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Abstract

There are a number of frameworks for modelling argumen-
tation in logic. They incorporate a formal representation of
individual arguments and techniques for comparing conflict-
ing arguments. A problem with these proposals is that they do
not consider the believability of the arguments from the per-
spective of the intended audience. In this paper, we start by
reviewing a logic-based framework for argumentation based
on argument trees which provide a way of exhaustively col-
lating arguments and counter-arguments. We then extend this
framework to a model-theoretic evaluation of the believabil-
ity of arguments. This extension assumes that the beliefs of
a typical member of the audience for argumentation can be
represented by a set of classical formulae (a beliefbase). We
compare a beliefbase with each argument to evaluate the em-
pathy (or similarly the antipathy) that an agent has for the
argument. We show how we can use empathy and antipa-
thy to define a pre-ordering relation over argument trees that
captures how one argument tree is “more believable” than
another. We also use these to define criteria for deciding
whether an argument at the root of an argument tree is de-
feated or undefeated given the other arguments in the tree.

Introduction
Argumentation is a vital aspect of intelligent behaviour by
humans. There are a number of proposals for logic-based
formalisations of argumentation (Prakken & Vreeswijk
2000; Chesnevar, Maguitman, & Loui 2001). These propos-
als allow for the representation of arguments for and against
some conclusion, and for attack or undercut relationships
between arguments. In the monological, as opposed to di-
alectical, approaches we can imagine a knowledgebase ∆
as being a set of possibily conflicting pieces of information
(each piece of information is represented by a formula) that
has been collated by one or more agents, and the role of ar-
gumentation is to construct arguments from ∆. However, a
problem with the logic-based formalisations is that no ac-
count is taken of the audience of the arguments, and in par-
ticular, of how believable the arguments may appear to a
typical member of the intended audience.

To motivate this need, consider a politician who is giving
a speech on a plan by the government to charge car drivers
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to be able to drive into the city. This requires monological
argumentation, since the audience would not be expected to
participate in a dialogue during the speech. If the audience
is a group of commuters who live in the city, then the politi-
cian would want to provide arguments that relate to what the
audience is likely to be familiar with, perhaps saying that
the money raised would be used to buy much-needed new
buses, and there would be less pollution for pedestrians. In
contrast, if the audience is a group of business executives,
then the politician may argue that the cost of the charge to
commercial vehicles (e.g. delivery trucks) would be more
than offset by the savings made by their vehicles not being
stuck in traffic in the city.

The beliefs of these two audiences are unlikely to be the
same. They may even be mutually contradictory. The busi-
ness executives, for example, may live in a different city,
and so they might not know whether or not there are enough
buses, or whether there is a lot of pollution in that city. And
the commuters may be unaware that businesses have greater
expenses to pay when their delivery vehicles are stuck in
traffic. So the way the politician has to proceed, is to be se-
lective so that the arguments used are likely to be based on
assumptions that are already believed, and if not, on assump-
tions that do not contradict the intended audience’s beliefs.

This need is reflected in many professional domains (e.g.
medicine, science, law, journalism, etc), and so to deliver
better decision-support technology, we first need to develop
appropriate formalisms for argumentation that is more be-
lievable by the intended audience.

To address this need, we introduce the beliefs of a typ-
ical member of the intended audience into logic-based ar-
gumentation. These beliefs are represented by a beliefbase
(a set of classical formulae). To present this approach, we
extend an existing framework to logic-based argumentation
by Besnard and Hunter (Besnard & Hunter 2001). In the
next section, we review the existing framework, and then in
subsequent sections we present our new extension.

Review of Argument Trees

We use α, β, γ, . . . to denote formulae and ∆,Φ,Ψ, . . . to
denote sets of formulae. Deduction in classical propositional
logic is denoted by the symbol � and deductive closure by
Th so that Th(Φ) = {α | Φ � α}.



For the following definitions, we first assume a knowl-
edgebase ∆ (a finite set of formulae) and use this ∆ through-
out. We further assume that every subset of ∆ is given an
enumeration 〈α1, . . . , αn〉 of its elements, which we call its
canonical enumeration. This really is not a demanding con-
straint: In particular, the constraint is satisfied whenever we
impose an arbitrary total ordering over ∆. Importantly, the
order has no meaning and is not meant to represent any re-
spective importance of formulae in ∆. It is only a convenient
way to indicate the order in which we assume the formulae
in any subset of ∆ are conjoined to make a formula logically
equivalent to that subset.

