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Abstract

There are many frameworks for modelling argumentation in
logic. They include a formal representation of individual ar-
guments and techniques for comparing conflicting arguments.
A problem with these proposals is that they do not consider
arguments for and against first-order formulae. We present
a framework for first-order logic argumentation based on ar-
gument trees that provide a way of exhaustively collating ar-
guments and counter-arguments. A difficulty with first-order
argumentation is that there may be many arguments and coun-
terarguments even with a relatively small knowledgebase. We
propose rationalizing the arguments under consideration with
the aim of reducing redundancy and highlighting key points.

Introduction
Argumentation is a vital aspect of intelligent behaviour by
humans. Consider diverse professionals such as politicians,
journalists, clinicians, scientists, consultants and adminis-
trators, who all need to collate and analyse information
looking for pros and cons for consequences of importance
when attempting to understand problems and make deci-
sions. There are a number of proposals for logic-based for-
malisations of argumentation (Prakken & Vreeswijk 2002;
Chesnevar, Maguitman, & Loui 2001). These proposals al-
low for the representation of arguments for and against some
conclusion, and for attack or undercut relationships between
arguments. A key shortcoming of these proposals is that
they do not support arguments for/against first-order formu-
lae. Yet in many professional domains, it is apparent that
there is a need to support first-order argumentation. As an
example, consider a senior clinician in a hospital who may
need to consider the pros and cons of a new drug regime
in order to decide whether to incorporate the regime as part
of hospital policy: This could be expedited by considering
the pros and cons of a first-order statement formalizing that
piece of policy. As another example, consider an informa-
tion systems consultant who is collating requirements from
users within an organization. Due to conflicts between re-
quirements from different users, the consultant may need to
consider arguments for and against particular requirements
being adopted in the final requirements specification. To-
wards this end, first-order statements provide a format for

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

readily and thoroughly capturing constraints and compro-
mises.

It is paramount to notice that using a propositional frame-
work to encode first-order statements leads to mishaps, e.g.,
when attempting to mimic ∀x.α[x] by means of its instances
α[t] for all ground elements t in the universe of discourse:
Due to circumstantial properties, it may happen that, what-
ever t, a particular argument for α[t] can be found but there
is no guarantee that an argument for ∀x.α[x] exists. Here is
an example. Consider the statements “if x satisfies P and
Q then x satisfies R or S”and “if x satisfies Q and R and
S then x satisfies T ”. Clearly, these do not entail the state-
ment “if x satisfies P then x satisfies T ”. Assume the set
of all ground terms from the knowledgebase is {a, b}. The
obvious idea is to consider ∀x.α[x] as being equivalent with
both instances α[a] and α[b]. Unfortunately, should Qa and
Ra ∨ Sa → Ta be incidentally the case as well as Sb and
Pb → Qb ∧ Rb, then “if x satisfies P then x satisfies T ”
would be regarded as argued for! The moral is that a propo-
sitional approach here cannot be substituted for a first-order
one. In such situations, a first-order approach cannot be dis-
pensed with.

To address this need, we present a framework for first-
order argumentation. As the first-order case raises the issue
of efficiency, both representational and computational, the
question of redundancy becomes important. Given even a
small set of first-order formulae, the number of arguments
that can be generated can be large. However, this can be
rendered manageable if we can rationalise the arguments we
need to consider. Most proposals for argumentation do not
consider such issues. An exception is (Besnard & Hunter
2001) which we will take as the basis for defining our frame-
work for first-order argumentation.

First-order Argumentation
We now extend to the first-order case an existing proposal
for logic-based argumentation (Besnard & Hunter 2001) that
is based on classical propositional logic. For a first-order
language L, the set of formulae that can be formed is given
by the usual inductive definitions for classical logic. Ro-
man symbols P,Q, . . . denote predicates, Greek symbols
α, β, . . . denote formulas. Deduction in classical logic is de-
noted by the symbol � and deductive closure by Cn so that
Cn(Φ) = {α | Φ � α}.



