
Domain Concept-Based Queries for Cancer Research Data Sources

Alejandra González Beltrán, Anthony Finkelstein
Department of Computer Science, University College London

London, UK
{a.gonzalezbeltran,a.finkelstein}@cs.ucl.ac.uk

J. Max Wilkinson
NCRI Informatics Initiative

London, UK
max.wilkinson@ncri.org.uk

Jeff Kramer
Deparment of Computer Science, Imperial College London

London, UK
j.kramer@imperial.ac.uk

Abstract

Biomedical scientists generate, access, validate and in-
terpret multiple distributed and heterogeneous data sets. Se-
mantic annotations for these data sets are paramount for ex-
changing and using the data, and take the form of concepts
from a domain ontology. ONIX is a platform that facilitates
the access to cancer research data resources and one of its
goals is to interoperate with caGrid – a grid computing in-
frastructure for data sharing. In this paper, we present the
ONIX approach to building a semantic layer with support
for concept-based queries, which exploit semantic annota-
tions of resources, focusing on caGrid resources. The main
contributions of this work are: the automatic generation of
OWL ontologies from resources’ metadata; concept-based
query construction and validation; rewriting and transla-
tion from concept-based queries to the caGrid query lan-
guage.

1. Introduction
The UK National Cancer Research Institute (NCRI) In-

formatics Initiative is developing a platform called ONIX,
the ONcology Information eXchange, to facilitate access to
distributed data resources generated from cancer research.
ONIX aims to interoperate with, and is based on compo-
nents from, the caGrid infrastructure [13], which is part
of the cancer Biomedical Informatics Grid (caBIG®)1 pro-
gramme2.

caGrid is a metadata-aware grid environment equipped
with three core services: an XML schema repository, vo-
cabulary services and a metadata registry [13]. The data

resources available on the Grid, in the form of caGrid
data services, follow a Model-Driven Architecture approach
that uses a UML representation of their structure [11].
The Global Model Exchange (GME) is the core service
managing a registry of XML Schemas corresponding to
UML models in the Grid. The Enterprise Vocabulary Ser-
vice (EVS) manages controlled vocabularies and ontologies
across the infrastructure. The NCI thesaurus (NCIt) is the
main vocabulary used. The third core service is the cancer
Data Standards Repository (caDSR), which manages com-
mon data elements (CDEs) derived from annotating UML
models with concepts from NCIt. These specialised mod-
els are called domain information models [11]. A CDE is
an atomic unit of metadata whose meaning is well-defined –
through mappings to concepts of a domain ontology, which
provide unanmbiguous definitions – and can be reused for
the benefit of interoperability. Specifically, CDEs in caDSR
have information about the mappings that associate UML
classes, UML attributes and UML associations with one or
more concepts from the NCIt ontology [11].

Each caGrid data service exposes a caGrid/Common
Query Language (CQL) interface, which is backed by a
CQL query processor [13]. This processor translates CQL
queries to the native query language of the resource and
converts the results. CQL is a simple, though not very ex-
pressive, object-oriented query language. It is based on the
syntactic and structural information of the underlying ob-
ject model of the data resources. Thus, caGrid data services
build a structural abstraction layer over the data sources.
Each data service exposes metadata, which is independently
maintained by the three main services: EVS, caDSR and
GME described above. While CQL allows for queries to a

1https://cabig.nci.nih.gov
2Note: a glossary of terms is included as an appendix, listing all the acronyms used and their meanings.

single resource, DCQL (for distributed CQL) is a extended
language for multiple resources. A Federated Query Proces-
sor (FQP) service deals with DCQL queries, translates them
into CQL and submits them to target resources. Then, FQP
retrieves the results for each independent resource.

Though caGrid is based on a rich metadata infrastruc-
ture, it does not support semantic queries nor data integra-
tion: two crucial problems for cancer researchers. Semantic
queries are queries based on the relationships between en-
tities rather than simply their syntax or structure. Data in-
tegration entails combining data from different resources to
provide a unified view of the data.