The paradigm for the approach is a large repository of in-
formation, represented by ∆, from which arguments can be
constructed for and against arbitrary claims. Apart from in-
formation being understood as declarative statements, there
is no a priori restriction on the contents, and the pieces of
information in the repository can be as complex as possible.
Therefore, ∆ is not expected to be consistent. It need even
not be the case that every single formula in ∆ is consistent.

The framework adopts a very common intuitive notion of
an argument. Essentially, an argument is a set of relevant
formulae that can be used to classically prove some point,
together with that point. Each point is represented by a for-
mula.

Definition 1. An argument is a pair 〈Φ, α〉 such that: (1)
Φ �� ⊥; (2) Φ � α; and (3) there is no Φ′ ⊂ Φ such that
Φ′ � α. We say that 〈Φ, α〉 is an argument for α. We call
α the consequent of the argument and Φ the support of the
argument (we also say that Φ is a support for α). For an
argument 〈Φ, α〉, the support is given by Support(〈Φ, α〉) =
Φ.

Example 1. Let ∆ = {α, α → β, γ → ¬β, γ, δ, δ →
β,¬α,¬γ}. Some arguments are:

〈{α, α → β}, β〉
〈{¬α},¬α〉

〈{α → β},¬α ∨ β〉
〈{¬γ}, δ → ¬γ〉

Arguments are not independent. In a sense, some encom-
pass others (possibly up to some form of equivalence). To
clarify this requires a few definitions as follows.

Definition 2. An argument 〈Φ, α〉 is more conservative
than an argument 〈Ψ, β〉 iff Φ ⊆ Ψ and β � α.

Example 2. 〈{α}, α ∨ β〉 is more conservative than
〈{α, α → β}, β〉.

Some arguments directly oppose the support of others,
which amounts to the notion of an undercut.

Definition 3. An undercut for an argument 〈Φ, α〉 is an
argument 〈Ψ,¬(φ1 ∧ . . . ∧ φn)〉 where {φ1, . . . , φn} ⊆ Φ.

Example 3. Let ∆ = {α, α → β, γ, γ → ¬α}.
Then, 〈{γ, γ → ¬α},¬(α ∧ (α → β))〉 is an undercut
for 〈{α, α → β}, β〉. A less conservative undercut for
〈{α, α → β}, β〉 is 〈{γ, γ → ¬α},¬α〉.
Definition 4. 〈Ψ, β〉 is a maximally conservative under-
cut of 〈Φ, α〉 iff 〈Ψ, β〉 is an undercut of 〈Φ, α〉 such that

no undercuts of 〈Φ, α〉 are strictly more conservative than
〈Ψ, β〉 (that is, for all undercuts 〈Ψ′, β′〉 of 〈Φ, α〉, if Ψ′ ⊆
Ψ and β � β′ then Ψ ⊆ Ψ′ and β′ � β).

The value of the following definition of canonical under-
cut is that we only need to take the canonical undercuts into
account. This means we can justifiably ignore the potentially
very large number of non-canonical undercuts.

Definition 5. An argument 〈Ψ,¬(φ1∧. . .∧φn)〉 is a canon-
ical undercut for 〈Φ, α〉 iff it is a maximally conservative
undercut for 〈Φ, α〉 and 〈φ1, . . . , φn〉 is the canonical enu-
meration of Φ.

An argument tree describes the various ways an argument
can be challenged, as well as how the counter-arguments to
the initial argument can themselves be challenged, and so on
recursively.

Definition 6. An argument tree for α is a tree where the
nodes are arguments such that

1. The root is an argument for α.
2. For no node 〈Φ, β〉 with ancestor nodes

〈Φ1, β1〉, . . . , 〈Φn, βn〉 is Φ a subset of Φ1 ∪ · · · ∪ Φn.
3. The children nodes of a node N consist of all canonical

undercuts for N that obey 2.

The second condition in Definition 6 ensures that each ar-
gument on a branch has to introduce at least one formula in
its support that has not already been used by ancestor argu-
ments. As a notational convenience, in examples of argu-
ment trees the � symbol is used to denote the consequent of
an argument when that argument is a canonical undercut.

Example 4. Let ∆= {α ∨ β, α → γ,¬γ,¬β, δ ↔ β}. For
this, two argument trees for the consequent α∨¬δ are given.

