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Abstract

Formal approaches to modelling argumentation provide ways
to present arguments and counterarguments, and to evaluate
which arguments are, in a formal sense, warranted. While
these proposals allow for evaluating object-level arguments
and counterarguments, they do not give sufficient consider-
ation to evaluating the proponents of the arguments. Yet in
everyday life we consider both the contents of an argument
and its proponent. So if we do not trust a proponent, we may
choose to not trust their arguments. Or if we are faced with
an argument that we do not have the expertise to assess (for
example when deciding whether to agree to having a partic-
ular surgical operation), we tend to agree to an argument by
someone who is an expert. In general, we see that for each
argument, we need to determine the appropriateness of the
proponent for it. So for an argument about our health, our
doctor is normally an appropriate proponent, but for an ar-
gument about our investments, our doctor is normally not an
appropriate proponent. In this way, a celebrity is rarely an
appropriate proponent for an argument, and a liar is not nec-
essarily an inappropriate proponent for an argument. In this
paper, we provide a logic-based framework for evaluating ar-
guments in terms of the appropriateness of the proponents.

Introduction
When we consider an argument proposed by someone, we
normally consider both the contents of the argument and the
proponent of the argument. So, for example, if the premises
do not imply its claim, then we may choose to reject the
argument. Similarly, if the proponent of the argument has
no particular expertise in the topic of the argument, then
we may choose to reject the argument. Therefore reason-
ing about the appropriateness of a proponent is an important
step in evaluating an argument.

Our proposal in this paper is to augment representation
and reasoning with arguments at the object-level with a
meta-level system for reasoning about the object-level ar-
guments and their proponents. The meta-level system incor-
porates axioms for raising the object-level argumentation to
the meta-level (in particular to capture when one argument
is a counterargument to another argument), and meta-level
axioms that specify when proponents are appropriate for ar-
guments. The meta-level system is an argumentation system
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in that it supports the construction and comparison of meta-
level arguments and counterarguments. This allows us to in-
tegrate the consideration of both object-level and meta-level
aspects of assessing an argument and its counterarguments
in the same argumentation system.

By formalizing appropriateness criteria as meta-level ax-
ioms, we can, or an agent on our behalf, perspicuously eval-
uate the appropriateness of the proponent for the argument.
So in addition to, or instead of, evaluating those object-level
arguments directly, we may consider the meta-level argu-
ments pertaining to the appropriateness of the proponents.
This also means that when we lack expertise in the area of
the object-level arguments, we can use arguments from ex-
perts in a systematic way. But it also allows us to not auto-
matically acquiesce to an expert’s argument when we have
grounds to doubt either the argument and/or the appropriate-
ness of the expert. This also allows us to weigh up compet-
ing object-level arguments from different experts.

In this paper, we show that a logic-based argumenta-
tion system can be extended with meta-level reasoning
about the appropriateness of proponents. We will build on
the proposal of (Besnard and Hunter 2001), but the ideas
are intended for use with any logic-based proposal (e.g.
(Prakken and Vreeswijk 2002; Amgoud and Cayrol 2002;
Garcı́a and Simari 2004; Dung, Kowalski, and Toni 2006)).

Logical Argumentation
We assume that we can start with a large repository of in-
formation, represented by a set of formulae ∆, from which
logical arguments can be constructed. There is no a priori
restriction on the formulae in ∆, and so ∆ can be inconsis-
tent, and individual formulae in ∆ can be inconsistent.

Given ∆, an argument is a set of formulae that can be
used to prove some claim, together with that claim. Each
claim is represented by a formula. We use a classical (propo-
sitional or first-order) language L with classical deduction
denoted by �. We use α, β, γ, . . . to denote formulae and
∆,Φ,Ψ, . . . to denote sets of formulae.