In this paper, we present an approach that extends the
caGrid infrastructure with a semantic layer that takes ad-
vantage of Semantic Web technologies by building ontolog-
ical representations of the metadata. This approach deals
with both problems – semantic queries and data integration.
It has been been designed within the ONIX system so that
non-caGrid resources can potentially be incorporated in the
semantic layer, as long as these data resources provide well-
annotated information models. In particular, in this paper
we show the components required to support high-level and
descriptive semantic queries, expressed using domain con-
cepts, for caGrid resources. By high-level query, we refer
to a query that can be written without specific details on
the structure of the target resource. By descriptive query,
we mean queries that provide the criteria for the desired
data rather than the procedure to find the data. This works
presents the theoretical framework and details on the pro-
totype implementation for semantic queries. Moreover, our
approach has also been applied for the problem of data inte-
gration over caGrid data services, and we refer the reader to
[12] for more details.

This paper is organised as follows. Below, we present
a motivating example for domain concept-based queries,
which highlights the importance of this functionality. In
Section 2, we outline the approach and present the system
architecture to support semantic concept-based over caGrid.
Sections 3 and 4 describe the two main components of the
system. We analyse related work in Section 5 and conclude
the paper in Section 6.

Motivating Example. To show the utility of our ap-
proach, we consider a motivating example given from the
perspective of a biomedical scientist. Single Nucleotide
Polymorphisms (SNPs) occur throughout the genome and
have been shown to have associations with, and on rare
occasion cause, a particular disease. SNPs can be charac-
terised by their polymorphism, their location or where they
exist within a gene. The gene Transforming Growth Fac-
tor Beta 1 (TGFB1) has been implicated in many diseases,
including cancer. A scientist is interested in examining the

effect of all or certain SNPs present in the gene of TGFB1.
To start, it is necessary to identify all the SNPs available for
TGFB1.

As a target resource, the scientist can use the cancer
Bioninformatics Infrastructure Objects (caBIO) caGrid data
service [11]. Figure 1 shows the part of the caBIO UML
model version 4.0 relevant for the query. Currently in ca-
Grid, the scientist must know the structure of target re-
sources in order to build a query to run against them.
They must manually determine possible, or rational, con-
nections within the model and/or between different mod-
els. In caBIO, it is necessary to determine the path asso-
ciating a SNP with a gene. Figure 1 shows that the SNP
class is associated with RelativeLocation, which is a gen-
eralisation of MarkerRelativeLocation and GeneRelative-
Location. In other words, RelativeLocation is the parent
class of the other two. In UML, associations are inherited
and thus, the class SNP is associated with the two chil-
dren classes: MarkerRelativeLocation and GeneRelativeLo-
cation. In turn, the GeneRelativeLocation class is associated
with the class Gene. Consequently, SNPs associated with
genes can be retrieved by considering the following path
between the UML classes: SNP → GeneRelativeLocation→ Gene. Listing 1 shows the resulting CQL query, where
the path of associations and attribute conditions have to be
stated. Thus, this query is procedural rather than descrip-
tive. At the time of writing, this query cannot be written
using the caGrid portal3, because inherited associations are
not considered in the query builder.

Figure 1: Part of the caBIO 4.0 model
We note that while UML models are annotated with con-

cepts from NCIt, these concepts are not used for query
construction, as shown above. Our aim is to allow sci-
entists to build queries based on domain concepts, rather
than on syntax and structure of the resources. Consider-
ing NCIt4 concepts, SNPs correspond to the concept Sin-
gle Nucleotide Polymorphism (C18279), and genes corre-

3http://cagrid-portal.nci.nih.gov, version 2.2
4We are considering the current OWL version of NCIt, namely version 9.02d.

spond to the concept Gene (C16612). From now on, we
will refer to the concept Gene as GeneConcept, to dis-
tinguish it from the Gene class. Additionally, the sym-
bol of a gene should have concept Gene Symbol (C43568).
Consequently, a scientist can think much more naturally
about the query as: find objects annotated with Sin-
gle Nucleotide Polymorphism that have an association
with objects annotated with GeneConcept, which in turn

have an attribute whose concept is Gene Symbol. In the
rest of the paper, we present several processing steps to
translate from a concept-based query, similar to the natu-
ral language expression above, into a CQL query. We will
revisit the motivating example in each step as a way of ex-
emplifying the process, which involves, among other things,
finding possible paths between classes and will be auto-
mated.