〈{α ∨ β,¬β}, α ∨ ¬δ〉 〈{δ ↔ β,¬β}, α ∨ ¬δ〉
↑ ↑

〈{α → γ,¬γ},�〉 〈{α ∨ β, α → γ,¬γ},�〉
For an argument tree T , each argument in T is either an

attacking argument or a defending argument. If an argu-
ment ai is a defending argument, then any child aj of ai is an
attacking argument. If an argument aj is an attacking argu-
ment, then any child ak of aj is a defending argument. If an
argument ar is the root, then ar is the initiating argument,
and ar is a defending argument. Finally, for an argument ai

in an argument tree T , let the set of children of ai be given
by Children(T, ai).

Pairwise Theory Comparison
When comparing an agent’s beliefbase with the support of
an argument, we are comparing a pair of theories. To do this
we now present a model-theoretic way to compare pairs of
theories. Note, we use ∧X to denote a conjunction of all
the formulae in X and we use Atoms(X) to denote the atom
symbols (i.e. propositional letters) used in the formulae in
X .

Definition 7. Let A be a set of atoms. Each interpretation
w is represented by a subset of A. For each interpretation
w, each atom in w is assigned true and each atom in A \ w



is assigned false. Let X be a set of classical propositional
formulae. Let I(X) be the set of interpretations of X delin-
eated by the atoms used in X (i.e. I(X) = ℘(Atoms(X))).
Let M(X,Y ) be the set of models of X that are in I(Y ). So
M(X,Y ) = {w |= ∧X | w ∈ I(Y )} where |= is classical.

Example 5. Let X = {α} and Y = {β ∧ γ}. So
M(X,X ∪ Y ) = {{α, β, γ}, {α, β}, {α, γ}, {α}}, and
M(Y,X ∪ Y ) = {{α, β, γ}, {β, γ}}, where I(X ∪ Y ) =
{{α, β, γ}, {α, β}, {α, γ}, {β, γ}, {α}, {β}, {γ}, {}}.

Obviously M(X,X) ⊆ I(X). When X is non-empty, we
get: (1) M(X,X) = ∅ iff X is inconsistent; and (2) I(X) =
M(X,X) iff X is a set of tautologies. Also M(X,X∪Y ) ⊆
M(Y,X ∪ Y ) iff X � ∧Y .

The degree of entailment of X for Y is the number of
models they have in common divided by the total number of
models for X .

Definition 8. Let X and Y be sets of classical proposi-
tional formulae each of which is consistent (i.e. X �� ⊥
and Y �� ⊥). The degree of entailment of X for Y , denoted
E(X,Y ), is defined as follows:

E(X,Y ) =
|M(X,X ∪ Y ) ∩ M(Y,X ∪ Y )|

|M(X,X ∪ Y )|
Example 6. E(α, α ∧ β) = 1/2, E(α, α ∧ β ∧ γ) = 1/4,
E(α, α∧β∧γ∧δ) = 1/8, E(α∧β, α∨β) = 1, E(α∧β, α∧
ε) = 1/2, E(α∧β∧γ, α∧ε) = 1/2, E(α∧β∧γ∧δ, α∧ε) =
1/2, E(α∧ ε, α∧β ∧ γ ∧ δ) = 1/8, E(α∧β, α∧¬β) = 0.

Proposition 1. Let X , Y , and Z be sets of classical propo-
sitional formulae: (1) 0 ≤ E(X,Y ) ≤ 1; (2) X �
∧Y iff E(X,Y ) = 1; (3) X � ¬∧Y iff E(X,Y ) = 0;
(4) If E(X,Y ) = 1 then 0 < E(Y,X); and (5) E(X,Y ) =
0 iff E(Y,X) = 0.

We now recall the definition for Dalal distance for com-
paring pairs of models (Dalal 1988). It is the Hamming dis-
tance between two models.

Definition 9. Let X be a set of classical propositional for-
mulae, and let wi, wj ∈ I(X). The Dalal distance between
wi and wj , denoted Dalal(wi, wj), is the difference in the
number of atoms assigned true:

Dalal(wi, wj) = |wi − wj | + |wj − wi|
To evaluate the conflict between two theories, we take a

pair of models, one for each theory, such that the Dalal dis-
tance is minimised. The degree of conflict is this distance
divided by the maximum possible Dalal distance between a
pair of models in I(X ∪ Y ) (i.e. log2 of the total number of
models in I(X ∪ Y )).