For the following definitions, we first assume a knowl-
edgebase ∆ (a finite set of formulae) and use this ∆ through-
out (i.e., except where indicated, everything is parameter-
ized with ∆). A further requirement, which really is not
demanding, is as follows: We also assume that every subset
of ∆ is given an enumeration 〈α1, . . . , αn〉 of its elements,
which we call its canonical enumeration.

The paradigm for the approach is a large repository of in-
formation, represented by ∆, from which arguments can be
constructed for and against arbitrary claims. Apart from in-
formation being understood as declarative statements, there
is no a priori restriction on the contents, and the pieces of
information in the repository can be as complex as needed.
Therefore, ∆ is not expected to be consistent. It need even
not be the case that every single formula in ∆ is consistent.

The framework adopts a very common intuitive notion of
an argument. Essentially, an argument is a set of relevant
formulae that can be used to classically prove some point,
together with that point. A point is represented by a formula.

Definition 1. An argument is a pair 〈Φ, α〉 such that: (1)
Φ �� ⊥; (2) Φ � α; and (3) no Φ′ ⊂ Φ satisfies Φ′ � α. We
say that 〈Φ, α〉 is an argument for α. We call α the conse-
quent of the argument and Φ the support of the argument:
Support(〈Φ, α〉) = Φ, and Consequent(〈Φ, α〉) = α.

Example 1. Let ∆ = {∀x.(Px → Qx∨Rx), Pa,¬∀x.Sx,
¬∃x.Rx,¬∃x.(Px → Qx ∨ Rx)}. Some arguments are:

〈{Pa,∀x.(Px → Qx ∨ Rx)}, Qa ∨ Ra〉
〈{¬∀x.Sx},¬∀x.Sx〉
〈{¬∃x.Rx},∀x.¬Rx〉

Arguments are not independent. Some encompass others
(possibly up to some form of equivalence) in a sense:

Definition 2. An argument 〈Φ, α〉 is more conservative
than an argument 〈Ψ, β〉 iff Φ ⊆ Ψ and β � α.

Example 2. 〈{Pa,∀x.(Px → Qx ∨ Rx)}, Qa ∨ Ra〉
is a more conservative argument than
〈{Pa,∀x.(Px → Qx ∨ Rx),¬∃x.Rx}, Qa〉.

Some arguments directly oppose the support of others,
which amounts to the notion of an undercut.

Definition 3. An undercut for an argument 〈Φ, α〉 is an
argument 〈Ψ,¬(φ1 ∧ . . . ∧ φn)〉 where {φ1, . . . , φn} ⊆ Φ.

Example 3. It is easy to find an undercut for the argument
〈{Pa,∀x.(Px → Qx∨Rx)}, Qa∨Ra〉, an obvious one is:
〈{¬∃x.(Px → Qx ∨ Rx)},¬∀x.(Px → Qx ∨ Rx)〉. Now,
there is another one, which actually is more conservative:
〈{¬∃x.(Px → Qx∨Rx)},¬(Pa∧∀x.(Px → Qx∨Rx))〉
Example 4. Provided the conditions for Definition 1 are
met, we have the general cases below:

〈{∀x.α[x]}, α[a]〉 is undercut by 〈{¬∃x.α[x]},¬∀x.α[x]〉
〈{∀x.α[x]}, α[a]〉 is undercut by 〈{∃x.¬α[x]},¬∀x.α[x]〉
〈{∀x.α[x]}, α[a]〉 is undercut by 〈{¬α[b]},¬∀x.α[x]〉
〈{∀x.α[x]}, α[a]〉 is undercut by 〈{¬α[c]},¬∀x.α[x]〉

Definition 4. 〈Ψ, β〉 is a maximally conservative under-
cut of 〈Φ, α〉 iff 〈Ψ, β〉 is an undercut of 〈Φ, α〉 such that for
all undercuts 〈Ψ′, β′〉 of 〈Φ, α〉, if Ψ′ ⊆ Ψ and β � β′ then
Ψ ⊆ Ψ′ and β′ � β.