Listing 1: CQL Query
<ns1 : CQLQuery xmlns : ns1 =” h t t p : / / CQL. caBIG / 1 / gov . n i h . n c i . c a g r i d . CQLQuery”>
<ns1 : T a r g e t name=” gov . n i h . n c i . c a b i o . domain . SNP”>

<ns1 : A s s o c i a t i o n name=” gov . n i h . n c i . c a b i o . domain . G e n e R e l a t i v e L o c a t i o n ” roleName=
” r e l a t i v e L o c a t i o n C o l l e c t i o n ”>
<ns1 : A s s o c i a t i o n name=” gov . n i h . n c i . c a b i o . domain . Gene ” roleName =” gene”>
<ns1 : A t t r i b u t e name=” symbol ” p r e d i c a t e =”EQUAL TO” v a l u e =”TGFB1”/>

</ ns1 : A s s o c i a t i o n >
</ ns1 : A s s o c i a t i o n >

</ ns1 : Ta rge t>
</ ns1 : CQLQuery>

2. Approach and System Architecture
Supporting concept-based queries, as in the example, in-

volves reasoning over resources’ metadata. Semantic Web
technologies deal with knowledge representation and rea-
soning. Reasoning refers to the process of making explicit
knowledge that is otherwise implicit in the given represen-
tation [1]. The Web Ontology Language (OWL)5 is a W3C
recommendation for knowledge modeling, which has for-
mal foundations in Description Logics (DLs) [1]. To be able
to reason about metadata, we propose building a semantic
layer within ONIX, on top of the current caGrid structural
layer. This semantic layer is based on OWL ontological rep-
resentations of the caGrid information models, which offer
an integrated view of their syntax, structure and semantics.
The approach can be applied to other systems as long as they
deal with annotated UML models.

Figure 2 shows the extension of the caGrid service-
oriented architecture with novel semantic services (shaded).
In particular, in this paper we will present two components:

OWL generation service : in charge of developing OWL
ontologies from information models (annotated UML
models)

Semantic query service : responsible for rewriting, trans-
lating and processing semantic queries at different
levels of abstraction with CQL/DCQL as a target lan-
guage.

We have developed prototype implementations of these
components, using the OWLAPI6 and the Pellet reasoner7.

The OWL generator uses as metadata provider either a par-
ticular caGrid data service, given its URL, or the caDSR
service, given the project name under which the model is
registered in caDSR. The semantic query prototype supports
queries over single caGrid data services, which are trans-
formed to CQL queries.

Figure 2: System Architecture

3. OWL generation from caGrid Information
Models

UML and OWL are representation languages designed
to address the needs of object-oriented development and
semantic web, respectively. While both languages share
some common constructs (e.g. the class element, general-
isations, associations), there are significant differences be-

5http://www.w3.org/TR/owl-ref/
6OWLAPI,http://owlapi.sourceforge.net/
7Pellet, http://clarkparsia.com/pellet/

tween them. UML is a visual language with no formal
underpinnings, while OWL has formal semantics based on
DLs [1]. Additionally, UML uses a Closed World Assump-
tion (CWA) but OWL uses an Open World Assumption
(OWA)[1]. Basically, the distinction lies in the treatment
of absence of information: what is not known to be true in
CWA is assumed to be false, but no assumptions are made
in OWA about its truth value.

There have been several approaches converting UML
into OWL and vice versa. A review is presented in Section
5. All the approaches map UML classes to OWL classes,
UML attributes to datatype properties and UML associa-
tions to object properties. To the best of our knowledge,
semCDI [15] is the only UML-to-OWL conversion over ca-
Grid models: it adopts the previously mentioned mapping
but also considers annotated UML classes. A NCIt concept
is mapped to an OWL class and the UML class/concept re-
lationship is modeled as subsumption, i.e. the UML class as
a subclass of the concept class. However, only isolated con-
cepts from NCIt are included in the ontology and no other
annotations of UML constructs are considered (e.g. annota-
tions for UML attributes).

semCDI representation has some issues. If NCIt is
imported, using subsumption for UML class/concept re-
lationship may result in an inconsistent ontology. This
is due to the UML classes annotated with disjoint NCIt
concepts. For example, in caBIO 4.0, the RelativeLoca-
tion class has the concepts Location, Relative Value and
Chromosome, where the first two subcasses of Proper-
ties or Attributes in NCIt and Chromosome is subclass
of Anatomic Structure System or Substance, and these two
higher-level concepts are disjoint. If UML attributes are
modeled as datatype properties, as in semCDI, their anno-
tated concepts could only be included as OWL annotations
properties, which are used to represent metadata on OWL
constructs, but are not considered in reasoning. Thus, in
semCDI representation, it is not possible to reason about
UML attributes’ annotations.