Definition 10. Let X and Y be sets of classical propo-
sitional formulae, each of which is consistent, and let
Distances(X,Y ) = {Dalal(wx, wy) | wx ∈ M(X,X ∪
Y ) and wy ∈ M(Y,X ∪ Y )}. The degree of conflict be-
tween X and Y , denoted C(X,Y ), is defined as follows:

C(X,Y ) =
Min(Distances(X,Y ))

log2(|I(X ∪ Y )|)

Example 7. C(α∧β, α∧¬β) = 1/2, C(α∧β,¬α∨¬β) =
1/2, C(α ∧ β,¬α ∧ ¬β) = 1, C(α ∧ β,¬α ∧ β) = 1/2,
C(α ∧ β ∧ γ,¬(α ∧ β) ∧ ¬γ ∧ ¬δ) = 1/2.

Proposition 2. Let X and Y be sets of classical propo-
sitional formulae: (1) 0 ≤ C(X,Y ) ≤ 1; (2)
C(X,Y ) = C(Y,X); and (3) C(X,Y ) = 0 iff X ∪ Y ��
⊥ iff E(X,Y ) �= 0.

In the next section, we use these measures to analyse the
believability of arguments.

Believability of Argument Trees
To evaluate the believability of an argument, we use a con-
sistent set of formulae, called a beliefbase, that reflects the
beliefs of a typical member of the intended audience of the
argument. Argumentation for different intended audiences
requires different beliefbases.

Definition 11. Let 〈Φ, α〉 be an argument and let Γ be a be-
liefbase. The empathy for 〈Φ, α〉 is E(Γ,Φ). The antipathy
for 〈Φ, α〉 is C(Γ,Φ).
Example 8. Let ∆= {α ∨ β, α → γ,¬γ,¬β, δ ↔ β} and
consider the following argument tree. If Γ = {α,¬β}, then
E(Γ, {α ∨ β,¬β}) = 1 and C(Γ, {α → γ,¬γ}) = 1/3.

〈{α ∨ β,¬β}, α ∨ ¬δ〉
↑

〈{α → γ,¬γ},�〉
In order to improve the believability of an argument tree,

we want to maximize the empathy for defending arguments,
and maximize the antipathy of attacking arguments.

Proposition 3. Let 〈Φ, α〉 be an argument, and let 〈Ψ, �〉 be
a canonical undercut for it, and let Γ be a beliefbase: (1) If
E(Γ,Φ) = 1, then E(Γ,Ψ) = 0; and (2) If C(Γ,Φ) = 1,
then C(Γ,Ψ) �= 1.

Now we provide definitions for the measure of recursive
empathy and the measure of recursive antipathy for argu-
ment trees. Each of these measures gives a value in the
[−1, 1] range. The essential idea is that the empathy at a
node can be affected by the nodes below it in the tree. De-
fending arguments may increase the recursive empathy at a
node and attacking arguments may decrease the recursive
empathy.

Definition 12. The recursive empathy (r.e.) for an ar-
gument tree T with the beliefbase Γ, denoted Re(Γ, T ),
is given by F (ar) where ar is the root of T and the F
function is defined for all nodes ai in T as follows. Let
k1 = E(Γ,Support(ai)). If Children(T, ai) �= ∅, then
let k2 be the maximum F (aj) value for the nodes aj in
Children(T, ai), otherwise let k2 = 0. So F (ai) is:

1. If k1 > k2, then F (ai) = k1

2. If k1 = k2, then F (ai) = 0
3. If k1 < k2, then F (ai) = −k2

For an argument tree T , and a beliefbase Γ, Re(Γ, T ) >
0 when the root has greater non-zero empathy than the r.e.
of any of the undercuts, Re(Γ, T ) < 0 when there is an
undercut with r.e. greater then the empathy of the root, and



Re(Γ, T ) = 0 when the best undercut (ie. the undercut with
maximum r.e.) has r.e. equal to the empathy of the root or
when the best undercut has negative r.e. and the root has
zero empathy.