Example 5. A maximally conservative undercut for
〈{Pa,∀x.(Px → Qx ∨ Rx)}, Qa ∨ Ra〉 is 〈{¬∃x.(Px →
Qx ∨ Rx)},¬(Pa ∧ ∀x.(Px → Qx ∨ Rx))〉.

The value of the following definition of canonical under-
cut is that we only need to take the canonical undercuts into
account. This means we can justifiably ignore the potentially
very large number of non-canonical undercuts.

Definition 5. An argument 〈Ψ,¬(φ1∧. . .∧φn)〉 is a canon-
ical undercut for 〈Φ, α〉 iff it is a maximally conservative
undercut for 〈Φ, α〉 and 〈φ1, . . . , φn〉 is the canonical enu-
meration of Φ.

Proposition 1. Given two canonical undercuts for the same
argument, none is more conservative than the other.

Proposition 2. Any two different canonical undercuts for
the same argument have distinct supports whereas they do
have the same consequent.

An argument tree describes various ways an argument can
be challenged, how the counterarguments to the initial argu-
ment can themselves be challenged, and so on recursively.

Definition 6. An argument tree for α is a tree where the
nodes are arguments such that

1. The root is an argument for α.
2. For no node 〈Φ, β〉 with ancestor nodes

〈Φ1, β1〉, . . . , 〈Φn, βn〉 is Φ a subset of Φ1 ∪ · · · ∪ Φn.
3. Each child of a node A is an undercut of A that obeys 2.

A canonical argument tree is an argument tree where each
undercut is a canonical undercut. A complete argument
tree is a canonical argument tree for each node A, such that
if A′ is a canonical undercut for A, then A′ is a child of A.

The second condition in Definition 6 (Besnard & Hunter
2001) (see (Garcı́a & Simari 2004) as well) ensures that
each argument on a branch introduces at least one formula
in its support that has not already been used by ancestor ar-
guments. I.e., each argument on a branch conveys some-
thing new, not just turning around (some of) its ancestor ar-
guments. As a notational convenience, the � symbol de-
notes the consequent of an argument when that argument is
a canonical undercut.

Example 6. A complete argument tree for Qa is:

〈{Pa,∀x.(Px → Qx ∨ Rx),¬∃x.Rx}, Qa〉
↑

〈{¬∃x.(Px → Qx ∨ Rx)},�〉
A complete argument tree is an efficient representation of

the counterarguments, counter-counterarguments, . . .

Proposition 3. Let α ∈ L. If ∆ is finite, there is a finite
number of argument trees with the root being an argument
with consequent α that can be formed from ∆, and each of
these trees has finite branching and a finite depth.

For an argument tree T , Root(T ), Nodes(T ), Width(T ),
Depth(T ), are as usual for a tree. For an argument Ai in an
argument tree T , Undercuts(T,Ai) denotes the set of chil-
dren of Ai. Let Siblings(T ) be the set of sibling sets in T ,
i.e. S ∈ Siblings(T ) iff S = Undercuts(T,Ai) for some Ai

in T .



Example 7. For the argument tree T in Example 9,
Siblings(T ) = {{A0}, {A1}, {A2}, {A3, A4}, {A5}}.

As for notation, we write Ω for the set of all arguments.

Degree of Undercut

An argument conflicts with each of its undercuts, by the very
definition of an undercut. Now, some may conflict more than
others, and some may conflict a little while others conflict a
lot: Conflict of an argument with each of its undercuts is
reflected by a position in an ordering (possibly a partial one)
but not necessarily a numerical value in some interval (i.e.,
orders of magnitude are not necessarily needed).

Definition 7. A degree of undercut is a mapping Degree :
Ω × Ω → O where 〈O,≤〉 is some poset such that for Ai =
〈Φ, α〉 and Aj = 〈Ψ, β〉 in Ω,
– Degree(Aj , A) ≤ Degree(Ai, A) for all A ∈ Ω if Φ � Ψ.
– Degree(Ai, Aj) is minimal iff Φ ∪ Ψ �� ⊥.