For the reasons stated above, in our annotated-UML-to-
OWL transformation, UML attributes are mapped to OWL
classes and the UML construct/concept relationship is mod-
eled as an object property. We follow a modular approach
for the development of the ontologies, which preserves NCIt
semantics and it is described below.

We generate two alternative information model ontolo-
gies, following the same pattern, according to the reasoning
needs for semantic queries or data integration support. For
example, for data integration, we include cardinality restric-
tions to represent multiplicity of UML associations [12].
Below, we focus on the generated ontology for semantic
queries and will show that it cannot contain cardinality re-
strictions. The generated ontologies model services’ meta-

data but can also be extended to contain instance data as
individuals, as shown in [12].

NCIt semantics. To perform semantic queries and data in-
tegration, it is required to derive knowledge from NCIt onto
the information models. This can be achieved by importing
NCIt and using reasoning. However, NCIt is a very large on-
tology, which covers the entire biomedical domain. In terms
of performance, reasoning over the whole NCIt is expensive.
Each information model is only concerned with a subset of
the knowledge represented by NCIt. Thus, for efficiency
and succinctness, we build NCIt modules using the method-
ology from [9], which balances the trade-off between the
properties of safety, coverage and economy. Safety ensures
that the semantics of imported concepts is not changed [9].
Coverage refers to importing everything that is relevant and
economy stipulates that only what is relevant for the cho-
sen terms should be imported [9]. It is observed that using
the relevant module from NCIt for a particular information
model is enough for formulating all possible concept-based
queries over it: due to the coverage criterion, if a concept
has been used to annotate the information model, it will be
present in the extracted module.

Semantic Query ontology. We developed an ontology
defining the semantic query vocabulary. This is a combi-
nation of UML constructs and semantic annotations. We in-
cluded OWL classes called UMLClass and UMLAttribute to
represent the base class for all UML classes and attributes,
respectively. The object property hasConcept is used to
model UML construct/NCIt concept relationship, hasAs-
sociation to represent UML associations between classes,
hasAttribute to represent a relationship between a UML-
Class and a UMLAttribute. The property hasAssociation
is defined as transitive to allow inference of paths between
classes. We also included a datatype property hasValue to
represent the relationship between a UMLAttribute individ-
ual to its data value.

Data Service ontology. To generate a data service on-
tology, we use its metadata to extend the semantic query
ontology (see Figure 3). All UML classes and UML at-
tributes are defined as subclasses of UMLClass and UMLAt-
tribute, respectively. The properties hasConcept, hasAsso-
ciation and hasValue link classes and attributes as explained
above, using existential relationships. Each UML associa-
tion is defined as subproperty of hasAssociation. Inherited
associations are represented explicitly (e.g the OWL class
SNP is associated with the OWL class GeneRelativeLoca-
tion through the object property relativeLocation, where rel-
ativeLocation is a subproperty of hasAssociation). Conse-
quently, we have built a hierarchy of properties deriving
from hasAssociation, a transitive property. To ensure de-
cidability, OWL-DL imposes that no cardinality restrictions

8http://www.w3.org/TR/owl-ref/#OWLDL

can be placed on transitive properties or their inverses or any
of their subproperties8. Thus, we use existential restrictions
and build a different ontology for data integration [12], if
cardinality restrictions between individuals needs to be rep-
resented.

Figure 3: Extract from caBIO 4.0 ontology

Motivating Example Revisited. Considering the moti-
vating example, we build the ontology from caBIO data ser-
vice metadata (see Figure 3). A DL-query is a query speci-
fied as an OWL class description. Using Manchester OWL
(MOWL) Syntax [8], the DL-query denoting SNPs associ-
ated with Genes whose symbol is ”TGFB1” is as shown in

Listing 2. This is how the query written by the scientist
looks like in our system. We note that this query is similar
to the natural language expression presented when introduc-
ing the example in Section 1, especially when contrasted
with the CQL query from Listing 1.