Definition 13. The recursive antipathy (r.a.) for an ar-
gument tree T with the beliefbase Γ, denoted Re(Γ, T ),
is given by A(ar) where ar is the root of T and the A
function is defined for all nodes ai in T as follows. Let
k1 = C(Γ,Support(ai)). If Children(T, ai) �= ∅, then let k2

be the maximum A(aj) for the nodes aj in Children(T, ai),
otherwise let k2 = 0. So A(ai) is:

1. If k1 > k2, then A(ai) = k1

2. If k1 = k2, then A(ai) = 0
3. If k1 < k2, then A(ai) = −k2

For an argument tree T , and a beliefbase Γ, Ra(Γ, T ) > 0
when the root has greater non-zero antipathy than the r.a.
of any of the undercuts, Ra(Γ, T ) < 0 when there is an
undercut with greater r.a. than the antipathy of the root, and
Ra(Γ, T ) = 0 when the best undercut (ie. the undercut with
maximum r.a.) has r.a. that is equal to antipathy of the root
or when the best undercut has negative r.a. and the root has
zero antipathy.

Example 9. Consider ∆ = {α ↔ ¬δ, β, β → α, γ ∧
¬β,¬γ, δ,¬δ} giving the argument tree T1 below.

〈{β → α, β}, α〉
↗ ↖

〈{γ ∧ ¬β}, �〉 〈{δ, α ↔ ¬δ}, �〉
↑ ↑

〈{¬γ}, �〉 〈{¬δ}, �〉
For Γ = {δ,¬γ}, the arguments in T1 are evaluated in the
table below, where E is the empathy for the node, F is the
r.e. for the node, C is the antipathy for the node, and A
is the r.a. for the node, giving Re(Γ, T1) = −1/2 and
Ra(Γ, T1) = −1/3. So r.e. is poor and r.a. is good.

Argument E F C A
〈{β → α, β}, α〉 0 −1/2 0 −1/3
〈{γ ∧ ¬β}, �〉 0 −1 1/3 1/3
〈{δ, α ↔ ¬δ}, �〉 1/2 1/2 0 −1
〈{¬γ}, �〉 1 1 0 0
〈{¬δ}, �〉 0 0 1 1

Example 10. Consider ∆ = {α ↔ ¬δ, β, β → α, γ ∧
¬β,¬γ, δ,¬δ} giving the argument tree T2 below.

〈{¬δ, α ↔ ¬δ}, α〉
↑

〈{δ}, �〉
For Γ = {¬δ}, T2 is evaluated in the table below, where E,
F , C, and A are as in Example 9, giving Re(Γ, T2) = 1/2
and Ra(Γ, T2) = −1. So r.e. and r.a. are good.

Argument E F C A
〈{¬δ, α ↔ ¬δ}, α〉 1/2 1/2 0 −1
〈{δ}, �〉 0 0 1 1

Example 11. Consider ∆ = {α ↔ ¬δ, β, β → α, γ ∧
¬β,¬γ, δ,¬δ} giving the argument tree T3 below.

〈{δ, α ↔ ¬δ},¬α〉
↗ ↖

〈{β, β → α}, �〉 〈{¬δ}, �〉
↑

〈{γ ∧ ¬β}, �〉
↑

〈{¬γ}, �〉
For Γ = {δ,¬γ}, T3 is evaluated in the table below, where
E, F , C, and A are as in Example 9, giving Re(Γ, T3) =
1/2 and Ra(Γ, T3) = −1/2. So r.e. and r.a. are good.

Argument E F C A
〈{δ, α ↔ ¬δ},¬α〉 1/2 1/2 0 −1/2
〈{β, β → α}, �〉 0 0 0 −1/3
〈{¬δ}, �〉 0 0 1/2 1/2
〈{γ ∧ ¬β}, �〉 0 −1 1/3 1/3
〈{¬γ}, �〉 1 1 0 0

There is an intuitive preference for an argument tree with
higher r.e. and there is an intuitive preference for an argu-
ment tree with lower r.a. For these two dimensions, the best
case argument tree has an r.e. of 1 and an r.a of −1, and the
worst case argument tree has an r.e. of −1 and an r.a. of 1.

Example 12. Let T be the following argument tree. If Γ =
{α ∧ β}, then Re(Γ, T ) = 1 and Ra(Γ, T ) = −1. If Γ′ =
{¬α ∧ ¬β}, then Re(Γ′, T ) = −1 and Ra(Γ′, T ) = 1.

〈{α ∧ β}, α〉
↑

〈{¬α ∧ ¬β}, �〉
In the extreme case where the empathy for the root is 1,

then the r.e. for the tree is automatically 1. Similarly, in the
(diametrically opposed) extreme case where the antipathy
for the root is 1, then the r.a. for the tree is automatically 1.