The last clause in Definition 7 means that Degree(A,A′)
is minimal when A and A′ are two arguments which do not
conflict with each other (so, none is an undercut of the other,
as Degree is rather a degree of conflict but it is called degree
of undercut here because we are only interested in its value
when A′ is an undercut of A). Definition 7 allows for many
possibilities, leaving you to choose a suitable mapping. In
the rest of the paper, we assume that O is the interval [0, 1].

We now introduce labelled argument trees. I.e., we label
each arc with the degree of undercut.

Definition 8. A labelled argument tree is an argument tree
such that if Aj is a child of Ai in the argument tree, then the
arc from Aj to Ai is labelled with Degree(Ai, Aj).

Example 8. A labelled argument tree for ∀x.α[x] is:

〈{∀x.α[x]},∀x.α[x]〉
↗ 1/n ↖ m/n

〈{¬α[a]},�〉 〈{¬α[b1] ∧ . . . ∧ ¬α[bm]},�〉
From now on, n is some reasonable upper bound for the size
of the universe of discourse (it is supposed to be finite).

It may look from Example 8 that labels for arcs to a node
〈{∀x.α[x]},�〉 are easy to assess as numbers in [0, 1]:

undercut label
〈{¬α[a]},�〉 1/n
〈{¬α[b] ∧ ¬α[c]},�〉 2/n

...
〈{∀x.¬α[x]},�〉 1

However, some cases are less obvious:

undercut label
〈{¬α[a] ∨ ¬α[b]},�〉 1/n

...
〈{∃x.¬α[x]},�〉 1/n

Turning to the undercuts for 〈{∀x.∀y.α[x, y]},�〉 gives:

undercut label
〈{∃x.∃y.¬α[x, y]},�〉 1/n2

〈{¬α[c, d]},�〉 1/n2

〈{∀y.¬α[a, y]},�〉 1/n
〈{∀x.¬α[x, b]},�〉 1/n
〈{∀x.∃y.¬α[x, y]},�〉 1/n
〈{∃x.∀y.¬α[x, y]},�〉 1/n
〈{∀x.¬α[x, x]},�〉 1/n

...
〈{∀x.∀y.¬α[x, y]},�〉 1

In general, 〈{∀x1 . . . ∀xp.α[x1 . . . xp]},�〉 is undercut by
〈(∀∗∃∗)∗.θ,�〉 such that θ is in α-DNF:

θ =
∨

i=1..q

(¬α[ti11 . . . ti1p] ∧ . . . ∧ ¬α[timi1 . . . timip])

Then, the label is

min
i=1..q

∑

j=1..mi

nval(¬α[tij1...tijp])−p

where val(¬α[tij1 . . . tijp]) is the number of (different) uni-
versally quantified variables among tij1 . . . tijp.

A labelled argument tree provides extra information that
leads to a useful abstraction of the original argument tree.

Example 9. Provided A0, A1, A2, ...., A5 as well as k,m, n
(where k < n and m < n) conform with Definition 8, here
is a labelled argument tree in abstract form:

A0

1/n ↗ ↖ m/n
A1 A2

1/n ↗ ↖ 1/n ↑ k/n
A3 A4 A5

In this labelled argument tree, if n is significantly greater
than 1, then it may be natural to concentrate our attention on
the rightmost branch of the tree, since if, in addition, m is
close to n, then A2 is an important undercut of A0.

The tension of an argument tree is the cumulative conflict
obtained from all the undercuts in the tree.

Definition 9. Let T be an argument tree, and let Ar be the
root node. The degree of tension in T , denoted Tension(T ),
is given by the value of Retension(Ar), where for any node
Ai in the tree, if Ai is a leaf, then Retension(Ai) = 0 other-
wise Retension(Ai) is

∑

Aj∈Undercuts(Ai)

Retension(Aj) + Degree(Ai, Aj)

Here, measuring conflicts between arguments and under-
cuts requires orders of magnitude. In fact, it must now be
assumed that the poset 〈O,≤〉 comes with an additive mea-
sure (written + in the above definition).