Definition 1. An argument is a pair 〈Φ, α〉 s.t.: (1) Φ ⊆ ∆;
(2) Φ �� ⊥; (3) Φ � α; and (4) there is no Φ′ ⊂ Φ s.t. Φ′ �
α. We say that 〈Φ, α〉 is an argument for α. We call α the
claim of the argument and Φ the support of the argument.
Also let Claim(〈Φ, α〉) = α and Support(〈Φ, α〉) = Φ.



Example 1. Some arguments from the knowledgebase ∆ =
{p(a),¬q(b),¬∃x, y.r(x, y),∀x.(p(x) → q(x))} are:

〈{p(a),∀x.(p(x) → q(x))}, q(a)〉
〈{¬∃x, y.r(x, y)},∀x, y.¬r(x, y)〉

Some arguments directly oppose the support of others,
which amounts to the notion of an undercut.

Definition 2. For an argument 〈Φ, α〉, an undercut is an
argument 〈Ψ,¬(φ1 ∧ . . . ∧ φn)〉, s.t. {φ1, . . . , φn} ⊆ Φ.

The following definition of a canonical undercut is a
“maximally conservative” undercut in the sense that the sup-
port and claim are the weakest possible for an undercut.

Definition 3. A canonical undercut for an argument 〈Φ, α〉
is an argument of the following form 〈Ψ,¬(φ1 ∧ ... ∧ φn)〉
where Φ = {φ1, .., φn}.

An argument tree describes the various ways an argument
can be challenged, as well as how the counterarguments to
the initial argument can themselves be challenged, and so on
recursively.

Definition 4. An argument tree for α is a tree where the
nodes are arguments such that: (1) The root is an argu-
ment for α; (2) For no node 〈Φ, β〉 with ancestor nodes
〈Φ1, β1〉, . . . , 〈Φn, βn〉 is Φ a subset of Φ1 ∪ · · · ∪ Φn; and
(3) Each child node of a node A is a canonical undercut for
A that obeys condition 2.

The second condition in Definition 4 ensures that each ar-
gument on a branch has to introduce at least one formula
in its support that has not already been used by ancestor ar-
guments. This is meant to avoid making explicit undercuts
that simply repeat over and over the same reasoning pattern
except for switching the role of some formulae (e.g. in mu-
tual exclusion, stating that α together with ¬α ∨ ¬β entails
¬β is exactly the same reasoning as expressing that β to-
gether with ¬α ∨¬β entail ¬α, because in both cases, what
is meant is that α and β exclude each other).

In examples of argument trees, we abbreviate the claim
of each canonical undercut by the � symbol, since it is the
negation of the conjunction of the support of its parent.

Example 2. An argument tree for q(a) is:

〈{p(a),∀x.(p(x) → q(x) ∨ r(x)),¬∃x.r(x)}, q(a)〉
↑

〈{¬∃x.(p(x) → q(x) ∨ r(x))},�〉
We now consider a widely used criterion in argumenta-

tion theory for determining whether the argument at the root
of the argument tree is warranted (e.g. (Garcı́a and Simari
2004)). For this, each node is marked as either U for unde-
feated or D for defeated.

Definition 5. The judge function, denoted Judge, assigns
either Warranted or Unwarranted to each argument tree T
such that Judge(T ) = Warranted iff Mark(Ar) = U where
Ar is the root node of T . For all nodes Ai in T , if there is
child Aj of Ai such that Mark(Aj) = U , then Mark(Ai) =
D, otherwise Mark(Ai) = U .

So the root is undefeated iff all its children are defeated.
So for Example 2, we see that the root of the tree T is de-
feated, and hence Judge(T ) = Unwarranted.

A complete argument tree (i.e. an argument tree with all
the canonical undercuts for each node as children of that
node) provides an efficient representation of the arguments
and counterarguments. Furthermore, if ∆ is finite, there is a
finite number of argument trees with the root being an argu-
ment with claim α that can be formed from ∆, and each of
these trees has finite branching and a finite depth (Besnard
and Hunter 2005).