Proposition 4. Let 〈Φ, α〉 be the root of an argument tree
T , and let Γ be a beliefbase: (1) If E(Γ,Φ) = 1, then
Re(Γ, T ) = 1; and (2) If C(Γ,Φ) = 1, then Ra(Γ, T ) = 1.

The r.e. and r.a. obtained for a tree are coupled. This
is a consequence of a beliefbase being unable to have both a
non-zero antipathy and a non-zero empathy for an argument.

Proposition 5. For an argument tree T and a beliefbase Γ,
if Re(Γ, T ) > 0 then Ra(Γ, T ) ≤ 0.

So the most important factor in developing believable aru-
ments is for the initiating arguments to have non-zero empa-
thy (ideally unit empathy) and therefore zero antipathy.

Definition 14. Let T be a argument tree, let Γ be
a beliefbase, and let ai be a node in T . ai

is e-disabled iff ∃aj ∈ Children(T, ai) such that
E(Γ,Support(ai)) ≤ F (Γ,Support(aj)). ai is c-disabled
iff ∃aj ∈ Children(T, ai) such that C(Γ,Support(ai)) ≤
A(Γ,Support(aj)).

The definition of e-disabled (and similarly c-disabled)
give the grounds for empathy (and similarly for antipathy)
for a node to not affect the evaluation of r.e. (and similarly
r.a) for ancestor nodes.



Definition 15. Let T be a argument tree, let Γ be a belief-
base, let ai and aj be nodes in T .

ai e-voids aj iff E(Γ,Support(ai)) > E(Γ,Support(aj))
ai c-voids aj iff C(Γ,Support(ai)) > C(Γ,Support(aj))

The definition of e-voids (and similarly c-voids) gives the
grounds for empathy (and similarly for antipathy) for a node
to not be affected by the evaluation of r.e. (and similarly r.a)
for an offspring node.

Proposition 6. Let T be an argument tree, let Γ be a belief-
base, and let ai be a node in T . (1) ai is not e-disabled iff
∀aj ∈ Children(T, ai) ai e-voids aj or aj is e-disabled. (2)
ai is not c-disabled iff ∀aj ∈ Children(T, ai) ai c-voids aj

or aj is c-disabled.

We will use e-disabled, c-disabled, e-voids, and c-voids
to characterise undefeated argument trees.

Improving Believability
Given a knowledgebase ∆, we may be able to generate more
than one argument tree for a conclusion such as in Example
4. Using a beliefbase, we can select one of these trees to op-
timise believability in terms of r.a. and r.e. We can also seek
better arguments trees by ignoring some of the formulae in
∆. In other words, we can delete formulae from ∆ to give
∆′ and then generate argument trees from ∆′.
Example 13. Continuing Example 9, we could ignore (i.e.
delete) δ in ∆. From this, we get argument tree T4 below.

〈{β → α, β}, α〉
↑

〈{γ ∧ ¬β}, �〉
↑

〈{¬γ}, �〉
For the beliefbase Γ = {δ,¬γ}, T4 is evaluated in the ta-
ble below, where E, F , C, and A are as in Example 9. So
Re(Γ, T4) = 0 and Ra(Γ, T3) = −1/3 which is an im-
provement on the r.e. value for T1.

Argument E F C A
〈{β → α, β}, α〉 0 0 0 −1/3
〈{γ ∧ ¬β}, �〉 0 −1 1/3 1/3
〈{¬γ}, �〉 1 1 0 0

Definition 16. Let T and T ′ be argument trees and let Γ
be a beliefbase. Let Re(Γ, T ) = x, let Re(Γ, T ′) = x′, let
Ra(Γ, T ) = y, and Ra(Γ, T ′) = y′, T is more believable
for Γ than T ′, denoted T �Γ T ′, iff x ≥ x′ and y ≤ y′. T is
most believable for Γ iff for all argument trees T ′, T �Γ T ′.
Example 14. Consider T1 in Example 9 and T4 in Example
13. If Γ = {δ,¬γ}, then T4 �Γ T1.

Proposition 7. Let T be an argument tree and let Γ be a
beliefbase. T is most believable for Γ iff Re(Γ, T ) = 1 and
Ra(Γ, T ) = −1.