Tension provides a useful way to refine the value given
by the degree of undercut: The latter merely indicates that
an undercut with degree 3k/n is three times more important
than an undercut with degree k/n but this may need to be
reconsidered in view of the overall tension (e.g., if huge).



By Definition 9, tension is fully determined once degree
of undercut is specified. Tension is nonetheless a useful
complement because Definition 7 is fairly liberal, as al-
ready mentioned. Indeed, Definition 7 is rather meant to
act as guidelines and there are many possibilities in choos-
ing Degree hence Degree need not be definable from the
non-labelled argument tree: Degree may convey extraneous
information (e.g., a certain undercut gets more weight be-
cause it concerns a certain topic, or it comes from a certain
source, or . . . ). In other words, Degree and Tension may be
tailored to the need of a particular application.

As an illustration, if the knowledgebase induces a finite
skolemization, the degree of undercut for 〈Φ, α〉 with re-
spect to 〈Ψ, β〉 could be set to be the minimum of the Dalal
distance (Dalal 1988) between a model of Φ and a model of
Ψ. If desired, it would be possible to normalize with a fac-
tor of 1/N for N being the cardinal of the Herband universe
resulting from Skolemization.

Labelled complete arguments trees are the ones of interest
in that they contain all the information but some are need-
lessly too large: The remaining sections aim at getting rid of
redundant and/or negligible information in argument trees.

Rationalizing Argument Trees
Even for small first-order knowledgebases, the number of ar-
guments can be overwhelming. So, we propose rationaliza-
tion of argument trees including (1) Pruning arguments, e.g.
that have a degree of undercut that is below a certain thresh-
old; and (2) Merging arguments to create fewer undercuts
but without losing vital information. Below we will consider
compressing and condensing as types of merging. Rational-
ization is part of a process of editing a set of arguments and
counterarguments to allow focusing on key issues.

Label-based pruning of argument trees
For pruning, we introduce a threshold for a minimum degree
of undercut. If an undercut has a degree of undercut below
the threshold, then the undercut is dropped, together with
any offspring of that undercut.
Definition 10. A threshold, denoted τ , is a value in O such
that if T is an argument tree, Prune(T, τ) is the pruned
argument tree obtained from T by removing each undercut
Aj of an argument Ai if Degree(Ai, Aj) ≤ τ and for any
undercut removed, all the offspring of the undercut are also
removed.
Example 10. Let T be the following labelled argument tree.

A1

↗ 80/100 ↖ 1/100
A2 A3

↑ 40/100 ↗ 10/100 ↖ 75/100
A4 A5 A6

Below, the left argument tree is Prune(T, 0.3) and the right
one is Prune(T, 0.5).

A1 A1

↑ 80/100 ↑ 80/100
A2 A2

↑ 40/100
A4

So pruning of argument trees allows us to focus our atten-
tion on the most important undercuts.

Proposition 4. For all i ∈ O, if T ′ = Prune(T, i) then
Tension(T ′) ≤ Tension(T ), |Nodes(T ′)| ≤ |Nodes(T )|,
Depth(T ′) ≤ Depth(T ), and Width(T ′) ≤ Width(T ).

Also, Prune(T, 0) = T and Prune(T, 1) returns the root
of T . For all i ∈ [0, 1], if T is a canonical argument tree, then
Prune(T, i) is a canonical argument tree. However, if T is a
complete argument tree, then Prune(T, i) is not necessarily
a complete argument tree.

One may wonder about how justified it is to consider
downsized argument trees, e.g. pruned trees. In order to dis-
cuss this issue, we need a couple of notions. In an argument
tree T , an attacker of a node N is any node N ′ of which N
is an ancestor and is such that the path from N to N ′ has a
length n where n is odd (e.g., any child of N is an attacker
of N ). In an argument tree T , a defender of a node N is any
attacker of a child of N .
It seems right to ignore the offspring even if it goes above the
threshold: If the offspring with large degree is an attacker of
U the undercut to be removed, then U is weaker and this
is a further reason not to consider it. If the offspring is a
defender of U , then that defender anyway fails to make U
stronger than it would if U was not attacked at all, in which
case U be removed anyway (so it is coherent that U is re-
moved).

