
A Foolish Consistency: Technical Challenges in
Consistency Management

Anthony Finkelstein

University College London, Department of Computer Science, Gower St.,
London WC1E 6BT UK

a.finkelstein@cs.ucl.ac.uk

Abstract. This paper outlines the area of consistency management and ar-
gues for its importance. A motivating example is presented to support the
argument. The paper sets out the key technical challenges for research in
this area. A broad research agenda is outlined with some signposting of par-
ticularly interesting directions.

1 What is Consistency Management?

"A foolish consistency is the hobgoblin of little minds adored by little statesmen and
philosophers and divines. With consistency a great soul has simply nothing to do ...
speak what you think today in words as hard as cannonballs and tomorrow speak
what tomorrow thinks in hard words again though it contradict everything you said
today"

R.W. Emerson
The everyday concept of inconsistency is easy to grasp. It is simply saying something
in one place and another contradictory thing in another place. The equivalent of the
standard logical notion of inconsistency in which one asserts both that the sky is blue
and that the sky is not blue.

Of course inconsistency in this form is not inherently a problem until you try and
base some actions in the real world upon the inconsistent assertions - selecting a coat
for example. The results of doing so are varied but, depending on the veracity of the
assertions, the resulting actions will interfere – simultaneously requiring wearing a
raincoat and not wearing a raincoat.

Inconsistency has many causes. Foremost among these is that it results from col-
laboration of multiple actors, each with different opinions, views and interpretations
on the real world. It is also the result of uncertainty leading to the preservation of an
equivocal and hence inconsistent position. Inconsistency commonly results from
errors or more rarely from deliberate falsification.

It should be clear from this that there are many circumstances in which inconsis-
tency is acceptable, indeed desireable. In general this is in any situation where you are
seeking to establish what to do prior to committing to a course of action. In such
cases you may wish to have all the alternatives laid before you and as full and accurate
information about the state of the world as it is possible to obtain. The consequences



of this are obvious. Rather than thinking about removing inconsistency we need to
think about "managing consistency". This means preserving inconsistency where it is
desirable to do so, identifying inconsistency at the point where decisions are required
and removing (or otherwise remedying) inconsistency prior to taking action. This
requires a major change in the way we think.

Classically our concern has been to organise our information management practices
so as to prevent inconsistency from arising, or using database mechanisms to remove
inconsistency as close to the source as possible. Where inconsistency occurs despite
our best attempts to eliminate it is viewed as an "application level" concern to be
handled on a case by case basis. In a closed and relatively static corporate environment
this approach might be acceptable. In the "new" information management setting of
federated organisations, web publication and distributed collaborative work it patently
does not work. We would like flexible and open consistency management with strate-
gies, policies and tools defined at the generic level.

2 A Motivating Example

To make this discussion less abstract let us consider an example - distributed software
development. Software developers, physically distributed, engage in highly collabora-
tive work. Opinions differ and multiple inconsistent requirements and design alterna-
tives are a particular feature of the work. Deferring commitment is an important part
of the developer's armoury. The products of software development work are expressed
in a variety of complex formal and semi-formal languages. These formal and semi-
formal languages have more or less precise interpretations in the domain of computa-
tion.

Potential interference in this domain is reflected as a consistency relation at the
level of the language itself. A typical example (for UML notations) is that an instance
in a collaboration diagram for a system must be an instance of a class that appears in
the class diagram for that system. Such relations can be in the form of direct map-
pings between the languages or by reference to a shared meta-model.

Much of the information that software developers handle is semi-structured text.
The possibilities for treating consistency in this context are limited. Either we can
handle consistency at the level of the structure, a formal artefact, specifying for exam-
ple that the interface functional specification must contain sections with the same
headings as the user manual, or at the natural language level. If at the natural language
level the best we can expect are heuristic strategies.

3 Why is Consistency Management Difficult?

In a trivial case such as the sky is blue, the sky is not blue the inconsistency is easy to
spot, if not to deal with. By contrast inconsistencies in real settings such as software
development present much more challenging problems.
•  The assertions can be vague or semantically ungrounded so that it is difficult to

determine their precise meaning. It may be impossible to determine how the asser-



tions relate to the real world and hence establish whether actions based on them
will interfere. Assertions may be made in different (formal) languages whose rela-
tionship to each other is uncertain

•  Inconsistencies can be hidden in a mass of other assertions. These assertions can be
physically distributed in such a way that it is difficult to assemble the information
so as to detect the inconsistency.

•  An inconsistency can itself be distributed across many assertions. Consistency
checking cannot always be reduced to pair-wise comparison. There may be many
inconsistencies, some related and some independent, in a set of assertions. Each in-
consistency can be of varying importance in the domain.

•  The presence of inconsistency may pollute the set of assertions and hence prevent
the use of certain technical mechanisms (such as standard first-order logic) for rea-
soning about the information.

•  The information, which itself may be changing rapidly, may be intertwined with a
complex workflow so that it is not easy to determine the points at which it is criti-
cal to establish consistency.

•  In many cases inconsistencies reflect slips and minor errors or possibly delayed
commitments which are relatively easy to resolve. Some inconsistencies however
reflect serious conflicts with substantial knock-on consequences and may involve
substantial negotiation.

4 What We Would Like To Do

Ideally what we would like to build a toolset which should include:
− tools to help establish, express and reason about the relationships between formal

languages;
− tools to check consistency with respect to these relationships and to provide diag-

nostic feedback;
− where inconsistencies have been detected, tools to visualise the inconsistencies;
− tools to track inconsistencies and preserve diagnostic information in the face of on-

going change;
− tools to support resolution either through the removal of inconsistency – rectifica-

tion – or by reducing the scope or severity of the inconsistency – amelioration;
− tools to support the rationale associated with consistency management.
In addition we need to be able to:
− specify policies with respect to when consistency should be checked and when

resolution mechanisms should be applied;
− enforce these policies at appropriate times and in an appropriate manner.