Obviously, there is not a unique most believable T for Γ
since there are many knowledgebases ∆ we can consider.

Definition 17. Let Trees(∆, α) be the set of argument trees
constructed from ∆ for α (according to Definition 6). Let
Treelets(∆, α) =

⋃
Π∈℘(∆) Trees(Π, α).

So if we want to increase the believability of an argument
tree T ∈ Trees(∆, α), we could try to find an argument tree
T ′ ∈ Trees(∆, α) where ∆′ ⊂ ∆ and T ′ �Γ T . In other
words, we could examine Treelets(∆, α) for a more believ-
able tree. Note, for a given knowledgebase ∆ and a given
beliefbase Γ, the pre-ordering (Treelets(∆, α),�Γ) does not
necessarily have a unique maximal element. Furthermore
to maximize believability according to the �Γ pre-ordering
may involve a trade-off of increasing r.e. and decreasing r.a.

Winning Argument Trees
Given an argument tree, we want to determine whether the
initiating argument wins (i.e. it is undefeated) or whether it
looses (i.e. it is defeated). If an initiating argument wins,
then we may regard it as an acceptable inference. A simple
approach is to consider the binary judge defined next.

Definition 18. Given an argument tree T , the initiating
argument wins according to the binary judge, denoted
winb(T ) = yes, iff for each branch of T , the leaf is a defend-
ing argument. Furthermore winb(T ) = yes iff winb(T ) �=
no.

So the initiating argument wins whenever all maximal
branches of the argument tree have an even length (though
not necessarily the same length). This approach captures the
essence of a number of approaches to argumentation (see
(Besnard & Hunter 2001) for more details).

Now that we have measures of r.a. and r.e. for argument
trees, we can take a finer grained approach to evaluating ar-
gument trees. Below we define the empathy judge, the an-
tipathy judge, and the combined judge and give examples in
Table 1. All the judges we consider are functions that return
either yes (when the initiating argument is undefeated) or
no (when the initiating argument is defeated).

Using the empathy judge, the initiating argument wins
when the empathy for the initiating argument is greater than
the r.e. for the undercuts. In other words, the initiating argu-
ment is not disabled (by Definition 14). Hence, the initiating
argument can win if empathy is sufficient or if the undercuts
have lower empathy than a defending argument.

Definition 19. Given an argument tree T , and beliefbase
Γ, the initiating argument wins according to the empathy
judge, denoted wine(Γ, T ) = yes, iff Re(Γ, T ) > 0.

The empathy judge effectively weighs the effect of under-
cuts, and by recursion undercuts to undercuts, on the initiat-
ing argument. This means that the empathy for an undercut
can be too low for it to be regarded as sufficient grounds for
it to defeat an argument. A consequence of this is that a
tree that wins by the binary judge may loose by the empathy
judge and vice versa.

Proposition 8. Let T be a argument tree, let Γ be a
beliefbase, and let ar be the root of argument tree T .
wine(Γ, T ) = yes iff for all ai ∈ Children(T, ar) either
ar e-voids ai or ai is e-disabled.

Using the antipathy judge, the initiating argument wins
when the antipathy for the initiating argument is less than
the r.a. for the undercuts. Hence, the initiating argument can



Tree r.e. r.a. winb wine wina

Γ1 T1 −1 1/3 yes no no
Γ1 T3 1 −1 no yes yes
Γ2 T1 −1 1/4 yes no no
Γ2 T3 1 −1 no yes yes
Γ3 T1 −1/2 1/2 yes no no
Γ3 T3 0 −1/2 no no yes
Γ4 T1 1/2 −1/2 yes yes yes
Γ4 T3 −1/2 0 no no no

Table 1: Combinations of beliefbases and argument trees are
evaluated with the binary judge, the empathy judge, and the
antipathy judge, where Γ1 = {δ,¬α}, Γ2 = {δ,¬α, γ},
Γ3 = {¬β} and Γ4 = {β} are beliefbases, and T1 from
Example 9 and T3 from Example 11.

win if antipathy for it is sufficiently low or if undercuts have
higher antipathy than a defending argument.

Definition 20. Given an argument tree T , and beliefbase
Γ, the initiating argument wins according to the antipathy
judge, denoted wina(Γ, T ) = yes, iff Ra(Γ, T ) < 0.