This DL-query is expressed just using concepts from
NCIt and, in contrast to the CQL query, it does not explic-
itly state the path to follow from a SNP to a Gene. The
advantage of building the query using concepts from NCIt
is that these are concepts from the biomedical domain the
scientist is familiar with. A benefit of MOWL Syntax is that
uses infix notation (hasConcept some GeneConcept) rather
than prefix notation of DLs (∃ hasConcept.GeneConcept).
Thus, it is closer to the natural language query from Sec-
tion 1. This query is high-level and descriptive: the query
is not based on the structure of the target resources and it
does not specify the procedure to find the data, i.e. the path
between UML classes, but the criteria for the desired data.
Even though building a DL-query requires some training,
this process could be guided through an appropriate user in-
terface. Additionally, a controlled natural language layer
could be built on top of the semantic layer.

In the next section, we will show the different steps re-
quired to translate from this type of DL-query to one or more
corresponding CQL queries (if more than one path can be
followed between two classes).

Listing 2: Concept-based query given by the user
hasConcep t some S i n g l e N u c l e o t i d e P o l y m o r p h i s m

and h a s A s s o c i a t i o n some (hasConcep t some GeneConcept and
h a s A t t r i b u t e some (hasConcep t some Gene Symbol and hasVa lue v a l u e ”TGFB1 ”))

4. Query Rewriting and Translation
In order to translate from DL-queries to D/CQL, we

follow several steps involving query rewriting and transla-
tion. There are approaches translating DL-queries [14] and
SPARQL queries [4] into object-oriented languages. Be-
low, we describe an approach similar to [14], converting
DL-queries into CQL, via a formalism for object-queries
called the Monoid Comprehension Calculus (MCC) [6]. Us-
ing MCC ensures support for optimisations and easy treat-
ment for other target languages (including future versions
of CQL). Peim et al [14] require that an acyclic set of def-
initions is defined to be able to rewrite a DL query through
an expansion algorithm. In contrast, we support DL-query
rewriting through justifications of entailments [10] within
the information model ontology.

4.1. DL Query Validation and Rewriting
To be valid, the DL-query must entail an OWL Class C,

subclass of UMLClass, which is the type of the objects to
be retrieved. As the data service ontology only contains ter-

minology expression but no individuals, we first eliminate
the expressions using datatype properties but keep track to
which DL expression they are associated with, obtaining:

Q ≡ hasConcep t some S i n g l e N u c l e o t i d e P o l y m o r p h i s m
and h a s A s s o c i a t i o n some (hasConcep t some GeneConcept
and h a s A t t r i b u t e some (hasConcep t some Gene Symbol)

such that SNP ⊑ Q. Given Q, which uses NCIt terms, we
will rewrite it into a DL-query only using terms of a specific
data service. Our rewriting method obtains queries that rep-
resent a subset of Q and uses justifications of the entailment
SNP ⊑ Q, in the case of the example. A justification is a
minimal set of axioms sufficient to produce an entailment
[10]. Kalyanpur et al [10] present algorithms for comput-
ing all the justifications of an entailment in OWL-DL on-
tologies. While justifications were designed to improve un-
derstandability of ontologies and debugging, we use them
to derive the paths connecting UML classes in the model.
Below, we analyse the rewriting process with respect to the
motivating example.

Motivating example revisited. Classifying the ontology
using an OWL-DL reasoner, such as Pellet [16], SNP is in-
ferred as a subclass of Q. The explanation set [10] for the
subsumption SNP ⊑ Q includes the axioms presented in
Listing 39.

Then, we filter the explanation set so that axioms using
only NCIt concepts are not included. In this case, axioms
from caBIO are 1, 4 and 9 above. We combine left-hand-
side expressions with right-hand-side expressions. Then, we
incorporate expressions using datatype properties that were
eliminated in the validation step. The rewritten DL-query is
given in Listing 4.

Through this query rewriting process, from a domain-
concept-based query we obtained a DL-query using con-

cepts from the caBIO ontology. We note that the reasoning
process (using explanations) inferred that the SNP class is
associated with the Gene class through the GeneRelative-
Location class (see Listing 4), while this was not explicitly
stated in the original DL-query (see Listing 2).

It is noted that, as there might be several explanations
for an entailment, a single original DL query may result
in several rewritten DL queries (an eventually several CQL
queries). These will be following different paths through
the associations on the model and thus, each rewritten query
will have distinct meaning. The user will be presented with
the alternative rewritten query to use, ie. which association
path within the model is of interest.

