
Incorporating Classical Logic Argumentation into Policy-based Inconsistency
Management in Relational Databases

Maria Vanina Martinez
University of Maryland College Park

College Park, MD 20742, USA
mvm@cs.umd.edu

Anthony Hunter
University College London
London WC1E 6BT, UK

a.hunter@cs.ucl.ac.uk

Abstract

Inconsistency management policies allow a relational
database user to express customized ways for managing in-
consistency according to his need. For each functional de-
pendency, a user has a library of applicable policies, each
of them with constraints, requirements, and preferences for
their application, that can contradict each other. The problem
that we address in this work is that of determining a subset
of these policies that are suitable for application w.r.t. the set
of constraints and user preferences. We propose a classical
logic argumentation-based solution, which is a natural ap-
proach given that integrity constraints in databases and data
instances are, in general, expressed in first order logic (FOL).
An automatic argumentation-based selection process allows
to retain some of the characteristics of the kind of reasoning
that a human would perform in this situation.

1. Introduction
Inconsistency Management Policies (IMPs for short) are
presented in (Martinez et al. 2008) as a framework that
allows relational database users to specify how to handle
inconsistency regarding a set of functional dependencies,
making use of their expertise to provide customized ways of
dealing with conflicts. Functional dependencies are a spe-
cial kind of integrity constraint that express that the equality
on the values of a set of attributes determines the equality of
the values of another set of attributes, e.g., if two tuples in
a relation have the same value for attribute SSN , then the
value for attribute Name should be the same.

In (Martinez et al. 2008), it is assumed that given a
set of functional dependencies F , there is only one single-
dependency policy associated with each fd in F . This is a
somewhat restrictive assumption since, in general, it is very
likely that a whole set of candidate policies exists. Given
the nature of IMPs, it is reasonable to allow the users to ex-
press constraints or requirements for the usage of policies,
as well as preferences over them. The problem that arises
then, is that constraints and user preferences can contradict
each other, and therefore not all the candidate policies are
applicable in all situations. Given a set of policies, users
need a mechanism to select the one(s) whose properties and
output(s) satisfies their application needs, constraints, and

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

preferences. We will consider this problem assuming that
the decision is made one functional dependency at a time.

If a user is presented with a relatively small number of
policies, and conflicting constraints and preferences, then it
is likely that he will weigh the different pieces of informa-
tion and determine a preference on which policies he should
use in that particular situation. When the amount of data
grows, it becomes impossible for a human user to analyze
it. We propose to address this problem in an automatic way,
but retaining some of the characteristics of the kind of rea-
soning that humans perform in such situations; for instance,
we would like to have the capacity to explain why a cer-
tain choice was made over another. In this work we adopt
an argumentation-based framework that uses classical logic
as the underlying formalism, as proposed in (Besnard and
Hunter 2001). Integrity constraints and relational data are al-
ready expressed in the language of first order logic and their
semantics corresponds directly to that of classical logic; it
seems appropriate and natural then to choose a classical
logic based approach. Policies, together with their require-
ments and constraints, as well as user preferences, can be
encoded as FOL formulas and then be used in the process
of policy selection. The main idea is to automatically gen-
erate arguments and counterarguments for and against the
application of particular policies, and through a dialectical
process choose the most suitable ones.

2. IMPs: Preliminaries
The concept of policies for managing inconsistency in
databases violating a given set of functional dependencies
was introduced in (Martinez et al. 2008), with the intention
of obtaining a lower degree of inconsistency. We now briefly
recall the principal concepts underlying the framework.

We assume the existence of relational schemas of the form
S(A1, . . . , An) where the Ai’s are attributes. Each attribute
Ai has an associated domain, dom(Ai). A tuple over S is a
member of dom(A1)× · · · × dom(An), and a set R of such
tuples is called a relation. We use Attr(S) to denote the set
of all attributes in S. Moreover, we use t[Ai] to denote the
value of Ai attribute in tuple t.

