
Skip Tree Graph: a Distributed and Balanced
Search Tree for Peer-to-Peer Networks

Alejandra González Beltrán, Paul Sage and Peter Milligan
School of Electronics, Electrical Engineering and Computer Science

Queen’s University Belfast, BT7 1NN Belfast, UK
Email: {a.gonzalez-beltran, p.sage, p.milligan}@qub.ac.uk

Abstract—Skip Tree Graph is a novel, distributed, data struc-
ture for peer-to-peer systems that supports exact-match and
order-based queries such as range queries efficiently. It is based
on skip trees, which are randomised balanced search trees equiv-
alent to skip lists and designed to provide improved concurrency.
Skip tree graphs constitute an extension of skip graphs enhancing
their performance in both, exact-match and range queries.
Moreover, skip tree graph maintains the underlying balanced
tree structures using randomisation and local operations, which
provides a greater degree of concurrency and scalability.

I. INTRODUCTION

Recent research in structured Peer-to-Peer (P2P) systems
has provided distributed data structures that satisfy several
desirable properties for large-scale environments, such as
decentralisation, scalability, load balancing, self-stabilisation,
fault-tolerance, efficient and guaranteed searches, support for
dynamic addition and deletion of nodes. These P2P systems
implement a dictionary abstract data type, allowing for the
insertion, deletion and searches of keys stored in the nodes of
the P2P network. Naturally, these solutions have followed the
steps of dictionary implementations in the sequential domain,
which include hash tables, tries, binary search trees, 2-3 trees,
AVL trees, skip lists and B-trees. P2P systems based on
hashing provided a Distributed Hash Table (DHT) [11], [10]
functionality in which the order of the data stored is not
preserved. Consequently, the implementation of order-based
queries such as range queries over these DHT structures is not
directly supported. Support for range queries is important for,
for instance, data management and grid information services,
applications that can use P2P systems as a routing substrate.
In this paper, the focus is on improving the efficiency of
the searches considering P2P applied to grid environments.
Some systems have layered range query schemes over DHT
systems [2], [5]. An alternative approach has involved building
P2P systems based on tries or different types of search trees.
They provide a Distributed Search Tree (DST) functionality,
allowing for order-based searches. Examples of these systems
are: P-Grid [1], skip graph [3], SkipNet [6], Hyperring [4],
BATON [7].

Skip graph (SG) and SkipNet [3], [6] were presented inde-
pendently and are basically the same distributed data structure
based on skip lists [9]. Nodes are connected as a collection
of circular lists, constituting a series of overlapping skip lists.
Each node requires only logarithmic state to store information

about its neighbours. Key order is preserved and thus, it is
possible to perform queries on ordered data, such as range
queries or nearest neighbour searches.

By using a skip tree [8] as a starting point, which is a
structure equivalent to a skip list created for improving concur-
rency over skip lists, this paper presents a new structured P2P
network with DST functionality called skip tree graph (STG).
STGs extend SGs by increasing the nodes’ state with what
is defined as a conjugate node. These extra links arise from
considering the path traversed by SG’s searches and adding
that information to the nodes’ state during the insertion pro-
cedure. Even with the addition of conjugate information, the
nodes’ state remains logarithmic in the number of nodes. This
paper shows that although there is a small increase in the cost
of the insertion procedure, two different schemes for exact-
match search allow a significant performance improvement
with respect to SG search. This increment is not significant
for relatively stable grid environments, where the benefit is
gained on very fast search operations. Moreover, STG is based
on balanced trees using local operations, which implies it
allows a greater degree of concurrency [8] in the insertion and
deletion of nodes with respect to other balanced-tree structures
that require expensive restructuring procedures to maintain the
balance [7]. The range queries are also known to outperform
the correspondent SG operation.

