Reacting and Adapting to the Environment
Designing Autonomous Methods
for Multi-Objective Combinatorial Optimisation

Aymeric Blot
Supervisor: Laetitia Jourdan
Co-advisor: Marie-Éléonore Kessaci
ORKAD team, CRISiAL, Université de Lille

PhD defence – September 21, 2018

Contents

▶ Introduction
▶ Context
▶ Multi-Objective Local Search
▶ Automatic Design
▶ Wrap-up

Thesis

Reacting and Adapting to the Environment
Designing Autonomous Methods
for Multi-Objective Combinatorial Optimisation

Topic Automatic algorithm design
Context Multi-objective combinatorial optimisation
Use Case Multi-objective local search algorithms

Travelling Salesman Problem

Input Set of \(n \) cities, travel costs
Solutions Hamiltonian paths (permutations)
Quality Total cost (e.g., distance, time, money)
Thesis

Reacting and Adapting to the Environment
Designing Autonomous Methods for Multi-Objective Combinatorial Optimisation

Environment

<table>
<thead>
<tr>
<th>Problem</th>
<th>Circuit board drilling? Order-picking? Vehicle routing?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search</td>
<td>Easy to improve? Stuck in local optima?</td>
</tr>
</tbody>
</table>

Permutation Flowshop Scheduling Problem

Input Set of n jobs, processing times on m machines

Solutions Jobs schedules (permutations)

Quality Various, e.g.:
- Makespan (max of completion times)
- Flowtime (sum of completion times)

\[M_1\]
\[M_2\]
\[\ldots\]
\[M_m\]

Ambitions

Automatically, in a multi-objective context:
- Design algorithms variants for specific problem characteristics
- Benefit from many existing strategies
- Avoid relying on expert knowledge

Roadmap

Reacting and Adapting to the Environment
Designing Autonomous Methods for Multi-Objective Combinatorial Optimisation

Topic Automatic algorithm design

Context Multi-objective combinatorial optimisation

Use Case Multi-objective local search algorithms
Automatic Algorithm Design

Algorithm Performance
- Differs with the problem
- Differs with the instance
- Depends on explicit or hidden design choices

Ideas
- Select from a set of existing algorithms
- Tune a specific algorithm
- Generate new algorithms

AAD: Taxonomy Proposition

Algorithmic viewpoint
- Parameters
- Components
- Algorithms

Temporal viewpoint
- Problem features
 - Tuning
 - Configuration
 - Mapping
- A priori features
 - Setting
 - Selection
- Search features
 - Control
 - Scheduling

AAD: Investigated Fields

Roadmap

Reacting and Adapting to the Environment
Designing Autonomous Methods for Multi-Objective Combinatorial Optimisation

Topic Automatic algorithm design

Context Multi-objective combinatorial optimisation

Use Case Multi-objective local search algorithms
Multi-Objective Optimisation

Bi-objective minimisation

- Dominated solutions
- (Optimal) archive Pareto (optimal) set

Performance Assessment

Hypervolume (1-HV)

- Spread

Roadmap

Reacting and Adapting to the Environment
Designing Autonomous Methods for Multi-Objective Combinatorial Optimisation

Topic: Automatic algorithm design
Context: Multi-objective combinatorial optimisation
Use Case: Multi-objective local search algorithms

Questions:
- General structure?
- Possible strategies?
- Efficiency?