Given the relational schema S(A1, . . . , An), a
functional dependency fd over S is an expres-
sion of the form A′

1 · · ·A′
k → A′

k+1 · · ·A′
m where

{A′
1, . . . , A

′
m} ⊆ Attr(S). Relation R over schema

52

The Uses of Computational Argumentation:
Papers from the AAAI Fall Symposium (FS-09-06)

S satisfies the above functional dependency iff
∀ t1, t2 ∈ R, t1[{A′

1, . . . , A′
k }] = t2[{A′

1, . . . , A′
k }] ⇒

t1[{A′
k+1, . . . , A′

m }] = t2[{A′
k+1, . . . , A′

m }]. Finally,
we say that fd is defined over R.

The notions of culprits and clusters are the basic struc-
tures over which IMPs are defined. In the following we re-
call their formal definitions.

Definition 1 (Culprits and clusters) Let R be a relation
and F a set of functional dependencies. A culprit is a mini-
mal set c ⊆ R not satisfying F . Moreover, given two culprits
c, c′ ∈ culprits(R,F), we write c � c′ iff c ∩ c′ 	= ∅. Let
�∗ be the reflexive transitive closure of relation �; a cluster
is a set cl =

⋃
c∈e c where e is an equivalence class of �∗.

We denote the set of all clusters in R w.r.t. F with
clusters(R,F).

Informally, culprits are minimal inconsistent subsets, and
clusters group together tuples that are inconsistent among
each other w.r.t. a functional dependency.

An inconsistency management policy (IMP for short) for
a relation R w.r.t. a functional dependency fd over R is a
function γfd from R to a relation R′ = γfd(R) that satisfies
certain axioms, which we review informally here:

• Tuples that do not belong to any culprit cannot be elimi-
nated or changed by γfd .

• Every tuple t′ in R′ is either in R or there exists a tuple t
in R such that t and t′ coincide in all values of attributes
that do not appear in fd .

• Applying γfd cannot increase the number of culprits.

• Applying γfd cannot increase the number of tuples.

IMPs seek to reduce the degree of inconsistency in the
relation, according to some appropriate measure of in-
consistency (Lozinskii 1994; Hunter and Konieczny 2005;
Grant and Hunter 2006; Martinez et al. 2007). In (Mar-
tinez et al. 2008) three types of policies are described:
tuple-based, value-based, and interval-based policies. In-
formally, tuple-based policies delete tuples from a cluster,
while value-based and interval-based ones allow to change
the values of the attributes on the right hand side of the de-
pendency; value-based policies only allow changes to values
that are already present in the cluster, while interval-based
policies allow values within the interval defined by the val-
ues in the cluster. The following example shows an instance
of a relation and two value-based policies that are going to
be used as the running example in the rest of the paper.
Example 1 Assume the relation Employee in which the
salaries are uniquely determined by the names. Therefore,
the only functional dependency is fd : Name → Salary .

Name Salary Tax bracket
t1 John 70K 20
t2 John 80K 20
t3 John 75K 20
t4 Mary 90K 30

An IMP for fd ∈ F is applied to a relation by subsequently
applying it to each cluster in that relation w.r.t. fd . In this
example there is only one cluster w.r.t. fd , namely {t1, t2, t3}

and there are two culprits. Suppose that the user of this
database has the following two policies associated with fd :
• Policy γ1 says: for each cluster c ∈

clusters(Employee, fd), and c = {t1, . . . tn},
for each tuple ti ∈ c, set ti[salary] =
min({t1[Salary], . . . , tn[Salary]}).

