
quired for the intended argument. The closer efficiency is
to 1, the less is this inefficiency. Adequacy of less than 1
means that some premises of the intended argument do not
follow from the decodation. So the decodation is inadequate
as the missing premises are required for the intended argu-
ment. The closer adequacy is to 1, the less is this inadequacy.

Measuring mutation in terms of efficiency and adequacy
is an external way of evaluating the quality of argumenta-
tion undertaken by a pair of agents. However, unless the

proponent also sends its intended argument to the recipient,
or the recipient sends its decodation to the proponent, the
agents cannot measure mutation. Nonetheless, evalulating
efficiency and adequacy is a useful way that the “owner” of
some intelligent software agents can measure their success,
and update their cobases accordingly.

Discussion
Argumentation is an important cognitive activity that needs
to be better understood if we are to build intelligent sys-
tems better able to deal with conflicts arising in informa-
tion and between agents. Enthymemes are a ubiquitous phe-
nomenon in the real-world, and so if we are to build intelli-
gent systems that generate arguments (e.g. to justify their
actions, to persuade other agents, etc), and process argu-
ments from other agents, then we need to build the capac-
ity into these systems to generate and process enthymemes.
We believe this proposal could be adapted for a variety of
other argumentation systems (e.g. (Garcı́a & Simari 2004;
Amgoud & Cayrol 2002)), and there are diverse ways that
the notion of common knowledge could be refined (e.g.
(Sperber & Wilson 1995)). Finally, decodation is a form
of abduction, and so techniques and algorithms developed
for abduction could be harnessed for improving the quality
of decodation (e.g. (Eiter, Gottlob, & Leone 1997)).
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