Meta-level Argumentation
We now consider a meta-level formalization of argumenta-
tion that adapts and extends the proposal by (Wooldridge,
McBurney, and Parsons 2006). We start by formalizing the
meta-language as a classical first-order language in which
formulae of the object language can be encoded. Each term
in the object language is a term in the meta-language, and
each formula in the object language is encoded as a term in
the meta-language. In order to make the presentation clearer,
we use teletype font for examples of predicate symbols in
the meta-language. We assume that the meta-language is
not typed, and therefore the language makes no distinction
between terms that are object-level formulae, and the other
terms: If x is an object-level variable, then x is a meta-level
variable; If x is a meta-level variable, then x is a meta-level
term; If s is an object-level logical, predicate or function
symbol, then s is a meta-level function symbol; and If f is a
meta-level function, and t1, . . ,tn are meta-level terms, then
f(t1, .., tn) is a meta-level term.

Using this set-up, each object-level argument can be rep-
resented as a meta-level term where 〈. . .〉 is treated as a
meta-level function symbol, and {. . .} is treated as a meta-
level function symbol. For example, suppose 〈{b, b → c}, c〉
is an argument using the object-level language, and arg is a
monadic meta-level predicate symbol denoting an argument,
then the following is a meta-level formula.

(F1) arg(〈{b, b → c}, c〉)
We can use meta-level formulae to construct meta-level ar-
guments. For example, the following is a simple argument
at the meta-level.

〈{arg(〈{b, b → c}, c〉)}, arg(〈{b, b → c}, c〉)〉
If we also assume equality, then we have the following
slightly more complicated meta-level argument.

〈{arg(〈{b}, b ∨ c〉), a7 = 〈{b}, b ∨ c〉}, arg(a7)〉
The above example hints at how we can take argumenta-
tion using the object language and mirror it using the meta-
language. To do this, we propose the following meta-level
axioms (M1−M3) that are intended to quantify over object-
level arguments represented as meta-level terms. The first
specifies that if x is an argument, then x is acceptable, the
second specifies that if x is acceptable, then x is warranted,
and the third specifies that if x2 is acceptable and x2 un-
dercuts x1, then x1 is not acceptable. For the axioms, we



assume the meta-level predicate symbols acc for accept-
able argument, wnt for a warranted argument, and ucut for
one argument undercutting another argument. Also, as we
only give examples of universally quantified meta-level ax-
ioms with quantifiers outermost in this paper, we will omit
the quantifiers to simplify the presentation, and we will use
w, ..., z, perhaps with subscript index, as variable symbols.

(M1) arg(x) → acc(x)
(M2) acc(x) → wnt(x)
(M3) acc(y) ∧ ucut(y, x) → ¬acc(x)

From now on, the support of a meta-level argument will
be represented by the labels of the formulae rather than the
formulae themselves. For example, using formulae F1 and
M1, we have the following argument.

〈{F1,M1}, acc(〈{b, b → c}, c〉)〉
Using the meta-level axioms, together with some atoms that
delineate the arguments, and the undercut relationship be-
tween them, we can present an argument tree that uses the
object-level language in an isomorphic argument tree that
uses the meta-language, as is illustrated next.
Example 3. Consider arguments a1, a2, and a3, and the
tree T where a1 is the root, a2 is the child of a1, and a3 is
the child of a2.

(a1) 〈{∀x.p(x) → ∀x.q(x),¬∃x.¬p(x)},∀x.q(x)〉
(a2) 〈{∃x.(¬p(x) ∧ r(x))},�〉
(a3) 〈{∀x.¬r(x)},�〉

This can be represented by the meta-level atoms: (F2)
arg(a1); (F3) arg(a2); (F4) arg(a3); (F5) ucut(a2, a1);
and (F6) ucut(a3, a2). Hence, we get the following argu-
ment tree using the meta-language which is isomorphic with
the argument tree T .