• Policy γ2 says: for each cluster c ∈
clusters(Employee, fd), and c = {t1, . . . tn}, for
each tuple ti ∈ c, if there exist k tuples in c (dif-
ferent from ti) that have the same value for Salary
as ti, then ti[salary] does not change; otherwise set
ti[Salary] = min({t1[Salary], . . . , tn[Salary]}).
Different policies produce different results (sets of tu-

ples), each reducing the number of culprits or clusters to
some extent by deleting or modifying tuples that satisfy a
certain condition, etc. Furthermore, different users have dif-
ferent requirements depending on the task they seek to per-
form. Users can also have preferences over the application
of policies, e.g., they might require certain type of data to be
included in the results, they might need to impose resource
constraints such as computation time, etc. Suppose a user
needs the results very quickly, and the two applicable poli-
cies return the same answers, or almost the same answer; in
this case, the user might prefer to apply the policy that takes
less time to compute, even if the results are just an approxi-
mation or a part of what he wanted in the first place.
Example 2 Consider the setting of Example 1. If n is the
maximum cardinality of clusters, and there are m clusters,
then if γ1 is applied to this relation, all salary values are
changed to 70K. The resulting number of clusters and cul-
prits are both 0 after the application. The worst case run-
ning time for γ1 is O(m ∗n). The most efficient way to com-
pute γ2 requires to sort the tuples in each cluster and then
perform binary searches to find k tuples with the same value
for Salary. Assuming k = 1, the worst case running time
for γ2 is O(m∗n log n). In this case, t2[Salary] changes to
70K; the resulting number of culprits and clusters w.r.t. fd
are both 0.

Clearly, from the point of view of degree of inconsistency
left, neither policy is more desirable than the other, since
both completely remove the inconsistency w.r.t. fd . How-
ever, depending on the number and size of the clusters, the
application of γ2 can take much more time than γ1. If the
user has time constraints, then he could be more inclined
to select γ1. On the other hand, if the results of applying
one or another are different (which is not the case for our
simplified example), the user might be willing to sacrifice ef-
ficiency selecting γ2 instead of performing a more thorough
processing.

3. Knowledge Representation for IMPs
In order to make decisions regarding which policy to apply
given a relation, a user of that relation, and a functional de-
pendency, different kinds of information are needed in order
to make an informed choice. Given a functional dependency
fd , our framework contains the following levels of knowl-
edge: data level, meta-data level, policy level, and meta-
policy level. A system that automatically selects which

53

policies are suitable for application must also have these dif-
ferent levels of knowledge available for the decisions and
recommendations to be meaningful. In the rest of this sec-
tion we define the contents of each level of information and
provide a formal representation for them using FOL formu-
las.

3.1 Data Level Knowledge
One of the basic elements needed in the process of policy se-
lection is the set of data to which the policies will be applied.
In order to make an appropriate selection, this has to be done
in context, since different policies might behave differently
when applied to different data. Furthermore, it is likely that
users have different preferences and requirements for dif-
ferent data sets. Assuming there is a set of relations which
users are interested in, automatic policy selection requires
encoding the contents of these relations in the underlying
formalism, in this case FOL formulas.

From now on, we will denote a relation within the logic
with a constant symbol corresponding to the name of the
relation in lowercase. For instance, relation Employee will
be denoted with employee, etc.
Definition 2 (Data term) Given relation R over schema
S(A1, . . . An), the ground term fR(c1, . . . , ck) denotes the
tuple t[A] ∈ R, where fR is a function symbol of ar-
ity k, the ci’s are constant symbols, A is the ordered set
{A′

1, . . . , A′
k } ⊆ Attr(S), and t[A′

i] = ci for 1 ≤ i ≤ k.
Note that we assume that values for attributes within the

relation are constant symbols; each tuple is therefore de-
noted as a ground term.
Definition 3 Given relation R over schema S(A1, . . . , An),
the set KT (R) = {In(fR(c1, . . . , ck), R) | ∃t ∈
R s.t . t[A1] = c1, . . . , and t[Ak] = ck} denotes the tuples
in relation R, where In is a predicate symbol of arity 2.