Listing 3: Explanation set
1 SNP ⊑ r e l a t i v e L o c a t i o n C o l l e c t i o n some G e n e R e l a t i v e L o c a t i o n
2 r e l a t i v e L o c a t i o n C o l l e c t i o n ⊑ h a s A s s o c i a t i o n
3 h a s A s s o c i a t i o n i s t r a n s i t i v e
4 G e n e R e l a t i v e L o c a t i o n ⊑ gene some Gene
5 gene ⊑ h a s A s s o c i a t i o n
6 Gene symbol ⊑ hasConcep t some Gene Symbol
7 Gene ⊑ hasConcep t some GeneConcept
8 SNP ⊑ hasConcep t some S i n g l e N u c l e o t i d e P o l y m o r p h i s m
9 Gene ⊑ h a s A t t r i b u t e some Gene symbol

10 Q ≡ h a s A s s o c i a t i o n some (hasConcep t some GeneConcept)

Listing 4: DL-query using only elements from caBIO ontology
SNP and r e l a t i v e L o c a t i o n C o l l e c t i o n some (G e n e R e l a t i v e L o c a t i o n and gene some (Gene

and h a s A t t r i b u t e some Gene symbol and hasVa lue v a l u e ”TGFB1 ”)

4.2. DL query to MCC Translation

The monoid comprehension calculus (MCC) is a for-
mal framework expressing collection types to support object
queries optimizations [6]. Object queries involve collections
(e.g. sets, lists, bags), whose semantics can be captured by
monoid comprehensions (MC). In this paper, we provide in-
formal definitions of the entities we use here and refer the
reader to [6] for more details.

A monoid of type T is an algebraic structure defined by
the pair (⊕, Z⊕) where ⊕ ∶ T ×T → T is an associative fun-
cion and Z⊕ is the left and right identity of ⊕. A collection
monoid is a monoid for a collection type (e.g. lists or bags)
and must also specify a unit function building a singleton
collection.

A MC takes the form ⊕{e ! q}, where ⊕ is a monoid
operator called the accumulator, e is the header and q =
q1, . . . , qn, n ≥ 0 is a sequence of qualifiers. A qualifier
can take the form of a generator, v ← e′ with v a range vari-
able and e′ an expression constructing a collection, or a filter

predicate. The symbol ⊎ denotes the accumulator for bags.
As bags are unordered collections of values that may have
duplicates, ⊎ is commutative but not idempotent [6]. For
example, ⊎{x ! x ← {1,2}} is the monoid comprehension
representing the bag {{1,2}}.

In the table below, we present the basic transformations
from Manchester OWL (MOWL) Syntax to MCC, where
Dp denotes the domain of property p and A′ denotes the
transformation of expression A. This transformation is sim-
ilar to [14]. After applying the transformation, the MC is
normalised following Fegaras’ algorithm [6] to obtain an
unnested MC expression.

MOWL Syntax MCC
p some C ⊎{d ! d←Dp, c← C ′}
A and B ⊎{a ! a← A′, b← B′}
A or B (⊎{a ! a← A′}) ⊎ (⊎{b ! b← B′})

Motivating example revisited. Using the above transfor-
mation over the example query and the normalisation algo-
rithm, we obtain the following MCC expression:

9⊑ represents subclass and subproperty relation

Listing 5: MCC expression corresponding to the DL-query
⊎ \{ s ! s ← SNP , r ← s . r e l a t i v e L o c a t i o n C o l l e c t i o n , r ← G e n e R e l a t i v e L o c a t i o n ,

g ← r . gene , g ← Gene , a ≡ g . symbol , a ← Gene symbol}

4.3. MCC to CQL
As mentioned in the introduction, CQL is the common

query language used across caGrid data services. The cur-
rent version of CQL allows users to retrieve objects of a
single class, indicating predicates on its attributes, associa-
tions and predicates on the associated classes. In this sec-
tion, we will show the translation from a MCC expression
to CQL. Considering the motivating example, the transla-
tion converts the MCC of the previous section (Listing 5) to
the CQL query in the introduction (Listing 1).

The main components of a CQL query are10:

Target : indicating the type of objects to be retrieved
Attribute : indicating a restriction for an attribute of a par-

ticular object (both the Target or an object referred
through an association)

Association : indicating a related object

Additionally, CQL can contain Query Modifiers, indicat-
ing to return a ’count only’ result, the whole objects, a sin-
gle Distinct Attribute or a selection of Attribute Names for
the target object. These modifiers cannot be expressed in
the DL query. The translation from DL-query to CQL, via
MCC, will consider retrieving full objects as default. Before
submitting the resulting CQL query, the user will be asked
to set the query modifiers.

