
Jane Cleland-Huang · Orlena Gotel ·
Andrea Zisman Editors

Software and Systems
Traceability

Foreword by Anthony Finkelstein

123



Editors
Jane Cleland-Huang
DePaul University
School of Computing
243 S. Wabash Avenue
60604 Chicago
USA
jhuang@cs.depaul.edu

Orlena Gotel
New York
NY 10014
USA
olly@gotel.net

Andrea Zisman
City University
School of Informatics
London
United Kingdom
a.zisman@soi.city.ac.uk

ISBN 978-1-4471-2238-8 e-ISBN 978-1-4471-2239-5
DOI 10.1007/978-1-4471-2239-5
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011941143

© Springer-Verlag London Limited 2012
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Requirements and Relationships: A Foreword

Software engineering is a pessimistic discipline. The glass is always half empty
rather than half full. Not surprising really, we are hardened to the grind of improving
quality, painstakingly testing and, never quite, eliminating bugs. Critical review is
of the essence. We know there is “no silver bullet”.

Traceability in software development must however, pessimism set aside, be
marked as a success. We have characterised the problem. We have produced indus-
trial strength tools that relieve a substantial part of the practical difficulties of
managing traceability relations across different documents. We have arrived at
a communal consensus regarding the principal notations to be used in software
development, realised in UML, and characterised the relationships amongst these
notations. These are all significant practical advances.

Research has gone further. One of the key challenges of traceability has been the
return on investment. In essence only a few of the traceability links prove to be of
value, that is are subsequently needed in support of a change. It is difficult to predict
in advance however, which these might be. Given that establishing, documenting
and managing traceability manually is expensive, the balance of costs and bene-
fits is delicate one. It has been shown, convincingly in my view, that off-the-shelf
information retrieval techniques will, with some judicious tuning, yield reasonable
traceability links. I expect this, once industrially hardened and deployed, to drive
cost reduction.

I guess with all this positivity you can sense a “but” coming . . . and you are not
wrong. While we have taken steps to advance the state of the art, the nature of the
requirements challenge has shifted. The context has altered. Agile development has
altered the way that much software is developed (just in case there is any remaining
doubt, it is no longer a phenomenon of the programming fringe – it is mainstream
software engineering). But agile development is really only a particular manifesta-
tion of the underlying trends in which it is becoming clear that it is cheaper to build
software quickly, and change it if it fails to satisfy the emerging requirements, than
to undertake the discipline of trying to get it exactly right at the outset. This is partly
a technical change, the product of improved tools, environments and programming
languages, but may also reflect changing business environments, that move at a pace
set by a dynamic globalised economy. So we start with more change, indeed with

v



vi Requirements and Relationships: A Foreword

constant change, not simply as an unwanted consequence of the inexorable laws of
software evolution but embraced as the essence of software engineering.

More change means a greater need for traceability support. Of course, if you have
adopted an agile approach you could argue that there is less to trace to, after all you
have in large part eschewed documentation. This, I believe, is an error because it
ignores the consequentially altered nature of the requirements task. I will elaborate
below.

We have tended to view requirements as a discrete task in which we engage with
the customer (a sort of shorthand for stakeholders) on an occasional basis. We are
not, any longer, so naive as to believe that requirements elicitation is a one-shot
process, but we still understand it to be something that happens from time to time,
for clearly specified purposes.

Change changes things. Requirements engineering becomes instead a “rela-
tional” process in which the name of the game is continuing customer engagement.
In other words, the developer tries to ensure that their application or service grows
and adapts in sync with, ideally at the leading edge of, the customer’s business. You
could say the software is a manifestation of the relationship achieved through contin-
uous interaction and immersion in the business. Managing this ongoing relationship
and the associated knowledge of the domain is difficult and demands, I suggest,
a different approach on the part of the software developer and a reimagining of
requirements elicitation, specification and validation.

So, where does requirements traceability fit into this picture? It provides the
information management support for these complex multi-threaded customer rela-
tionships and the technical substrate for rapid system evolution. It allows the
developer to understand and account for the consequences of ongoing system
change in terms of the business. It is the core of a new type of “customer relationship
management” system.

I wish I had a better sense of what the new technical demands that follow from
the change of view, sketched above, might be. Many of the colleagues, whose work
makes up this volume, are better equipped than I am to do this.

Of course, there remains a hard core of large systems development characterised
by strong safety and other constraints and bound to the co-development of com-
plex hardware where the agility sketched above has limited impact. Defence and
other mission-critical systems exemplify this. There is a continuing need to address
traceability in this setting and in particular to support navigation of the complex
relationships that arise. Of particular interest, and relevant in the light of the analysis
above, are regulatory and compliance processes that engage a demanding framework
of requirements and shifting body of stakeholders. This still remains at the edge of
what can be practically accomplished and will require further research. This book
sheds strong light on the challenges.

I am certain that the technical achievements marked in this volume are the basis
for addressing these new frontiers for software and systems engineering and that
requirements traceability will be at the forefront of engineering research. Not so
pessimistic, really.

London, UK Anthony Finkelstein