The following example shows relation Employee from
Example 1 represented as a set of ground atoms.
Example 3 Assume we have relation Employee from Exam-
ple 1 and let fEmployee be a function symbol of arity 3. The
set KT (Employee) is defined as follows:

d1 : In(fEmployee(john, 70, 20), employee)
d2 : In(fEmployee(john, 80, 20), employee)
d3 : In(fEmployee(john, 75, 20), employee)
d4 : In(fEmployee(mary, 90, 30), employee)

3.2 Meta-data Level Knowledge
In a policy selection process it is important to consider not
only the data from the relation but also information regard-
ing inconsistency in the data w.r.t. a given functional depen-
dency. In particular, we need to explicitly state the compo-
sition of the cluster structures. We assume the existence of
predicate symbols Cluster and InCluster , of arity 3 and 2,
respectively. Making use of these predicate symbols it is
possible to represent the cluster structure as a set of atoms.
Definition 4 Given relation R and a functional depen-
dency fd , KC(R,fd) = {Cluster(cl, r, fd) | cl ∈
clusters(R, fd)} ∪ {InCluster(fR(c1, . . . , ck), cl) | ∃t ∈
cl s.t . t[A1] = c1, . . . , t[Ak] = ck}.

Example 4 For our running example, we have that
KC(Employee,fd) =

d5 : Cluster(c1, employee, fd)
d6 : InCluster(fEmployee(john, 70, 20), c1)
d7 : InCluster(fEmployee(john, 80, 20), c1)
d8 : InCluster(fEmployee(john, 75, 20), c1)

Given a relation R and a functional dependency fd of inter-
est, the set KData(R,fd) = KT (R) ∪ KC(R,fd) contains all
the data terms that denote tuples in relation R together with
the information regarding clusters w.r.t. fd .

3.3 Policy Level Knowledge

Given a relation R and a set of functional dependencies
F , we will denote with policies(fd) the set of single-
dependency policies associated with fd ∈ F that are avail-
able. These policies can come from very different sources;
some of them might be imposed on the users by superiors,
they can be legacy from other users or other applications,
they could have been learned in a case by case fashion by
the users (or a system), etc.

As mentioned before, given a relation R and a functional
dependency fd , a policy associated with fd is applied to each
of the clusters in the set of clusters determined by R and fd .
We could say that each tuple in the cluster is analyzed, and
the policy decides whether the tuple, as is or a modified ver-
sion of it, will be included or not in the outcome. Based on
this intuition, we present a formal representation of a policy
and its outcome using first order logic.

We assume that ResultSet is a predicate symbol of
arity 2. Let t be a data term, γ denote a policy,
and r denote relation R to which γ is applied; the
atom ResultSet(t, r, γ) represents the fact that the tu-
ple corresponding to t will be part of the output of ap-
plying γ to relation R. An example of a result set
atom is ResultSet(fEmployee(john, 70, 20), employee, γ1)
which states that tuple t1 is part of the result of applying
policy γ1 to relation Employee.

Definition 5 Given relation R and functional dependency
fd , a policy γ associated with fd can be written as a first
order formula of the form: ∀X.[Cluster(X, r, fd) ∧ φ],
where φ is the formula that describes the tuples that result
from the application of the policy to a cluster.

The following example shows the first order logic encod-
ing of policy γ1 from Example 1.

Example 5 Policy γ1 from Example 1 can be expressed as:
∀X.[Cluster(X, employee, fd) wedge

(∀Z1, Z2, Z3.(InCluster(fR(Z1, Z2, Z3), X) →
(∃Z4, M, Z5.InCluster(fR(Z4, M, Z5), X)∧
(∀Z6, N, Z7.InCluster(fR(Z6, N, Z7), X) ∧ M ≤ N)

→ ResultSet(fR(Z1, M, Z3), employee, γ1))]

In the following we will denote the set of first order for-
mulas that express the policies for a functional dependency
fd with folPolicies(fd).

54

3.4 Meta-policy Level Knowledge
In this framework we allow users to express constraints and
preferences over policies. For instance, suppose two differ-
ent users are working with the instance of relation Employee
from Example 1. When more than one record of salary for
a given employee exists, each user might need to apply a
different policy depending on his application. A bank man-
ager that has a list of employees that are asking for a loan
may decide that, for safety, he will approve the loan if and
only if the minimum salary on record for an employee is
above a certain threshold. This gives rise to a policy that
when applied will, for instance, delete for each employee
all conflicting tuples except the one that yields the minimum
value for salary. On the other hand, a tax inspector analyzing
this same relation might need for each employee the average
salary unless the variance is greater than a certain threshold,
in which case all records should be kept.