CQL has some known caveats11: it retrieves just objects
of the Target type (not even subclasses of the Target type),
only attributes with simple XML schema types are allowed
to restrict the query or as return values, the association ob-
jects can be used to impose restrictions on the result type but
cannot be returned.

Translating the MCC expression into CQL amounts to:
include as Target in CQL the expression for the variable in
the head; include an Association per each pair of generators,
one determining the name (the class to which they belong)
and the other identifying the role name; include an Attribute
restriction for each filter.

5. Related Work
UML-to-OWL transformations Existing transforma-
tions were motivated by different applications and were
specified in varying levels of detail.

Berardi et al [2] developed a description logics represen-
tation of UML class diagrams to detect inconsistency and

redundancy by reasoning over them. Their transformation
is not exhaustive, since their focus is on performance analy-
sis of reasoning over UML diagrams.

The Object Management Group developed the Ontology
Definition Metamodel (OMG ODM)12, comparing and con-
trasting UML and OWL and presenting an exhaustive trans-
formation.

Djurić et al [7] extended UML by defining an UML pro-
file for OWL, based on OMG ODM, which extends UML
models with tagged values and stereotypes. These extended
UML models can be automatically transformed to an OWL
representation.

The UMLBackend13 plug-in for Protégé is an implemen-
tation translating UML to OWL and vice versa. It considers
a subset of UML constructs.

Evermann [5] presents a conversion between UML and
OWL, and vice versa, with the objective of describing
Bunge’s upper-level ontology, specified in natural language,
and allows its wider use.

Shironoshita et al [15] presented semCDI, which uses a
UML-to-OWL transformation for caGrid information mod-
els. We analysed this transformation in detail in Section 3.

Semantic queries over grid systems Other systems have
exploited semantic web technologies to support semantic
queries for distributed databases in grid environments. Dart-
Grid [3] builds RDF views of legacy databases to support
RDF queries over the instance data. ACGT [17] uses grid
middleware and supports SPARQL queries over resources.
semCDI [15] extends caGrid and supports SPARQL query-
ing by translating SPARQL to CQL. The details of this
transformation are not described and using MCC as inter-
mediate languages provides generality and support for op-
timisations, even for SPARQL [4]. Additionally, none of
these systems have focused on providing a high-level query
language support over metadata.

6. Conclusions and Future Work
This paper presented a semantic layer approach, designed

within the ONIX system, to support high-level concept-
based queries over semantically annotated data sources.
This functionality is important for ONIX success within the
biomedical community.

We applied the approach to the caGrid infrastructure,
where running queries against data services requires to

10http://cagrid.org/display/dataservices12/CQL
11http://cagrid.org/display/dataservices12/CQL
12http://www.omg.org/cgi-bin/apps/doc?ptc/07-09-09.pdf
13http://protege.cim3.net/cgi-bin/wiki.pl?UMLBackend

know their syntax and structure. We showed that DL-
queries, expressed using domain concepts can be automati-
cally translated into CQL queries. DL-queries are high-level
and descriptive: they specify the criteria for the desired data
based on relationships at the concept level. The translation
process determines the relevant paths between UML classes
that specify how to find the data in a CQL query. We de-
scribed the prototype implementation for this functionality.

The main contributions are: a) the automatic generation
of OWL ontologies from annotated-UML models, which
preserves UML and the domain ontology (NCIt) semantics;
b) DL-queries validations and rewriting from the concept
space into the model space through justifications; c) subse-
quent DL query translation to MCC and then to CQL.

We observed that the approach is general, in the sense
that has the potential to support non-caGrid data resources,
as long as they provide appropriate metadata, i.e. annotated
UML models. The module extraction method can be ap-
plied to other domain ontologies, apart from NCIt. While
we presented a translation from DL-queries to CQL, one of
the advantages of using the MCC is that only the last step is
dependent on the caGrid query language. Other query lan-
guages can be supported by specifying the translation rules
from MCC.

In future work, we aim to extend the translation of DL-
queries over multiple resources to DCQL, as well as, to con-
sider other semantic queries languages, such as SPARQL
and SPARQL-DL. While the prototype implementation and
experiments of translating queries over the generated on-
tologies have served as a proof-of-concept for the approach,
we intend to perform a detailed performance evaluation of
the architecture.