5 Technical Challenges

To build such a toolset means surmounting technical challenges in a number of core
areas of applied computer science.



We need an in-depth understanding of the semantics of formal languages used in
particular application domains; software engineering is a good example of this. We
need to be able to construct meta-models with a sound foundation and be able to rea-
son across different formal languages expressed in terms of those meta-models. We
should also be able to express constraints on the meta-model as consistency checks. In
the case of an approach based on direct mappings we need "patterns" (for want of a
better term) for expressing such mappings that mean the relationships are not con-
structed in an ad-hoc manner. More speculatively, where informal text is used we need
to explore the possibility of using techniques from natural language processing to
indicate potential inconsistencies.

We need to be able to check consistency in a way that is fast and highly scaleable.
We can anticipate that we may have to check the consistency of very large numbers of
highly complex distributed documents and other information artefacts. Consistency
checking needs to be unobtrusive and low cost. This may mean devising algorithms
that are computationally efficient in terms of space and performance. It may also mean
devising strategies for distributing the consistency checking task and allowing the
"user" to scope the consistency checks in some suitable manner. The consistency
checking must be done in a way that yields useful diagnostic feedback at least localisa-
tion.

We need to devise visualisation techniques appropriate to showing consistency
across complex information 'spaces'. Ideally the visualisation should also support
consistency-based navigation through the information space in which it is possible to
navigate across pieces of information linked by consistency relationships.

The visualisation techniques need to be linked to version and configuration control
strategies that allow inconsistencies to be tracked as surrounding information changes.
This is critical as we anticipate that known inconsistencies, particularly the controver-
sial, hard to resolve ones, may be preserved as outstanding issues over relatively
lengthy periods.

Conflict resolution is critical to consistency management and is both extremely dif-
ficult and little worked on, at least directly. Contributions from the fields of artificial
intelligence particularly planning, computer-supported cooperative work and of course
the social sciences are suggestive and provide some valuable concepts, but have
yielded little which can be directly applied. Ammelioration – reducing the space, or
perhaps the severity, of a conflict is an important element of resolution but demands
that we have some sort of metric. This is problematic in many of the settings with
which we are concerned.

It is reasonable to anticipate that users will wish to associate meta-data with incon-
sistencies. We have already discussed two classes of such meta-data – diagnostic and
configuration information. Rationale indicating the history of discussion with respect
to an inconsistency or set of inconsistencies is particularly important. Obviously this
will need to be associated with the relevant information and preserved beyond the
resolution of the inconsistency. The development of a rationale scheme suitable for
this purpose constitutes an interesting challenge.

The specification and execution of consistency management policies provides a fur-
ther technical challenge. A policy should set down what checks to perform at what



point in the workflow or process to which that information relates. It may further
specify what actions should be taken by way of resolution, if any, in order that the
workflow or process should continue. Clearly policies themselves are domain specific
but the expression of policies is a general issue. The expression of a consistency
management policy is however tied to the particular way in which the workflow is
described and monitored, a highly complex issue in itself.

There is not scope in this paper to present a review of related work. Probably the
most recent account, though biased towards software development is [4]. The Proceed-
ings of the Viewpoints '96 Workshop [5] and the Multi-dimensional Separation of
Concerns Workshop '00 [6] reflect the growing interest among software engineers in
this issue. The author has a long sequence of work addressing consistency manage-
ment that includes [1], [2], [3]. Each of these papers contains a discussion of relevant
contributions, these include work in AI, CSCW and distributed heterogeneous data-
bases.

6 Where Now?

The end goal is the construction of a lightweight and generic set of consistency man-
agement tools which can operate across heterogeneous and distributed information, to
be offered as components and web services from which an information manager will
be able to assemble a consistency management solution. This goal is some way off
and, as has been shown above, there are some major hurdles to surmount. Having said
this, the advent of XML (eXtensible Markup Language) and associated web technolo-
gies including XML-aware databases and query languages form a very powerful sub-
strate on which to build the sort of consistency management we envisage. The contri-
butions of the database community to the achievement of this are eagerly sought.

References

1 . Easterbrook, S., Finkelstein, A., Kramer, J. & Nuseibeh, B.: Coordinating Distributed
ViewPoints: The Anatomy of a Consistency Check, International Journal on Concurrent
Engineering: Research & Applications, 2,3, (1994)

2 . Emmerich, W., Finkelstein, A., Montangero, C., Antonelli, S., Armitage, S. & Stevens,
R.: Managing Standards Compliance, IEEE Transactions on Software Engineering, 25, 6
(1999)

3 . Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., & Nuseibeh, B.: Inconsistency
Handling In Multi-Perspective Specifications, IEEE Transactions on Software Engineer-
ing, 20, 8, (1994),

4 . Nuseibeh, B, Easterbrook, S. & Russo, A.: Leveraging Inconsistency in Software De-
velopment, IEEE Computer, 33, 4 (2000).

5 . Viewpoints 96: An International Workshop on Multiple Perspectives in Software De-
velopment; ACM Symposium on Foundations of Software Engineering 1996
http://www.soi.city.ac.uk/~gespan/vptoc.html   

6 . Workshop on Multi-Dimensional Separation of Concerns in Software Engineering
2000, 22nd ICSE,     http://www.research.ibm.com/hyperspace/workshops/icse2000/   