II. RELATED WORK

Structured P2P networks based on (consistent) hashing, such
as Chord [11] and CAN [10], provide a DHT functionality.
They support efficient key lookups but lack locality, implying
that order-based queries are not directly supported. Some
systems have layered an order-preserving scheme over DHTs
[2], [5]. Andrzejak and Xu [2] used a space-filling curve on top
of CAN and P-tree [5] used a B+-tree on top of Chord. These
systems architectures use the DHT as a routing substrate and
delegate responsibility about order-based queries to the upper
layer scheme.

On the other hand, DSTs systems are based on order-
preserving structures and, therefore, directly support queries
where key order is relevant. P-Grid [1] is based on a trie
structure, skip graph [3] on a skip list, Hyperring [4] on a
deterministic 2-3 tree and BATON [7] on an AVL tree.

Most of these DST systems are based on balanced search
trees, which can be classified into two groups depending on the

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1881

set of local rules they apply [8]: 1) B-trees and its derivatives
which use split and join operations, and 2) AVL-trees and red-
black trees which use rotations.

As BATON [7] organises the nodes as an AVL-tree, it
is a member of the second group and there is a unique
path between every two nodes. To provide fault-tolerance, the
structure adds alternative paths between every pair of nodes
by maintaining sideways routing tables for each peer. These
tables include links to selected nodes on its left and right
hand sides at the same level, making the BATON structure
very rigid. Each peer joining or leaving the system causes a
restructuring process (a rotation in the AVL-tree) that affects
several nodes in the structure (it is not a local operation).
This restructuring process affects the possibility of several
concurrent insertions or deletions, and to avoid inconsistencies
a mutual exclusion mechanism must be implemented. This
mechanism would inhibit the insertion of nodes, making the
network not easily scalable.

Skip lists belong to the first group of balanced trees because
they are equivalent to skip trees [8], which use split and join
operations. Moreover, in the skip tree these operations are
local, meaning that a small set of tree-nodes are accessed and
the balancing is achieved through randomisation. Therefore,
SG and STG also belong to this first group and their operations
are also local. It will be shown that STG outperforms SG in the
exact-match search operation, while providing the advantages
of the underlying tree structure.

III. SKIP TREE GRAPH STRUCTURE

This section introduces skip tree graphs, a distributed ex-
tension of skip trees [8] that provide an efficient model for
P2P networks, preserving the order of the stored keys. This
extension is performed in a similar way to which SGs [3]
extend skip lists [9], i.e. incorporating redundancy to build
a robust decentralised system. As skip trees are isomorphic
to skip lists [8], it can be shown that STGs are isomorphic
to SGs. However, STGs allow for important performance
improvements on the operations with respect to SGs.

In order to introduce the new overlay structure, an overview
of the previous related randomised data structures (skip lists,
skip graphs and skip trees) is presented. All these structures
consider the elements from a totally ordered domain (K, <K),
where K is the set of keys and <K a total order over K.
Skip lists maintain a list with all the keys at the bottom
level, and build increasingly sparse lists on upper levels by
choosing a key on the immediate lower level with probability
p (see Fig. 1(a)). Then, a series of random choices is made
for each key to determine to which levels it belongs. By
using the higher levels, it is possible to traverse the keys
quickly. Searching for a node with a particular key takes an
average search time of O(log1/p n) [9]. Skip graphs extend
skip lists by maintaining multiple doubly-linked lists at each
level, resulting in a set of overlapping skip lists (see Fig. 2(a)).
This redundancy eliminates single points of failure and hot
spots, and allows the system to work efficiently in dynamic
and distributed P2P systems [3]. The keys identify the peers

in the network. The random choices made for each key k are
denoted by a random word m(k) from an alphabet Σ whose
cardinality is the reciprocal of the probability, i.e. 1/p. This
word is referred to as membership vector [3] and is potentially
infinite but practically its length is O(log1/p n). The key k
belongs to particular list at level � depending on the �-length
prefix of m(k), denoted m(k)|�.