Acknowledgments The authors are grateful to Cancer Re-
search UK and the UK National Cancer Research Institute
Informatics Initiative for support for their research.

References
[1] F. Baader et al., editors. The Description Logic Handbook:

Theory, Implementation, and Applications . Cambridge Uni-
versity Press, 2003.

[2] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning
on UML class diagrams. Artificial Intelligence, 168(1-2):70–
118, 2005.

[3] H. Chen, Z. Wu, Y. Mao, and G. Zheng. DartGrid: a se-
mantic infrastructure for building database Grid applications.
Concurrency and Computation: Practice and Experience,
18:1811–1828, 2006.

[4] W. Corno, F. Corcoglioniti, I. Celino, and E. D. Valle. Ex-
posing Heterogeneous Data Sources as SPARQL Endpoints
through an Object-Oriented Abstraction. In ASWC, pages
434–448, 2008.

[5] J. Evermann. A UML and OWL description of Bunges upper-
level ontology model. Software and Systems Modeling, page
16191366, 2008.

[6] L. Fegaras and D. Maier. Optimizing object queries using an
effective calculus. ACM Trans. Database Syst., 25(4):457–
516, 2000.

[7] D. Gašević, D. Djurić, and V. Deved. MDA-based Automatic
Ontology Development. STTT, 9(2):103–117, 2007.

[8] M. Horridge, N. Drummond, J. Goodwin, et al. The Manch-
ester OWL Syntax. In OWLED, 2006.

[9] E. Jiménez-Ruiz, B. C. Grau, U. Sattler, et al. Safe and Eco-
nomic Re-Use of Ontologies: A Logic-Based Methodology
and Tool Support. In ESWC, pages 185–199, 2008.

[10] A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding
All Justifications of OWL DL Entailments. In ISWC/ASWC,
pages 267–280, 2007.

[11] G. A. Komatsoulis, D. B. Warzel, F. W. Hartel, et al. ca-
CORE version 3: Implementation of a model driven, service-
oriented architecture for semantic interoperability. Journal of
Biomedical Informatics, 41(1):106–123, 2008.

[12] J. P. McCusker, J. A. Phillips, A. González-Beltrán,
A. Finkelstein, and M. Krauthammer. Semantic data ware-
house for caGrid. BMC Bioinformatics, In press., 2009.

[13] S. Oster, S. Langella, S. Hastings, et al. caGrid 1.0: A Grid
Enterprise Architecture for Cancer Research. In AMIA An-
nual Symposium, 2007.

[14] M. Peim, E. Franconi, N. W. Paton, and C. A. Goble. Query
processing with description logic ontologies over object-
wrapped databases. In SSDBM, pages 27–36, 2002.

[15] E. P. Shironoshita, , Y. R. Jean-Mary, R. Bradley, and M. R.
Kabuka. semCDI: Semantic Query Formulation for caBIG.
JAMIA, 15(4):559–568, 2008.

[16] E. Sirin. Pellet: A practical OWL-DL reasoner. J. Web Sem.,
5(2):51–53, 2007.

[17] M. Tsiknakis, M. Brochhausen, J. Nabrzyski, et al. A Se-
mantic Grid Infrastructure Enabling Integrated Access and
Analysis of Multilevel Biomedical Data. IEEE Transactions
on Information Technology in Biomedicine, 12(2):2, 2008.

Appendix: Glossary of terms
Acronym Meaning

ACGT Advancing Clinico-Genomic Trials on Cancer
caBIG® cancer Biomedical Informatics Grid
caBIO cancer Bioinformatics Infrastructure Objects
caDSR cancer Data Standars Repository
CDE Common Data Element
CQL caGrid/Common Query Language

DCQL Distributed caGrid/Common Query Language
DL Description Logic

EVS Enterprise Vocabulary Service
FQP Federated Query Processor
GME Global Model Exchange
MCC Monoid Comprehension Calculus
NCI National Cancer Institute
NCIt NCI thesaurus
NCRI National Cancer Research Institute
ONIX ONcology Information eXchange
OWL Web Ontology Language
RDF Resource Description Framework

semCDI SEMamntic Cabig Data Integration
SNP Single Nucleotide Polymorphism

SPARQL SPARQL Protocol and RDF Query Language
TGFB1 Transforming Growth Factor Beta 1
UML Unified Modeling Language
XML eXtensible Markup Language