These two users have different requirements for the same
data; therefore, the process of deciding which (if any) of
the available policies should be applied must make use of
this information. Given a relation R and a functional de-
pendency fd , we will use KP (R,fd) to denote the set of user
requirements as a set of first order formulas.

Example 6 Consider a setting similar to the one described
above, where a user that is a bank manager is required to
use policy γbank , and a tax inspector is required to use either
policy γtax1 or γtax2. The following formula expresses the
requirements for tax inspectors.
∀U.[User(U, employee) ∧ TaxInspector(U) →

Use(U, employee, γtax1) ∨ Use(U, employee, γtax2)]
Requirements for bank managers can be defined similarly.

This kind of formulas can be defined for each user and rela-
tion. In the following we will refer to the set KP (R,fd) as the
set of meta-policy axioms. These axioms can also make use
of other levels of knowledge. The following example shows
how data and meta-data level knowledge can be used.

Example 7 Consider the following meta-policy axiom for
dependency fd : Name → Salary and relation Employee
expressing that if an employee has more than one salary but
all tax bracket records are consistent, then if the user is a
junior tax inspector, policy γtax2 cannot be applied.
∀U.[User(U, employee) ∧ TaxInspector(U) ∧
Rank(U, junior) ∧ (∃C.Cluster(C, employee, fd) ∧
∀X, Y, Y ′, Z1, Z2.[InCluster(fEmployee(X, Y, Z1), C) ∧
InCluster(fEmployee(X, Y ′, Z2), C) → Z1 	= Z2) →
¬Use(U, employee, γTax2)]]

Preferences about policies can also be defined based on
how long they take to compute, how much inconsistency
they remove, or various characteristics of the data that result
from their application. The following first order formula ex-
presses that for relation Employee, user Joe likes policies
that remove more than 80% of the inconsistency from R:
∃P.[User(joe, employee)∧RemoveInc(P, employee, I)∧

(I > 80) → Likes(joe, P)]
Preferences can be directly specified by the user or

learned by the system that implements the decision process.

In order to be able to have preferences that refer to
particular properties of policies, we assume the exis-
tence of a set of atoms KPProp(fd) that contain prop-
erties of the policies in folPolicies(fd). This set
contains facts such as RemoveInc(γ1, employee, 50) or
MinTimeReq(γ1, employee, 10000), which assert that pol-
icy γ1 removes 50% of the inconsistency, and it requires a
minimum of 10,000 seconds when applied to relation Em-
ployee, respectively. These facts can also be inferred by the
system. For instance, having the specification of the policy
and/or statistics of the behavior of the policy, it is possible
to estimate the minimum time required by the application of
the policy over certain sets of tuples.

Such a system can put together users’ preferences and
policies’ properties to make decisions regarding which poli-
cies can or should be used in different circumstances. Sup-
pose that the user told the system that he can wait a max-
imum of 20 minutes and tolerate no more than 20% of in-
consistency. The system can use this knowledge to support
the application of policies that satisfy these preferences and
discard those that do not.

4. Argumentation-Based IMP Selection
In this section we discuss how to use classical logic argu-
mentation to address the problem of selecting the set of poli-
cies that are suitable for application given a body of knowl-
edge that encodes the data, the policies, and requirements
and preferences over the policies, as described above.

Given a relation R and a functional dependency of interest
to the user, the knowledgebase for the argumentation system
is a fixed set Δ = folPolicies(fd)∪KData(R,fd)∪KP (R,fd),
which contains the set of formulas that combine the informa-
tion from all levels described in the previous section. Argu-
ments in this setting will be constructed for or against using
particular policies. We use the conventional definition of ar-
gument from (Besnard and Hunter 2001): an argument is a
pair 〈Φ, α〉, where Φ (the support) is a minimal consistent
subset of Δ that logically entails α (the claim), which in
general is not an element of Δ.