Label-free pruning of argument trees
However, before considering degrees of undercuts, there is a
way to ignore some weak subarguments without even taking
into account any quantitative value about their disagreement
with the undercut argument.

Definition 11. Let 〈Ψ, β〉 be an undercut of 〈Φ, α〉. Then,
〈Ψ, β〉 is an overzealous undercut of 〈Φ, α〉whenever Ψ�α.

The idea can be illustrated as follows: Andrew notices,
e.g., “Hume is not hard to understand and the new BMW
is a 6-cylinder and the new BMW has ABS and the new
BMW has injection” so he claims “the new BMW is a lux-
ury car”. Basil notices “Hume is hard to understand and
... here are some impressive facts about the new BMW ...
and the new BMW has injection” so he contradicts Andrew
by pointing out “your support is wrong”. Certainly Basil’s
counterargument is weak, plagued with irrelevance (he con-
tradicts something apart from the main subject of the new
BMW).

There is a parallel to be drawn here: Remember that the
fallacy of argumenting ad hominem consists of attacking the
person who puts the argument forward, instead of attacking
the argument itself. Consider the (usual) situation in which
the promoter Phil of an argument A regards himself/herself
to be a good person. Formally, the statement (of course, the
example neither claims nor disclaims that Phil —whoever
we are talking about— is a good person!) that Phil is a good
person becomes part of the support as a conjunct. Now, ar-
gumenting ad hominem amounts to denigrating the conse-
quent of A just by disparaging Phil. Formally, this gives rise
to an argument A′ whose consequent denies that Phil is a
good person.



Overzealous undercuts should be deleted, turning an ar-
gument tree T into a “focussed” argument tree denoted
Zealousfree(T ).

Proposition 5. If T ′ = Zealousfree(T ) then Tension(T ′) ≤
Tension(T ), |Nodes(T ′)| ≤ |Nodes(T )|, Depth(T ′) ≤
Depth(T ), and Width(T ′) ≤ Width(T ).

Observe that an argument need not have an overzealous
undercut (∆ being fixed) but if it has one then at least one of
its canonical undercuts is overzealous.

Compressing argument trees
Compression combines arguments without loss of essential
information. Compression merges siblings in order to re-
duce the number of arguments and to reduce the redundancy
arising by having arguments equivalent in some sense, and
to make appropriate simplifications of the syntax of some
arguments.

Definition 12. Let T1 and T2 be argument trees. T2 is a
compression of T1 iff there is a surjection G :Nodes(T1) →
Nodes(T2) such that for all B ∈ Nodes(T2),

Cn(Support(B)) = Cn(
⋃

A∈G−1(B)

Support(A))

We call G the compression function.

Example 11. T3 is a compression of T2:

T2 T3

〈{∀x.Px},∀x.Px〉 〈{∀x.Px},∀x.Px〉
↗ ↖ ↑

〈¬Pa ∨ ¬Pb,�〉 〈¬Pa ∧ ¬Pb,�〉 〈¬Pa ∧ ¬Pb,�〉
while each of T2 and T3 is a compression of T1:

T1

〈{∀x.Px},∀x.Px〉
↗ ↗ ↖ ↖

〈¬Pa ∨ ¬Pb,�〉 〈¬Pa,�〉 〈¬Pb,�〉 〈¬Pa ∧ ¬Pb,�〉
Compression does not affect the depth of the tree, but it

has a downward effect on the branching.

Proposition 6. If T2 is a compression of T1, then
Tension(T1) ≤ Tension(T2), Depth(T1) = Depth(T2),
|Nodes(T2)| ≤ |Nodes(T1)|, and Width(T2) ≤ Width(T1).

