Unit 6: Soft Systems

Objectives
- To contrast “soft” systems approaches to analysis & design with the “hard” systems approaches examined to date
- To introduce & work through a specific “soft” systems approach - *Soft Systems Methodology*

Frameworks for analysis & design

- Analysis & design involves requirements exploration, refinement & testing … amongst other things

- It helps to do this iterative form of early developmental work within the context of a *well-defined process model* - this adds structure, discipline & feedback potential

- We shall look at a radically different approach in this lecture - *Soft Systems Methodology*
“Hard” versus “soft”

- “Hard” problems
 - Problems can be well defined
 - Assumption of definite goals & solutions
 - Can pre-define success criteria
 - Technologically-oriented

- “Soft” problems
 - Difficult to define - they are problem situations
 - High social, political & human activity component
 - Sometimes “wicked”!

Checkland’s Soft Systems Methodology

- **Premise** - reality is socially constructed & therefore requirements are not objective; response to “hard” systems thinking & reductionism

- **Rationale**
 - problem situations are fuzzy (not structured) & solutions not readily apparent
 - defining the objective is part of the problem
 - impact of a computerisation is not always positive
 - full exploitation of computerisation may need radical restructuring of work processes (i.e. not a given)

Derived from “action research”
Broad approach

- Analyse problem situation using different viewpoints
 - Use root definitions (see later) to describe human activity systems
 - Use conceptual models (bubbles & links) to model the human activity system

- Determining the requirements is a discursive, bargaining & construction process

- Out of this process emerges a specification & plans for a modified organisational structure, task structure, objectives, environment, etc.

Detailed approach - 7 stages

- **Stage 1**: Problem situation unstructured
- **Stage 2**: Problem situation expressed (rich pictures)
- **Stage 3**: Naming of relevant systems (root definitions; CATWOE elements)
- **Stage 4**: Conceptual models
- **Stage 5**: Comparing conceptual models with reality
- **Stage 6**: Debating feasible & desirable changes
- **Stage 7**: Implementing changes

Iterative
1. Problem situation unstructured

- **Starting point:** recognition of some problem or scope for improvement; coupled with a decision that some change or review is required

- Find out about the problem situation - there may be the perceptual that there are many potential problems in need of solving

- Carry out some basic research into the problem area
 - Who are the key players?
 - How does the process currently work?
 - Etc.
2. Problem situation expressed

- Analyst collects & sorts information about the problem situation (maintaining a broad scope)
 - Organisational structure, processes & transformations, gripes, etc.
 - Techniques & tools employed to assist (e.g. work observation, interviews, workshops)

- Analyst provides some expression of the problem situation using a rich picture
 - Visual form of communication
 - Captures the situation in which there is perceived to be a problem, not the problem itself

Rich pictures

- Represent structures, processes & organisational issues that could be relevant to the problem definition

- Provide a model for thinking about the system - a representation of how to look at & think about the system; a prompt for listing & grouping pertinent issues

- Help the analyst gain an appreciation of the problem situation & aid communication with the problem owner

- **Note:** there is no “right” or “wrong” picture - they are artistic & individual expressions ... you can develop your own style!
3. Naming of relevant systems

- Can look at problem situations from many perspectives
- Select how to view the situation & produce a root definition for each selected viewpoint
 - Choose an issue or task from the rich picture
 - Define a system to address the issue or to carry out the task

- A root definition should be written as a sentence & expressed as a transformation process (i.e. one that takes some entity as input, changes or transforms that entity, then produces a new entity as output)

- Undertake CATWOE analysis of each root definition
CATWOE elements

- **C**: customer (who would be victims or beneficiaries of this system?)
- **A**: actor (who would do these activities & what special skills are needed?)
- **T**: transformation process (what input is transformed in to what output?)
- **W**: weltanschauung (what world view makes the system meaningful?)
- **O**: owner (who could abolish the system?)
- **E**: environmental constraints (what in the environment does the system take as given?)

Can also use these to help formulate the root definitions

Example root definition

A Forest Group owned system for the continuously effective & efficient conversion of raw materials into a range of paper products to meet customer demand while achieving the Group expectations for performance, but within Group & environmental constraints

[Wilson 1990] pp. 71 & 72
Example CATWOE elements

- **C**: customers producing the demand
- **A**: not specified
- **T**: conversion of raw materials into a range of paper products
- **W**: continuously effective & efficient conversion will enable Group expectations to be met
- **O**: Forest Group
- **E**: Group & environmental constraints

[Wilson 1990] pp. 71 & 72

4. Conceptual models

- Construction of a conceptual model for each root definition of a system (i.e. what the system must do for each one)

- A conceptual model is a human activity model that strictly conforms to the root definition using the minimum set of activities; it therefore expresses the core purpose of some purposeful activity system

- Drawn as a directed graph with activities as nodes

- Requires systems thinking!

Defining the “hows”
Formal Systems Thinking

- Guides the development of the conceptual model

- Human activity system S is a formal system if & only if...
 - It has some mission
 - It has a measure of performance
 - It has a decision making process
 - It has components which interact such that effects & actions are transmitted through the system
 - It is part of a wider system with which it interacts
 - It is bounded from the wider system
 - It has resources at the disposal of its decision making process
 - It has long term stability or recoverability potential
 - Its component systems satisfy the same criteria

Example conceptual model

[Wilson 1990] p.73
5. Comparing models with reality

- Compare the conceptual models of stage 4 with the “real” world (i.e. problem situation as expressed in stage 2) to generate debate about possible changes
 - Where are they different?
 - Where are they similar?

- Ways to do this comparison
 - Use conceptual models as a basis for formulating questions about the existing situation
 - Compare history with model prediction
 - General overall comparison
 - Model overlay

6. Debating changes

- Discuss whether there are ways of improving the situation, taking a goal-driven approach

- Identify feasible & desirable changes

- Types of change to consider
 - Changes in structure
 - Changes in procedure
 - Changes in attitude

- Make recommendations for taking action to improve the problem situation
7. Implementing changes

- Determine how to implement the changes identified during stage 6
- Implement changes & put them into action

Key points

- There are some problems you will face for which “hard” approaches to analysis & design are not so useful (esp. those involving human activity systems)

- Soft Systems Methodology is an attempt to apply science to human activity systems - the aim being to understand & improve such “soft” systems

- SSM is an iterative 7 stage approach to understanding a problem situation & determining a potential solution

- SSM gives structure to fuzzy problem situations such that they can be dealt with in a disciplined manner
Follow-on references