The meta-policy axioms defined in the previous section
form a particularly important set of formulas to be used in
the construction of arguments for using a particular policy.
The following example shows how to build an argument for
using a particular policy using meta-policy axioms in the
user context.

Definition 6 An argument 〈Φ, α〉 supports the use of a pol-
icy γ by user U in relation R iff α is a formula of the form
Use(u, r, γ). We will call these arguments policy support ar-
guments; a counterargument for a policy support argument
is a policy counterargument.

Policy support arguments and policy counterarguments
can in general be built from users’ requirements and/or pref-
erences. As shown in the previous section, users’ require-
ments and preferences are expressed in meta-policy axioms,
which specify which policies satisfy these criteria and which
do not. Given a policy support argument, a policy counter-
argument for it negates either the claim of a policy support
argument, or part(s) of its support.

55

�{f1, f5, f8, f11}, Use(tom, employee, �tax1)�

 �{f1, f3, f10}, ��

 �{f1, f3, f12, f13, d5, d6, d7, d8}, ��

Figure 1: Argument tree for policy argument
〈{f1, f5, f8, f11},Use(tom, employee, γtax1)〉

Example 8 Let δ be the meta-policy axiom:

∀X.[User(X, employee) ∧ BankManager(X) →
Use(X, employee, γbank)]

Let Φ be the set

{User(joe, employee),BankManager(joe), δ}
Then 〈Φ,Use(joe, employee, γbank)〉 is a policy argument
for γbank. Let α be the formula

∀X.∃P.[User(X, employee) ∧ Rank(X, junior)∧
Restricted(P) → ¬Use(X, employee, P)]

The argument 〈Ψ,¬Use(joe, employee, γbank)〉 is a policy
counterargument for 〈Φ,Use(joe, employee, γbank)〉, with

Ψ = {α,User(joe, employee),Rank(joe, junior),
Restricted(γbank)}

In this example, user Joe is a junior bank manager. As a
bank manager he can use policy γbank over database Em-
ployee, but because of his rank, he is not allowed to use re-
stricted policies. Policies in this setting could be restricted,
for instance, because they hide a lot of data; junior bank
employees might not have enough experience to evaluate the
pitfalls of hiding too much of the inconsistency.

Example 9 Suppose the user inputs the following facts and
preferences to the system:

(f1) User(tom, employee)
(f2) TaxInspector(tom)
(f3) MinTimeRequired(γtax1, employee, 10000)
(f4) RemoveInc(γtax2, employee, 50)
(f5) RemoveInc(γtax1, employee, 80)
(f6) ∀X.[User(X, employee) ∧ TaxInspector(X) →

Use(X, employee, γtax1)]
(f7) ∀X.[User(X, employee) ∧ TaxInspector(X) →

Use(X, employee, γtax2)]
(f8) ∃P.[User(tom, employee) ∧ Likes(tom, employee, P)

→ Use(tom, employee, P)]
(f9) ∃P1, P2, D.[¬Likes(tom, D, P1)∧Likes(tom, D, P2)∧

Use(tom, D, P2) → ¬Use(tom, D, P1)]
(f10) ∃P, T.[MinTimeRequired(P, employee, T) ∧

User(tom, employee) ∧ (T > 6000) →
¬Likes(tom, employee, P)]

(f11) ∃P.[RemoveInc(P, employee, I) ∧ (I > 75) ∧
User(tom, employee) → Likes(tom, employee, P)]

In the following we refer to the formulas presented above by
using their labels instead of the formulas themselves.

Consider our running example instance of relation Em-
ployee and fd : Name → Salary . The data and meta-
data level description is composed of KData(Employee,fd) =
{d1, . . . , d8} where the di’s are formulas from Examples 3
and 4. Let f12 be an instance of meta-policy axiom from
Example 7 for employee Tom, f13 be Rank(tom, junior),
and Δ = {f1, . . . , f11, f12, f13} ∪ KData(Employee,fd) be
our knowledgebase.