Messeguer presented a skip tree as a search tree structurally
equivalent to a skip list [8], in a concurrent approach. The
idea behind its construction is to incorporate into the structure
information about the path followed by the sequential search
algorithm on skip lists. Skip trees group together consecutive
keys at the same level of the skip list while satisfying the
search tree property. When no keys satisfy the search tree
property, the tree-node contains no keys and it is called a
white node. All the leaves have the same depth as in a B-tree
but the number of keys in a node is unbounded and follows a
random distribution. Consequently, a skip tree is an unbounded
random B-tree [8]. Fig. 1(b) shows the skip tree isomorphic
to the skip list in Fig. 1(a). Searches take logarithmic time in
the number of keys, as in the equivalent skip list.

A set of transformations is applied to a skip tree to use it
as the underlying structure in a STG. These transformations
are:

1) each key is repeated into the left child from its maximum
level until reaching the leaves of the skip tree are reached;
this first step ensures that a level in the skip tree can be
built from the information in the immediate lower level
(Fig. 3(a))

2) white nodes are eliminated while preserving the levels of
the nodes (Fig. 3(b))

3) due to the first transformation step, left children point
to nodes with the same key and these edges can be
eliminated (tree-nodes with the same key represent the
same node in the P2P network) and edges to sibling nodes
are added (Fig. 3(c))

4) a root node is determined by, if necessary, extending the
membership vector of the upper-level keys so that they
can be uniquely identified and conjugate keys, as defined
below are identified; the membership vector of the root
identifies the whole skip tree (Fig. 3(d))

Two keys are conjugate if their membership vectors share
the same prefix of length � but differ in the symbol at position
� + 1. If k1 and k2 are two keys that share the same prefix
m(k1)|� = m(k2)|� in a skip tree, they are at the same level
�. If � is the maximum level of a key k, k will appear in
level � + 1 as a conjugate key of the first key on its right,
by following the order <K and considering the list circular
at level �. In the figures, keys are identified by larger squares
and their conjugate keys are identified by smaller squares. Fig.
3(d) shows the transformed skip tree identified by the word
000, the word of its root with key 10, being 40 a conjugate
key at that maximum level.

It was mentioned that SGs are equivalent to a collection of
skip lists. Similarly, STGs result from overlapping a collection
of (transformed) skip trees. As skip trees are isomorphic to

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1882

(a) Skip list (b) Skip tree

Fig. 1. Two isomorphic structures: (a) a skip list, and (b) its equivalent skip tree

(a) Skip graph (b) Skip tree graph

Fig. 2. A skip graph and its equivalent skip tree graph

2010 30 40 50 60
00

10 40

00 00

30 4010
00 01 00

10 01 00 11 11

(a)

2010 30 40 50 60
00

10 40

00 00

30 4010
00 01 00

10 01 00 11 11

2

(b)

(c) (d)

Fig. 3. Skip tree transformations

skip lists and the transformation steps introduced before are all
reversible, transformed skip trees can be obtained by starting
with a skip list. Given a SG, its corresponding STG is obtained
by superimposing the transformed skip trees obtained from
the set of skip lists. Consequently, STGs are isomorphic or
structurally equivalent to SGs. Fig. 2(b) displays the STG
equivalent to the SG in Fig. 2(a).

Given that each key represents a peer in the P2P network, it
is possible to define the conjugate at level � of a peer u, which
is denoted �-conjugate(u). Thus, the �-conjugate(u) is a peer v
that satisfies that m(v)|�−1 = m(u)|�−1 and m(v)|� �= m(u)|�,
for all � ≥ 1.

By definition, the bottom level contains all the nodes in
both structures and level � of the STG contains the same
information as levels � and � − 1 in the SG. In particular,

each list at level � of a STG contains all the information from
the list at level �− 1, differing from the corresponding list in
SG because it is augmented with conjugate nodes.