〈{F2,M1,M2}, wnt(a1)〉
↑

〈{F3, F5,M1,M3},�〉
↑

〈{F4, F6,M1,M3},�〉
In general, we have the following result that shows for any

argument tree using the object language there is an isomor-
phic argument tree that uses axioms M1 − M3.
Proposition 1. Let T be an argument tree where the support
and claim of each argument in T uses the object language
and the root of the tree is a1. If ∆′ is a knowledgebase that
contains M1−M3 and exactly the atoms specified as follows
• arg(ai) ∈ ∆′ iff ai is a node in T

• ucut(aj , ai) ∈ ∆′ iff aj is a child of ai in T

then there is an isomorphic argument tree T ′ for wnt(a1)
where the support of each argument in T ′ is a subset of ∆′
and Judge(T ) = Judge(T ′) .

Now we can explore the advantage of considering argu-
mentation using meta-level axioms. Essentially, we can in-
troduce extra criteria into the definition of warrant and/or the
definition of acceptable, and we can then use further meta-
level knowledge to reason with these axioms. In the rest
of this paper, we will consider alternative definitions for ac-
ceptable with a particular focus on formalizing the appropri-
ateness of proponents for arguments.

Logical Formalization of Appropriateness
In order to reason about the appropriateness of proponents
for arguments, we reason about the proponents and their ar-
guments at the meta-level. If proponent p has asserted argu-
ment a (where a is of the form 〈Φ, α〉), the meta-level atom
ast(p, a) represents this. To reason with these ast facts, we
assume a knowledgebase, called a metabase, that is a set of
meta-level formulae. Our approach is based on the follow-
ing simple axiom M4 in our metabase that says if proponent
x has asserted argument y and x is an appropriate proponent
for y, then y is acceptable.

(M4) ast(x, y) ∧ app(x, y) → acc(y)

In the rest of this paper, we will use M4 for our definition
of acceptable instead of M1 given earlier. To use the axiom
M4, we assume that for a particular p and a, if ast(p, a)
holds, then we have ast(p, a) explicitly as a fact in our
metabase. So the flexibility comes in how we define the
app predicate. For this we assume further axioms in our
metabase. Different applications call for different axioms.
But once the core axioms have been fixed, then any argu-
ment a by any proponent in that domain can be consider as
to whether it is an acceptable argument (i.e. whether acc(a)
is undefeated).

Apart from the above axiom M4, plus M2 and M3 given
earlier, we are making no further constraints on what first-
order formulae can appear in a metabase. There is a myriad
of possible axioms we may consider. For a simple example,
we may consider that if x is a liar, then for any argument y,
x is not an appropriate proponent for y as follows.

(M5) liar(x) → ¬app(x, y)

As another example, we may think a celebrity is appro-
priate for any argument they assert as follows.

(M6) celebrity(x) → app(x, y)

So supposing we also have the facts (F7) ast(c, a) and (F8)
celebrity(c), then we get the following argument.

〈{F7, F8,M2,M4,M6}, wnt(a)〉
For many arguments, just being a celebrity is not sufficient
for being an appropriate proponent for an argument. We may
therefore prefer to have the following more restricted axiom
(instead of M6) that restricts the appropriate arguments to
being about “showbiz”. Here, we let topic(a, showbiz)
denote that the topic of argument a is showbiz.

celebrity(x) ∧ topic(y, showbiz) → app(x, y)

While we impose few specific constraints on what is in a
metabase, the aim is to just have formulae in the metabase
that are relevant to either deriving arguments using M4 as a
premise, and wnt(a) as a claim for object-level arguments
a, or to derive rebutting or undercutting arguments to those
arguments, and by recursion undercuts to undercuts.

Example 4. Consider the metabase ∆ with M2, M3,
M4 and M5 plus the following meta-level atoms: (F9)
ast(p1, a1); (F10) ast(p2, a2); (F11) app(p1, a1); (F12)



app(p2, a2); (F13) ucut(a2, a1); and (F14) liar(p2).
From ∆, we get the following argument tree.