Figure 1 shows argumentation tree T for policy argument
〈{f1, f5, f8, f11},Use(tom, employee, γtax1)〉. In order to
evaluate whether or not the root claim is warranted, we use
the judgement function presented in (Besnard and Hunter
2001), which is an adaptation to classical logic argumenta-
tion of the concept of dialectical tree marking (Garcı́a and
Simari 2004). In this example Judge(T) = Warranted ,
since all its attackers are defeated.

The previous example uses a specific warrant criterion
defined for classical logic argumentation. Note that more
complex ways of comparing and analyzing arguments can
be defined; (Besnard and Hunter 2001) presents alternative
judgement functions that consider intrinsic properties of ar-
guments, instead of just the structure of the tree.

Let γ1, . . . , γn be the candidate policies w.r.t. a functional
dependency fd that can be applied to relation R by user U ,
and let Δ = folPolicies(fd)∪KData(r,fd)∪KP (r,fd) be the
corresponding knowledgebase. Given a finite knowledge-
base Δ and a formula α, then, as shown in (Besnard and
Hunter 2008), there is only a finite set of complete argument
trees that can be built from Δ with the root being an ar-
gument whose claim is α, and each of these trees have finite
branching and depth. Based on this result, for each γi the ar-
gument structure 〈P, C〉 for αi = Use(u, r, γi) can be con-
structed, where P is the set of complete argument trees for
αi and C is the set of argument trees for ¬αi. These policy
arguments and argument trees can be computed using a se-
ries of algorithms presented in (Besnard and Hunter 2008).
The basic idea is to compile the knowledgebase Δ based
on the set of minimal inconsistent subsets of Δ, and then
generate arguments from this compilation. Since the cost of
computing a compilation of Δ can be sometimes prohibitive,
(Besnard and Hunter 2008) develops techniques that can be
used to build approximate arguments.

Once we have the argument structures for all candidate
policies, we have to decide whether or not each policy is
suitable for application, given the knowledge contained in
Δ. We want to characterize policies whose application is
supported by Δ; we define support based on cautiously and
boldly warranted policies.

Definition 7 (Cautiously Warranted Policy) A policy γ is
said to be cautiously warranted for user U and relation R,
from the argument structure 〈P, C〉 for Use(u, r, γ) iff ∃T ∈
P s.t. Judge(T) = Warranted , and either C = ∅ or ∀T ′ ∈
C we have Judge(T ′) = Unwarranted .

Definition 8 (Boldly Warranted Policy) A policy γ is said
to be boldly warranted for user U and relation R, from the

56

argument structure 〈P, C〉 for Use(u, r, γ) iff ∃T ∈ P s.t.
Judge(T) = Warranted .

An automated system based on these concepts can rank
the recommendations for policy selection based on how they
are warranted (cautiously first, then boldly); for boldly war-
ranted policies, the ranking can be based on the number
of argument trees in P that are marked as warranted, or
some combination between that number and the number of
marked warranted trees in C. More complex rankings could
make use not only of the structure of trees but also of more
sophisticated ways of comparing arguments. If additional
information is available, for instance a preference or relia-
bility order among formulas in Δ, the system can make use
of this information to rank the policies.

Finally, in the case that after this process no policy is war-
ranted, the user will have to intervene in the end decision.
The system can aid in this manual process by providing de-
tailed explanations of the individual decisions, e.g., showing
the different argument trees built for a policy argument, the
dialectical marking process step by step, etc.

5. Ongoing and Future Work
In this work we have started to explore the incorporation of
classical logic argumentation as a solution for the problem
of determining a suitable set of inconsistency management
policies that may be applied to a particular relation. As part
of ongoing work in this direction, we are currently study-
ing properties that should be imposed on this framework
in order for the resulting system to be well-behaved from
the point of view of the user. The next logical step is then
to implement the argument-based policy selection process
as part of a system that is currently under development for
the use of IMPs, using existing implementations of classical
logic argumentation systems (Efstathiou and Hunter 2008;
2009). Furthermore, we will also investigate the viability
of transforming our framework into a defeasible logic for-
malization, and thereby take advantage of defeasible logic
implementations such as those for ABA (Gaertner and Toni
2007) and DELP (Garcı́a and Simari 2004).