A. Skip Tree Graphs Properties

Given the isomorphism between SGs and STGs, demon-
strated with the set of transformations, it is clear that the
height of the STG follows the same probability distribution
as the height of a SG. Thus, on average the height will be
O(log1/p n) [3].

The number of neighbours also coincides with its SG
counterpart, being on average O(log1/p n).

The number of conjugate nodes of a given node u at level
� is the number of subsequent nodes v until the neighbour
of u at level � + 1 is found (considering the list circular).
Then, if m(v)�+1 denotes the symbol at position � + 1 of
m(v), m(u)�+1 �= m(v)�+1. The probability that the symbols
at position � + 1 differ is q = 1 − p. If G is the random
variable representing the number of conjugate nodes, then G
follows a geometric distribution, i.e. Prob[G = k] = qk−1p.
Consequently, the number of conjugate nodes on average is 1

p .
Each node stores information about the neighbours and the

set of conjugates at each level. It results that the state of a
node is on average: O(log1/p n) + O(1/p log1/p n) = O((1 +
1/p) log1/p n), i.e. O(log n) for a fixed p.

IV. SKIP TREE GRAPH ALGORITHMS

The search algorithms for STG achieve better perfor-
mance than SG algorithms by exploiting the information
about conjugate nodes. This section presents two schemes for
exact-match search in skip tree graphs: searchWCOp and
searchTreeOp, which are compared to searchOp, the SG
search scheme [3]. The insertion algorithm is also described

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1883

and compared with the respective one for SG. Each peer
maintains at each level one neighbour in each direction,
denoted neighbour[dir][�] in the pseudocode, and a set of
conjugate nodes, which in the algorithms are accessed through
different functions explained below.

A. Exact-match Search Operation with Conjugates

The search with conjugates operation searchWCOp (see
Algorithm 1) is similar to searchOp as it retrieves the node
containing the searched key if it exists in the structure, or
the largest key that does not overshoot it otherwise. The
search can start at any node and it will remain to one side
of the result (either to the left or to the right). It differs from
searchOp because conjugate nodes are selected whenever
they can provide a shorter route to the destination node.

At level �, if the neighbour in the search direction exists and
does not overshoot the searchKey (verified with the method
checkOrder(dir, a, b, c) that returns true if the order of its
parameters is a, b, c going from dir to the opposite direction)
the search operation continues through this neighbour in the
same level. Otherwise, the best conjugate node at level � that
does not overshoot the searched key k is selected, by using the
method getBestConjWOO (direction, �, k). If such a conjugate
exists, the search operation is forwarded to it, continuing at
a lower level. If there is neither an appropriate neighbour nor
conjugate node, the procedure remains in the current node at a
lower level. When continuing at a lower level, if possible, two
levels down are skipped. The reason is that level � contains the
same information as levels � and � − 1 in the corresponding
SG, and it is not necessary to traverse all the levels.

As searchWCOp only uses information about conjugate
nodes, when these provide a better skip to the destination, the
upper bound for the cost of searchOp is also valid. Then, the
search operation searchWCOp on skip tree graph takes on
average O(log n) messages and hops. It is assumed that each
message takes at most unit time (one hop) to be delivered,
while internal processing at a peer takes no time (same model
as in [3]).

An example in which searchWCOp reduces the cost
with respect to searchOp can be seen in Fig. 2(b), when
starting the search from node 20 (whose maximum level is
2) and searching key 60. As 20 has no neighbours at level
2, searchOp goes down a level and then follows the right
neighbour link to 50, which then moves to the right arriving
to 60 in 2 steps. On the other hand, searchWCOp follows
the conjugate link 60 while going down 2 levels, reaching 60
at the bottom level in 1 step.