〈{F9, F11,M2,M4}, wnt(a1)〉
↑

〈{F10, F12, F13,M3,M4},�〉
↑

〈{F14,M5},�〉
We cannot guarantee that for every argument tree using

the object language, there is an isomorphic argument tree
that uses M2, M3 and M4. Consider Ex. 4, where there are
only object-level arguments a1 and a2, a2 undercuts a1, and
a1 is defeated, but at the meta-level there is 〈{F14,M5},�〉
which allows wnt(a1) to be the claim of the undefeated root
argument. However, we do have the following which identi-
fies an isomorphic subtree obtainable from the metabase.

Proposition 2. Let T be an argument tree where the support
and claim of each argument in T uses the object language
and the root of the tree is a1. If ∆′ is a knowledgebase that
contains only M2, M3 and M4 and exactly the atoms speci-
fied as follows where pi, ai and aj are constant symbols.

• ast(pi, ai) ∈ ∆′ iff ai is a node in T

• app(pi, ai) ∈ ∆′ iff ai is a node in T

• ucut(aj , ai) ∈ ∆′ iff aj is a child of ai in T

then there is an isomorphic argument tree T ′ for wnt(a1)
where the support of each argument in T ′ is a subset of ∆′
and Judge(T ) = Judge(T ′).

Using the State function on a meta-level argument A, we
get a set of ground literals as follows: State(A) = {φ |
Support(A) � φ and φ is a ground meta-level literal}.

Example 5. Consider T given in Example 4. Let the
root be b1, the child of b1 be b2, and the child of b2 be
b3. Applying the state function, to each of these meta-
level arguments, we get the following atoms. State(b1) =
{ ast(p1, a1), app(p1, a1), acc(a1), wnt(a1) }, State(b2)
= { ast(p2, a2), app(p2, a2), acc(a2), ucut(a2, a1),
¬acc(a1) }, and State(b3) = { liar(p2), ¬app(p2, a2) }.

The state of each argument provides a summary of the
essential points arising in the meta-level argumentation.

Properties for Expert Argumentation
In this section, we consider four key criteria, adapted from
(Walton 2006), for delineating good expert argumentation.

Qualified proponent The expert is suitably qualified in the
field of the argument being proposed.

Confident proponent The expert offers sufficient confi-
dence in the argument being proposed.

Best argument The argument by the expert is better than
any competing argument by any expert.

Safe argument No counterargument to the expert’s argu-
ment has been overlooked.

In order to formalize these criteria as general properties
for any argumentation system, we need to introduce the no-
tions of a constellation and a filter. A constellation, de-
noted E, is a general notion that is intended to represent a set

of arguments that can arise either in abstract argumentation
frameworks or in logic-based argumentation. For instance,
in Example 4, let E1 be the set of arguments in the tree, and
let E2 be the set of undefeated arguments (i.e. the root and
leaf). As another instance, consider abstract argumentation
given by a graph (Dung 1995), and so there is a constella-
tion E that contains all the nodes in the graph, and then there
are constellations Ei that are each defined using one of the
notions of extension such as preferred or stable.

Definition 6. Let C be a set of constellations. A filter on C is
a tuple (Q,C,B, S) such that Q, C, B, and S are functions,
and for each E ∈ C, Q(E), C(E), B(E), and S(E) are
each a subset of E.

A filter is a very general definition, but we see in the fol-
lowing definition how a filter can be defined so that Q(E)
is the set of arguments in E that have a qualified proponent,
C(E) is the set of arguments in E that the proponent is con-
fident about, B(E) is the set of counterarguments in E for
putative best arguments in E, and S(E) is the set of coun-
terarguments in E for putative safe arguments in E.