Compression is not unique, and there are limits to com-
pression, for example when an argument tree is a chain, and
when all pairs of siblings have supports that are mutually
contradictory.

Undercutting is preserved in compression. The follow-
ing proposition explains the nature of offspring when some
siblings are merged in a tree compression.

Proposition 7. Let T1 and T2 be argument trees. If T2 is a
compression of T1, with compression function G, and A ∈
Nodes(T1), and G(A) = B, and C ∈ Undercuts(T1, A)
then G(C) ∈ Undercuts(T2, B).

Proposition 8. Let T1 and T2 be argument trees. (1) If T2

is a compression of T1 and T1 is a compression of T2 then
T1 and T2 are isomorphic (the compression function is a
bijection); (2) If T3 is a compression of T2 and T2 is a com-
pression of T1 then T3 is a compression T1; and (3) T1 is
a compression of T1. So, “is a compression of” is a partial
ordering relation over non-isomorphic argument trees.

Proposition 9. Let T1 be an argument tree. If A1 and A2 are
siblings in T1, and Cn(Support(A1)) = Cn(Support(A2)),
then there is an argument tree T2 such that T2 is a com-
pression of T1, with compression function G, and G(A1) =
G(A2).

Compressing a canonical argument tree always yields a
canonical argument tree. In contrast, compressing need not
turn a complete argument tree into a complete argument tree.
Actually, proper compressing always yields an incomplete
argument tree. How well then does compressing argument
trees meet our needs? In general, an incomplete argument
tree is not a reliable account of the counterarguments (and
counter-counterarguments, . . . ) of an argument. However,
starting with an exhaustive account, namely a complete ar-
gument tree, compressing only discards redundant informa-
tion: The resulting incomplete argument tree can still be
viewed as exhaustive.

Condensing argument trees
A condensed argument tree is obtained by editing the set of
assumptions and then building a new argument tree using the
edited set of assumptions rather than editing the tree directly.
A requirement of condensation is that the original and the
condensed argument trees are complete argument trees.

Definition 13. Let T1 be a complete argument tree from ∆1

and let T2 be a complete argument tree from ∆2. T2 is a con-
densation of T1 iff either (1) there is T3 such that T2 is con-
densation of T3 and T3 is a condensation of T1; or (2) there
exists S1 ∈ Siblings(T1) and there exists S2 ∈ Siblings(T2)
where |S2| ≤ |S1| and the following two conditions hold:

- ∆1 −
⋃

A∈S1
Support(A) = ∆2 −

⋃
A′∈S2

Support(A′)

- Cn(
⋃

A∈S1
Support(A))=Cn(

⋃
A′∈S2

Support(A′)) ⊂ L
The requirement ⊂ L in Definition 13 rules out cases such

as S1 = {〈{Pa∧α1},�〉, 〈{Pa∧α2},�〉, 〈{Pa∧α3},�〉},
S2 = {〈{Pa∧ β},�〉, 〈{Pa∧¬β},�〉} with α1 ∧α2 ∧α3

inconsistent so S2 may have nothing to do with S1 bar Pa.
Condensed argument trees are canonical argument trees.

A condensed argument tree is obtained by replacing a set of
siblings with a new set of siblings and then adding all the
canonical undercuts appropriate for these new arguments.

Example 12. Consider the argument below.

A1 = 〈{∀x.Px},∀x.Px〉
A2 = 〈{¬Pa ∧ Qa}, �〉
A3 = 〈{¬Pa ∧ Ra}, �〉
A4 = 〈{¬Qa ∨ ¬Ra,Ra}, �〉
A5 = 〈{¬Qa ∨ ¬Ra,Qa}, �〉
A6 = 〈{¬Pa ∧ Qa ∧ Ra}, �〉
A7 = 〈{¬Qa ∨ ¬Ra}, �〉
A8 = 〈{Qa,Ra}, �〉