B. Tree-Based Exact-match Search Operation

In a STG, it is possible to search for a particular key by
following the underlying tree structure. While searchWCOp
does not overshoot the searched key (as in searchOp),
searchTreeOp operation (see Algorithm 2) may jump from
one side to the other of the searched key. The search can
start at any node at it will start at its maximum level. Each
node v at each level � is responsible for an interval of the

Algorithm 1 searchWCOp in node v

1: upon receiving 〈 searchWCOp, startNode,
searchKey, level 〉:

2: if (searchKey = v.key) then
3: send〈 foundOp, v 〉 to startNode ; return
4: end if
5: if (v.key < searchKey) then
6: dir ← R
7: else
8: dir ← L
9: end if

10: while (level ≥ 0) do
11: nextNode← neighbour[dir][level]
12: if ((nextNode �= ⊥) ∧

checkOrder(dir, v.key, searchKey, nextNode.key))
then

13: send〈 searchWCOp, startNode, searchKey, level
〉 to nextNode ; return

14: end if
15: nextNode← getBestConjWOO (dir,
16: level, searchKey)
17: if (level >= 2 ∧ (nextNode �= ⊥ ∨ dir = L)) then
18: nextLevel← level − 2
19: else
20: nextLevel← level − 1
21: end if
22: if (nextNode �= ⊥) then
23: send〈 searchWCOp, startNode, searchKey,

nextLevel 〉 to nextNode
24: return
25: else
26: level← nextLevel
27: end if
28: end while
29: if (level < 0) then
30: send〈 notFoundOp, v 〉 to startNode
31: end if

key space of the form (u.key, v.key], where u is: 1) the left-
conjugate node with largest key at level �, if it exists; or 2) the
right-conjugate node with smallest key at level �, if it exists;
or 3) the right neighbour at level �, if it exists. In this way,
the whole key space is divided up at each level between the
node and its connections (conjugates and neighbours). When
a node receives a searchTreeOp message, it checks if the
key belongs to its interval. In that case, it continues the search
at the immediate lower level. Otherwise, it finds which is the
conjugate responsible for storing the searched key, using the
method getConjWKey.

The searchTreeOp cost is related to the average height of
the skip tree, given that at each step it goes down a level. Con-
sequently, the expected cost for searchTreeOp is O(log n) in
the number of messages and cost. The experimental evaluation
section will show that, although the three search schemes are

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1884

bounded by logarithms, searchTreeOp outperforms the rest
of the schemes, having the smallest constant of proportionality.

To show an example of the improvement of the
searchTreeOp with respect to searchOp, searching the key
60 from the node 10 is considered in the skip tree graph of
Fig. 2(b). As 10 has no neighbours at level 3 and searchOp
goes down a level, and after that follows the right neighbour
edge to 40, which then goes down two levels, moves to the
right arriving at 50 and again to the right to reach 60 at
level 0 sending a total of 3 messages. On the other hand,
searchTreeOp finds out that node 10 is responsible for the
(circular) interval (40, 10] which contains 60 and goes down
up to level 1 in which 60 is a conjugate. Consequently, it
reaches the destination forwarding only one message.

C. Insert Operation

A new node that wants to join the network needs to know a
node already in the network, i.e. an introducer. Similarly to a
join operation in a SG, the new node u will insert itself in one
linked list at each level until it finds itself in a singleton list
at the topmost level [3]. However, the insertion procedure in
STGs needs also to consider conjugate nodes. For the alphabet
{0, 1}, the new node has to be not only added as a neighbour in
one list at each level but also as a conjugate node in one list at
each level. In general, conjugate nodes will be determined by
storing the path traversed at each level to find the appropriate
neighbour at the next level. When searching for the right
neighbour, the conjugates are the nodes traversed until the
right neighbour is found. The new node u will be added as a
conjugate to the first of these nodes traversed. When searching
for the left neighbour, the nodes traversed will be conjugate
nodes of the new node u.