Definition 7. Let C be a set of constellations, and let F =
(Q,C,B, S) be a filter on C. For E ∈ C and A ∈ E,

• A has a qualified proponent in E w.r.t. F iff A ∈ Q(E)
• A has a confident proponent in E w.r.t. F iff A ∈ C(E)
• A is a best argument in E w.r.t. F iff B(E) = ∅
• A is a safe argument in E w.r.t. F iff S(E) = ∅

We say A is a good expert argument in E w.r.t. F iff A
has a qualified proponent, has a confident proponent, is a
best argument, and is a safe argument in E w.r.t. F .

In general, we can define a filter according to a given con-
stellation. So for example, if we are given an abstract argu-
ment graph (Dung 1995), or an extension of it, we may be
able to specify a filter for it so that the above properties hold
(as illustrated next).

Example 6. Consider (d1) “The neighbour says that it is
a mole because it has looked like that for years”, and (d2)
“The oncologist says that it is a melanoma because it has
features not seen in moles”. For the argumentation frame-
work with d1 and d2 such that d1 attacks d2 and d2 at-
tacks d1, consider C = {E1, E2, E3} where E1 = {d1},
E2 = {d2}, and E3 = {d1, d2}. By reading the text of the
arguments we may agree to the filter F in the following ta-
ble: For E1, d1 is confident but not qualified, and there are
no counterarguments for d1 in E1; For E2, d2 is confident
and qualified, and there are no counterarguments for d2 in
E2; And for E3, d1 is confident but not qualified, d2 is qual-
ified and confident, d2 is a counterargument for d1 being a
best argument (but not vice versa), and d1 is a counterargu-
ment for d2 being a safe argument (and vice versa). So d2 is
a good expert argument in E2 w.r.t. F . There are no other
constellations in C with a good expert argument.

Ei Q(Ei) C(Ei) B(Ei) S(Ei)
E1 = {d1} ∅ {d1} ∅ ∅
E2 = {d2} {d2} {d2} ∅ ∅

E3 = {d1, d2} {d2} {d1, d2} {d2} {d1, d2}



The above example illustrates that for abstract argumen-
tation, when arguments are atomic, it is difficult to define
filters systematically. When the arguments are atomic, there
is no structure to the notation of them that describes the ex-
pertise of the proponent, the confidence the proponent has
in the argument, etc., and therefore a filter is an extra piece
of knowledge that has to be provided by the user. What we
really want is to be able to define a filter systematically for
a general class of constellations and then ascertain whether
the properties for good expert argumentation hold.

We also need to consider the inter-play between the choice
of constellation and filter, and the notion of extension, in
finding good expert arguments. For instance, we may want
to find the arguments with appropriate proponents before
taking the counterarguments into account (so, in the exam-
ple, if we select E2, we reject the argument d1 by the unqual-
ified neighbour before considering the remainder). How-
ever, we do need to also ensure that the appropriateness of
those proponents is undefeated.

To address both the need to be systematic in defining fil-
ters and the need to consider counterarguments (for the con-
tent and proponent of each argument) in this process, we use
our meta-level axiomatization of appropriateness.

Formalization for Expert Argumentation
We now consider two axioms that allow for reasoning about
the appropriateness of experts for an argument. The axiom
M7 specifies that a proponent for an argument is appropriate
if the topic of the argument is in the scope of the role of the
proponent. For this, we use the meta-level predicates role
(for proponent x has role y) and scope (for the scope of role
y covers topic w).

(M7) topic(z, w) ∧ role(x, y) ∧ scope(y, w)
→ app(x, z)

Example 7. From the following meta-level atoms (where gp
denotes “general/family practitioner”) (H1) ast(p1, a1);
(H2) topic(a1, infarction); (H3) role(p1, gp); and (H4)
scope(gp, infarction); we get the following argument.

(n1) 〈{H1,H2,H3,H4,M2,M4,M7}, wnt(a1)〉
For our next axiom M8, we assume that in some situa-

tions it is possible to have two arguments, where one is not
undercutting nor rebutting the other but accepting one re-
quires rejecting the other. For example, consider the fol-
lowing two informal arguments. Here we may choose to
define arguments concerning the prescription for a patient to
be competing if the prescription is different and so here these
arguments are competing with each other. For this, we use
the meta-level predicate competing for when arguments y1

and y2 in some sense conflict.