The meta-policy level arguments deal, in the most part,
with user preferences. As future steps we would also like
to investigate how related work in priority and preference
management in abstract argumentation (Amgoud and Cayrol
2002; Modgil 2006) might be applied in this setting.

Independently of how a set of policies has been selected
for application, once this set is determined it is necessary to
decide how to compute the set of tuples that compose the
output of the application of the policies. This problem has
to be considered for two different cases: the single func-
tional dependency case and the multi-dependency case. For
the multi-dependency case, (Martinez et al. 2008) proposes
a sequential application of the different policies and two se-
mantics for the output, based on the assumption of the exis-
tence of a partial order among the functional dependencies.
The same strategy can be applied for the single functional
dependency case if it is possible and sensible to specify an
order among the selected policies. A different semantics of
application of policies in both cases is to regard the set of

selected policies as one composite complex policy (a super
policy). Inevitably, conflicts will arise regarding what tuples
are part of the result of applying the super policy; certain
policies will require some tuples to be deleted or modified,
while others might require to leave the same tuples unmodi-
fied. A mechanism is then necessary for deciding which tu-
ples will be part of the output of a super policy. Once again,
it seems that an argumentative approach may be useful in
solving this problem. Arguments for and against deleting,
modifying, and keeping tuples can be constructed automati-
cally depending on the policies’ specifications, and the com-
position of the output will then be determined by means of a
dialectical process. Part of the ongoing work in this project
is the formalization of such a mechanism.

6. Acknowledgments
The first author of this paper was funded in part by AFOSR
grant FA95500610405, ARO grant W911NF0910206 and
ONR grant N000140910685.

References
Amgoud, L., and Cayrol, C. 2002. Inferring from incon-
sistency in preference-based argumentation frameworks.
Journal of Automated Reasoning 29(2):125–169.
Besnard, P., and Hunter, A. 2001. A logic-based theory of
deductive arguments. Artif. Intell. 128(1-2):203–235.
Besnard, P., and Hunter, A. 2008. Elements of Argumenta-
tion. The MIT Press.
Efstathiou, V., and Hunter, A. 2008. Algorithms for ef-
fective argumentation in classical propositional logic: A
connection graph approach. In FoIKS, 272–290.
Efstathiou, V., and Hunter, A. 2009. An algorithm for
generating arguments in classical predicate logic. In EC-
SQARU, 119–130.
Gaertner, D., and Toni, F. 2007. Computing arguments and
attacks in assumption-based argumentation. IEEE Intelli-
gent Systems 22(6):24–33.
Garcı́a, A. J., and Simari, G. R. 2004. Defeasible logic pro-
gramming: an argumentative approach. Theory and Prac-
tice Logic Programming 4(2):95–138.
Grant, J., and Hunter, A. 2006. Measuring inconsistency
in knowledgebases. J. Intell. Inf. Syst. 27(2):159–184.
Hunter, A., and Konieczny, S. 2005. Approaches to mea-
suring inconsistent information. In Inconsistency Toler-
ance, 191–236.
Lozinskii, E. L. 1994. Resolving contradictions: A plau-
sible semantics for inconsistent systems. Journal of Auto-
mated Reasoning 12(1):1–31.
Martinez, M. V.; Pugliese, A.; Simari, G. I.; Subrahmanian,
V. S.; and Prade, H. 2007. How dirty is your relational
database? An axiomatic approach. In ECSQARU 2007,
103–114.
Martinez, M. V.; Parisi, F.; Pugliese, A.; Simari, G. I.; and
Subrahmanian, V. 2008. Inconsistency management poli-
cies. In KR 2008, 367–376.
Modgil, S. 2006. Hierarchical argumentation. In JELIA
2006, 319–332.

57