It might happen that the right neighbour at level � + 1
coincides with the right neighbour at level �. This means
that no conjugate nodes were found in the traversal and
consequently the new node is not added as conjugate node.
If that is the case, a special message to insert u as a conjugate
at the next level is required. This message will be forwarded in
the right direction from u.neighbour[R][�] onwards to search
for a �-conjugate(u). The list at level � is again considered
circular. Let c be such a conjugate node, if it exists. Then, u
can be added as a conjugate of c. Only if there is no such
c after traversing the whole list, u is not added as conjugate
node in any list.

When setting a new neighbour node, the existing conjugate
nodes may need to be split and transferred to the new
neighbour. This split operation is as in a skip tree [8].

D. Repair Mechanism

In the presence of node or link failures, a repair mechanism
is required to reorganise the structure, healing the disruptions.
This mechanism is similar to the one proposed for SGs [3],
with the addition of consideration of conjugate nodes. SG
implements two types of operations: checkNeighOp to verify
neighbours at each level and zipperOps that merge two lists at
a level, if the constraints with the immediate lower level list are

Algorithm 2 searchTreeOp in node v

1: upon receiving 〈 searchTreeOp, startNode,
searchKey, level 〉:

2: if (searchKey = v.key) then
3: send〈 foundOp, v 〉 to startNode ; return
4: end if
5: while level ≥ 0 do
6: nextLevel← level − 1
7: leftConj ← getLargestConj(L, level)
8: rightConj ← getSmallestConj(R, level)
9: leftNeigh← neighbours[L][level]

10: if leftConj �= ⊥ then
11: nodeRange← (leftConj.key, v.key]
12: if searchKey ∈ nodeRange then
13: goDown← TRUE
14: end if
15: else if rightConj �= ⊥ then
16: nodeRange← (rightConj.key, v.key]
17: if searchKey ∈ nodeRange then
18: goDown← TRUE
19: end if
20: else if leftNeigh �= ⊥ then
21: nodeRange← (leftNeigh.key, v.key]
22: if searchKey ∈ nodeRange then
23: goDown← TRUE
24: end if
25: end if
26: if goDown then
27: nextNode← v
28: level← nextLevel
29: else
30: nextNode← getConjWKey(searchKey, level)
31: if nextNode �= ⊥ then
32: send〈 searchTreeOp, startNode, searchKey,

nextLevel 〉 to nextNode
33: else
34: level← nextLevel
35: end if
36: end if
37: end while
38: send〈 notFoundOp 〉 to startNode

violated. For STG, these operations are extended to record the
conjugate nodes and split them when setting new neighbours,
if necessary. The split operation is as in the insertion algorithm.

V. EXPERIMENTAL EVALUATION

STG was implemented and evaluated under event-driven
simulations. The experiments show the performance improve-
ment of the two novel exact-match search operations for
STG compared to SG’s exact-match search operation. This
improvement is achieved with only a slight increment in the
insertion cost.

The number of peers n was varied from 10 to 2000 (more
points were generated close to the origin to appreciate the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1885

logarithmic behaviour). The keys identifying each peer where
generated uniformly at random from the key space [0, 105]. As
STG is a randomised data structure, its cost and performance
results have to be considered on average on a number of
structures generated for each fixed number of peers. The
results presented next are based on 1000 STGs structures
generated for each value of n. For each STG, 1000 exact-
match search operations of each scheme were performed. Each
exact-match search operation started at a random peer in the
STG network and searched for a random key in the key space.

Non-linear regression was used to fit the data. Fig.
4(a) shows the cost of the three schemes for exact-match
search operation: searchOp (for SG), searchWCOp and
searchTreeOp (for STG). All the schemes have the same
logarithmic asymptotic performance, supporting the analytical
results. However, the constants accompanying the logarithms
differ. Costs are compared by percentage differences, valid for
a large enough value of n. In the case of searchWCOp, the
number of messages and hops is reduced by approximately
12 % with respect to searchOp. Moreover, searchTreeOp
outperforms the rest of the schemes, reducing by half the
constant accompanying the logarithm of searchOp, i.e. with
an improvement of approximately 50 %. These improvements
are achieved at the expense of increasing the insertion oper-
ation cost, shown in Fig. 4(b). The increment corresponding
exclusively to finding the conjugates is around 20 % and in
total (when using the cost effective searchTreeOp) is around
15 %.