• The patient has high blood pressure therefore we should
prescribe betablockers

• The patient has high blood pressure therefore we should
prescribe diuretics

The axiom M8 states that an argument is not acceptable
when there is a competing argument by a proponent who is

more qualified. For this, we assume that proponents can be
ordered according to their qualifications. For example, a car-
diologist is more qualified than a gp for any arguments con-
cerning cardiology, and a gp is more qualified than a layper-
son with respect to any arguments concerning medicine. For
this, we use the meta-level predicate outrank (for propo-
nent x2 being higher ranked than proponent x1).

(M8) ast(x2, y2) ∧ acc(y2) ∧ competing(y1, y2)
∧ outrank(x2, x1) → ¬app(x1, y1)

Example 8. Continuing Example 7, we add the follow-
ing meta-level atoms to ∆: (H5) ast(p2, a2); (H6)
topic(a2, infarction); (H7) role(p2, cardiologist);
(H8) scope(cardiologist, infarction); (H9)
competing(a1, a2); and (H10) outrank(p2, p1). From
this, we get the following undercut for n1.

(n2) 〈{H5,H6,H7,H8,H9,H10,M4,M7,M8},�〉
Hence, the tree T2 with n1 as root and n2 as child is such
that Judge(T2) = Unwarranted.

Even though an argument has been proposed by an ap-
propriate expert, there may be object-level arguments that
undercut it (as illustrated next).
Example 9. Continuing Example 8, we add the fol-
lowing meta-level atoms: (H11) ast(p1, a3); (H12)
topic(a3, infarction); and (H13) ucut(a3, a2). Hence, we
get the following.

(n3) 〈{H3,H4,H11,H12,H13,M3,M4,M7},�〉
Hence, the tree T3 with n1 as root and n2 as child to n1 and
n3 as child to n2 is such that Judge(T3) = Warranted.

So by using axioms M2, M3, M4, M7, and M8, in our
metabase, we can analyse object-level arguments and their
object-level counterarguments, as well as analyse the appro-
priateness as experts of the proponents of those arguments.

Now we provide a systematic way of defining a filter for
when we have a metabase that includes M2, M3, and M4.
Definition 8. For an argument tree T constructed from a
metabase including M2, M3, and M4, let E be the set of
arguments occurring in T , and let F = (Q,C,B, S) be the
filter obtained as follows.

Q(E) = {A ∈ E | Claim(A) � ∃x, y.app(x, y)}
C(E) = {A ∈ E | Claim(A) � ∃x, y.ast(x, y)}
B(E) = {A ∈ E | Claim(A) � ∃x, y.¬app(x, y)}
S(E) = {A ∈ E | Claim(A) � ∃y.¬acc(y)}

This filter is motivated as follows: A meta-level argument
A is in Q(E) when there is an object-level argument a and
a proponent p s.t. app(p, a) ∈ State(A), and hence A is
an argument for p being a sufficiently qualified expert for
proposing a; A meta-level argument A is in C(E) when
there is an object-level argument a and a proponent p s.t.
ast(p, a) ∈ State(A) and hence A is an argument for p be-
ing confident in proposing a; A meta-level argument A is in
B(E) when there is an object-level argument a and a propo-
nent p s.t. ¬app(p, a) ∈ State(A) and hence A is a coun-
terargument for p being a sufficiently qualified expert for
proposing a; And a meta-level argument A is in S(E) when
there is an object-level argument a s.t. ¬acc(a) ∈ State(A)
and hence A is a counterargument for a being acceptable.