The antipathy judge effectively weighs the effect of un-
dercuts, and by recursion undercuts to undercuts, on the ini-
tiating argument. This means that the antipathy for an under-
cut can be too high for it to be regarded as sufficient grounds
for it to defeat an argument. Furthermore, this antipathy to
the undercut could be sufficient for the intiating argument to
win because the undercut has “alienated” the intended audi-
ence irrespective of the other undercuts. A consequence of
this is that a tree that wins by the binary judge may loose by
the antipathy judge and vice versa.

Proposition 9. Let T be a argument tree, let Γ be a
beliefbase, and let ar be the root of argument tree T .
winc(Γ, T ) = yes iff there is an ai ∈ Children(T, ar) such
that ai c-voids ar and ai is not c-disabled.

The combined judge classifies a tree as undefeated iff both
the empathy judge and the antipathy judge classify the tree
as undefeated.

Definition 21. Given an argument tree T , and beliefbase
Γ, the initiating argument wins according to the combined
judge, denoted winc(Γ, T ) = yes, iff wine(Γ, T ) = yes and
wina(Γ, T ) = yes.

Argument trees with initiating arguments that win by the
combined judge are more believable than those that do not.

Proposition 10. Let T1, T2 ∈ Trees(∆, α) and let Γ be a
beliefbase. If winc(Γ, T1) = yes and winc(Γ, T2) = no,
then T2 ��Γ T1.

A necessary condition for wine(Γ, T ) = yes or
winc(Γ, T ) = yes is for Γ �= ∅. Furthermore, the empa-
thy Γ has for the root of T has to be greater than 0. These
are natural expectations to have about believable argumen-
tation. If the audience has zero empathy for the initiating
argument, then the consequence of the initiating argument
should not be regarded as an acceptable inference.

Discussion
The proposal for evaluating believability of arguments is a
way for argumentation systems to interact intelligently with
users. Given a beliefbase that reflects the intended audience,
the values for empathy/antipathy provide an intuitive rank-
ing over arguments. The definitions for r.a. and r.a. extend
this ranking to argument trees. This may then be used to
optimize the presentation of argumentation for audiences as
part of decision-support technology. It may also be used
to define judges that capture important criteria for deciding
when an initiating argument should be an inference.

Whilst the presentation is based on a particular approach
to logic-based argumentation, the proposal could be adapted
for a range of other logic-based approaches to argumenta-
tion. It also seems that the proposal in this paper could be
generalised for dialectical argumentation where arguments
are generated by different agents in a debate or dialogue in a
multi-agent system. Furthermore, the beliefbase of an audi-
ence could be constructed dynamically as part of a dialogue
involving an agent asking questions to determine some of
the beliefs of the audience before presenting arguments.

Other approaches to evaluating potentially inconsistent
information, such as information-theoretic measures (Lozin-
skii 1994), possibilistic measures (Dubois, Lang, & Prade
1994), epistemic action measures (Konieczny, Lang, & Mar-
quis 2003), and measures based on four valued models
(Hunter 2003), may give interesting alternatives to the em-
pathy and antipathy definitions.

References
Besnard, P., and Hunter, A. 2001. A logic-based theory of
deductive arguments. Artificial Intelligence 128:203–235.
Chesnevar, C.; Maguitman, A.; and Loui, R. 2001. Logical
models of argument. ACM Computing Surveys 32:337–
383.
Dalal, M. 1988. Investigations into a theory of knowledge
base revision: Preliminary report. In Proceedings of the 7th
National Conference on Artificial Intelligence (AAAI’88),
3–7. MIT Press.
Dubois, D.; Lang, J.; and Prade, H. 1994. Possibilistic
logic. In Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 3. Oxford University Press.
439–513.
Hunter, A. 2003. Evaluating the significance of inconsis-
tency. In Proceedings of the International Joint Conference
on AI (IJCAI’03), 468–473. Morgan Kaufmann.
Konieczny, S.; Lang, J.; and Marquis, P. 2003. Quanti-
fying information and contradiction in propositional logic
through epistemic actions. In Proceedings of the 18th In-
ternational Joint Conference on Artificial Intellignce (IJ-
CAI’03), 106–111.
Lozinskii, E. 1994. Information and evidence in logic sys-
tems. Journal of Experimental and Theoretical Artificial
Intelligence 6:163–193.
Prakken, H., and Vreeswijk, G. 2000. Logical systems for
defeasible argumentation. In Gabbay, D., ed., Handbook of
Philosophical Logic. Kluwer.