VI. CONCLUSION

This paper contributes to the ongoing research on providing
structured P2P systems with the functionality for performing
complex queries, such as range queries, in a efficient way. A
novel distributed and balanced tree data structure called skip
tree graph was introduced. This new P2P system is based
on skip trees, which is a concurrent approach for skip lists
using local operations. This avoids the expensive restructuring
required for other balanced-trees based P2P networks. Skip
tree graphs constitute an extension of skip graphs by storing in
the nodes information about the path traversed by the searches
in the form of conjugate nodes. It was also shown that there
exists an isomorphism between the two structures. The state of
the nodes continues to be logarithmic in the number of nodes.
The expected costs for insertion operation and exact-match
searches have also logarithmic asymptotic performance. How-
ever, exact-match search schemes were presented reducing the
skip graph search cost up to its half.

ACKNOWLEDGMENT

The authors are grateful to APG QUB for funding the
work of A. González Beltrán, Prof. Gabarró for bringing
Messeguer’s skip trees to our attention and Dr Garcı́a for
useful comments on this work.

REFERENCES

[1] K. Aberer, “P-Grid: A Self-Organizing Access Structure for P2P Infor-
mation Systems,” in Proceedings of CoopIS, Trento, Italy, 2001.

0 500 1000 1500 2000
Number of Nodes

0

2

4

6

8

10

C
os

t (
M

es
sa

ge
s

an
d

H
op

s)

searchTreeOp
searchWCOp
searchOp

(a) Search Cost

0 500 1000 1500 2000
Number of Nodes

0

10

20

30

40

50

60

In
se

rt
io

n
C

os
t (

M
es

sa
ge

s
an

d
H

op
s)

STG with searchTreeOp
Skip Graph
STG with searchOp

(b) Insert Cost

Fig. 4. Trade-off between improvement in search cost and slight increase in
insert cost

[2] A. Andrzejak and Z. Xu, “Scalable, Efficient Range Queries for Grid
Information Services,” in Proceedings of IEEE P2P, 2002, pp. 33–40.

[3] J. Aspnes and G. Shah, “Skip Graphs,” in Proc. 14th ACM-SIAM SODA,
Baltimore, MD, USA, 2003, pp. 384–393.

[4] B. Awerbuch and C. Scheideler, “The Hyperring: A low-congestion
deterministic data structure for distributed environments,” in Proc. 15th
ACM/SIAM SODA, 2004.

[5] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram, “Query-
ing Peer-to-Peer Networks Using P-Trees,” in Proc. WebDB, Paris,
France, June 2004.

[6] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman,
“SkipNet: A Scalable Overlay Network with Practical Locality Proper-
ties,” in Proc. of USITS, Seattle, WA, USA, 2003.

[7] H. V. Jagadish, B. C. Ooi, and Q. H. Vu, “BATON: A Balanced Tree
Structure for Peer-to-Peer Networks,” in Proceedings of the 31st VLDB
Conference, Trondheim, Norway, 2005.

[8] X. Messeguer, “Skip Trees: an alternative data structure to Skip Lists in
a concurrent approach,” Informatique Théorique et Applications, vol. 31,
no. 3, pp. 251–269, 1997.

[9] W. Pugh, “Skip Lists: A probabilistic alternative to balanced trees,”
Communications of the ACM, vol. 33, no. 6, pp. 668–676, June 1990.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker,
“A Scalable Content-Addressable Network,” in Proceedings of ACM
SIGCOMM, USA, 2001, pp. 161–172.

[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions,” in Proceedings of the ACM SIGCOMM, 2001, pp. 149–160.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1886