Example 10. Continuing Ex. 9, with the filter given in Def-
inition 8, consider E1 containing all the arguments (i.e. E1

= {n1, n2, n3}), and E2 containing all the undefeated argu-
ments with a1 as a term (i.e. E2 = {n1}). Since Q(E1) =
C(E1) = {n1, n2, n3}, B(E1) = {n2}, and S(E1) = {n3},
there is no good expert argument in E1 w.r.t. F . In contrast,
Q(E2) = C(E2) = {n1}, and B(E2) = S(E2) = ∅, and so
n1 is a good expert argument in E2 w.r.t. F .

This example illustrates how undefeated arguments can
be good expert arguments, and the following formalizes how
warranted arguments are good expert arguments.

Proposition 3. Let ∆ be the knowledgebase containing only
axioms M2, M3, M4, M7, and M8 and ground atoms.
Let T be an argument tree constructed from ∆ with the
claim of the root being wnt(a) for some object-level ar-
gument a. Let E = {A is a node in T | Mark(A) =
U and a is a constant symbol in Claim(A)} and F is given
by Definition 8. So Judge(T ) = Warranted iff wnt(a) is a
good expert argument in E w.r.t. F .

This result ensures that for an object-level argument,
wnt(a) is not a good expert argument if there is an unde-
feated object-level counterargument to a or an undefeated
counterargument to the proponent of a being appropriate.

We can generalize the result by adding further axioms to
the metabase. For instance, the following axioms give fur-
ther criteria for when a proponent for an argument is not ap-
propriate, where vestedint(x, z) denotes proponent x has
vested interests in topic z, and inexp(x, z) denotes propo-
nent x is inexperienced in topic z.

(M11) topic(y, z) ∧ vestedint(x, z) → ¬app(x, y)
(M12) topic(y, z) ∧ inexp(x, z) → ¬app(x, y)

Also we can generalize the above result by adding axioms
to ∆ to allow inferring some of the meta-level atoms. For
example, assuming a partial ordering over roles, and then by
transitivity, and the role atoms, infer the outrank atoms.
Similarly, the topic, role, and scope predicates can in-
volve subsidiary axioms (e.g. we may axiomatize so that if
argument a is on the topic of cancer, and a is on the topic
of surgery, then a is on the topic of cancer surgery).

Discussion
In this paper, we have made the following contributions:
(1) A framework for meta-reasoning about object-level ar-
guments that allows for the presentation of richer criteria for
determining whether an object-level argument is warranted
and these criteria can draw on meta-information about the
arguments including the proponents and provenance of the
arguments; and (2) An axiomatization using this framework
for reasoning about the appropriateness of expert proponents
for arguments, and shown how it can conform to some pro-
posed properties for good expert argumentation.

Our proposal also offers a potentially interesting logic-
based representation and reasoning framework for capturing
the argument schemes of (Walton 2006). Furthermore, by
representing them as meta-level axioms, competing schemes
may be used by constructing and comparing arguments that
incorporate the axioms representing the schemes.

Because we want to draw out the object-level and meta-
level features of argumentation, in particular to infer per-
spicuous reasons to accept or reject an argument in terms of
the content of the (object-level) argument and of the propo-
nent of the argument, we have not proposed a graph-based
approach with atomic arguments. Nonetheless, propos-
als such valued-based argumentation frameworks (Bench-
Capon 2003), potentially offer illuminating semantics for
axiomatizations and/or filters in our framework.

Whilst, our proposal has been presented using a particular
existing proposal for argumentation for both the object-level
and the meta-level, it would be straightforward to use alter-
native proposals for argumentation (e.g. (Garcı́a and Simari
2004; Amgoud and Cayrol 2002; Dung, Kowalski, and Toni
2006)), perhaps harnessing encodations from (Wooldridge,
McBurney, and Parsons 2006; Wyner and Bench-Capon
2007). Note, also that the object-level arguments do not nec-
essarily have to confirm to the same argumentation system
as the meta-level. For example, we could obtain the object-
level arguments using defeasible logic, and then reason with
them at the meta-level using classical logic (or vice versa).
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