∆1 ={∀xPx,¬Pa∧Qa,¬Pa∧Ra,¬Qa∨¬Ra,Qa,Ra}
∆2 ={∀xPx,¬Pa ∧ Qa ∧ Ra,¬Qa ∨ ¬Ra,Qa,Ra}
T2 is a condensation of T1 but T2 isn’t a compression of T1

(Support(A6) �⊆∆1 hence T2 isn’t an argument tree wrt ∆1)

T1 T2

A1 A1

↗ ↖ ↑
A2 A3 A6

↑ ↑ ↑
A4 A5 A7

↑
A8

∆3 = {¬Pa∨¬Qa,¬Pa∧Qa∧Ra}∪∆1 \{¬Pa∧Qa}.
Let A′

2 = 〈{¬Pa ∨ ¬Qa,Qa}, �〉.
T4 is a compression of T3 but T4 isn’t a condensation of T3

(S3 = {A′
2, A3, A6} and S4 = {A6}, so Definition 13 fails

Qa �∈ ∆3 −
⋃

A∈S3
Support(A) due to Qa ∈ Support(A′

2)
Qa ∈ ∆4 −

⋃
A∈S4

Support(A) as Qa �∈⋃
A∈S4

Support(A)
whereas Qa ∈ ∆4 due to Qa ∈ Support(A8) and A8 ∈ T4)

T3 T4

A1 A1

↗ ↑ ↖ ↑
A′

2 A3 A6 A6

↑ ↑ ↑ ↑
A4 A5 A7 A7

↑ ↑
A8 A8

It can happen that Depth(T2) > Depth(T1) even though
T2 is a condensation of T1 (see Example 12). Of course, it
can also happen that Depth(T2) < Depth(T1) where T2 is a
condensation of T1.

Proposition 10. The “is a condensation of” relation is a
partial ordering relation.

As with compression, condensation is not unique, and
there are limits to condensation, for example when an ar-
gument tree is a chain, and when all pairs of siblings have
supports that are mutually contradictory.

An interesting issue is the interplay between all the above
rationalizing techniques. The first comment is that presum-
ably all pruning should be considered before any compres-
sion or condensation. The question of the order between
label-free and label-based pruning is not obvious. They
seem largely independent and maybe the order in which they
are performed is indifferent. In particular, they do not alter
anything in the remaining subtree, unlike compression and
condensation. Turning to these two rationalizing techniques,
one observation which seems in order is that compression
preserves the original data whereas condensation moves to
a new knowledgebase —a radical shift. So, it looks like all
compression should rather take place before any condensa-
tion step, relieving us from the question of whether com-
pression and condensation “commute” to define a conflu-
ence property à la Church-Rosser.

Conclusion
The primary aim of this paper has been to extend logic-
based proposals for argumentation with techniques for first-
order argumentation. The framework could be implemented
as a decision support system to help professionals analyse
conflicting first-order information. In particular, argument-
based decision support could be a valuable solution to han-
dling inconsistencies arising in requirements engineering
(Finkelstein et al. 1994) and in security policy development
(Benferhat & El Baida 2004).

Rationalizing argument trees is an important step towards
making argumentation a more manageable process for prac-
tical decision support tasks. The techniques can straightfor-
wardly be adapted for a wide range of logic-based proposals
for argumentation, for example (Amgoud & Cayrol 2002).

Compression and condensation can allow undercuts to co-
alesce. E.g., if the root is a general statement that is being
proposed, say ∀x.(α(x) → β(x)), then an undercut may be
of the form α(a1) ∧ ¬β(a1). But the degree of undercut is
based on just one conflict. If there are many cases a1, .., ak

such that for each i ∈ {1, .., k}, we have α(ai) ∧ ¬β(ai),
then these may coalesce to form a much stronger argument
(i.e., an argument with a higher degree of undercut).

The framework also offers: Some ways of defining equiv-
alence relations over argument trees; A way of determining
that one argument tree is more conflicting than another; And
a way of determining that an argument tree is more informa-
tive (i.e., it has inferentially stronger support) than another.
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