Local Search Algorithms

“Similar solutions have similar quality”

Trajectory
- Identify neighbours
- Move the current solution
- Iterate
Multi-Objective Local Search Algorithms

Selected History

- Single trajectory
 - MOSA [Serafini, 1994]
 - TPLS [Paquete et al., 2003]
- Multiple trajectories
 - PSA [Czyzak et al., 1996]
 - MOTS [Hansen, 1997]
- Archive
 - PAES [Knowles et al., 1999]
 - PLS [Paquete et al., 2004]

MOLS Generalisation

Components

- Initialisation
- Selection
- Exploration
- Archive
- Stopping condition
- Perturbation

<animation>
Selected MOLS Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>initStrat</td>
<td>category</td>
<td>{...}</td>
</tr>
<tr>
<td>selectStrat</td>
<td>category</td>
<td>{all, rand, newest, oldest}</td>
</tr>
<tr>
<td>selectSize</td>
<td>integer</td>
<td>N*</td>
</tr>
<tr>
<td>explorStrat</td>
<td>category</td>
<td>{all, imp, ndom, ...}</td>
</tr>
<tr>
<td>explorRef</td>
<td>category</td>
<td>{pick, arch}</td>
</tr>
<tr>
<td>explorSize</td>
<td>integer</td>
<td>N*</td>
</tr>
<tr>
<td>archiveStrat</td>
<td>category</td>
<td>{bounded, unbounded, ...}</td>
</tr>
<tr>
<td>archiveSize</td>
<td>integer</td>
<td>N*</td>
</tr>
<tr>
<td>iterationLength</td>
<td>integer</td>
<td>N*</td>
</tr>
<tr>
<td>perturbStrat</td>
<td>category</td>
<td>{restart, kick, ...}</td>
</tr>
<tr>
<td>perturbSize</td>
<td>integer</td>
<td>N*</td>
</tr>
<tr>
<td>perturbStrength</td>
<td>integer</td>
<td>N*</td>
</tr>
</tbody>
</table>

Parameter Distribution Analysis

How efficient are the generated MOLS?

- Protocol
 - 300 MOLS configurations
 - 3 PFSP + 3 TSP scenarios
 - 10 runs per instance
 - Average $(1 - HV, \Delta')$

- Scenarios
 - PFSP (10 instances)
 - 50 jobs, 20 machines
 - 100 jobs, 20 machines
 - 200 jobs, 20 machines
 - TSP (15 instances)
 - 100 cities
 - 300 cities
 - 500 cities

Results: Parameter Distribution Analysis

Analysis

Conclusions
- Generated MOLS can be very efficient
- Parameters values are meaningful

Next Step
- Automatically design efficient MOLS algorithms

The configuration space is structured!
Knowledge can be extracted!
Expert knowledge is limited
Roadmap

Reacting and Adapting to the Environment
Designing Autonomous Methods for Multi-Objective Combinatorial Optimisation

Topic Automatic algorithm design
Context Multi-objective combinatorial optimisation
Use Case Multi-objective local search algorithms

Questions:
- How to automatically design efficient MOLS?
- Is it possible to beat expert knowledge?
- How to improve adaptability?

Algorithm Configurators

Automatic Algorithm Configuration

Goal Optimise performance over a given distribution of instances
Mean Optimisation, machine learning
Twist Data is unreliable and very expensive

Single-Objective Configuration
- irace [López-Ibáñez et al., 2016]
- ParamILS [Hutter et al., 2009]
- SMAC [Hutter et al., 2010]
- GGA++ [Ansótegui et al., 2015]

Multi-Objective Configuration
- SPRINT-Race [Zhang et al., 2015]
- MO-ParamILS [Blot et al., 2016]

MO-ParamILS

- Extension of ParamILS for multiple performance indicators
- Iterated MOLS on the configuration space
- Outputs a Pareto set of configurations

Configuration Protocol

How to ensure efficient predictions?

3 Phases
- Training
 - On training instances
 - Multiple times (e.g., ×20)
- Validation
 - All final configurations
- Test
 - Non-dominated configurations
 - On test instances

\[\Delta' = \text{animation} \]
\[1 - HV \]
Automatic Configuration

How efficient is our multi-objective approach?

Configurators
- ParamILS
 - Single-objective
 - \((1 - HV)\)
- ParamILS
 - Single-objective
 - \(\frac{3}{4} (1 - HV) + \frac{1}{4} \Delta'\)
- MO-ParamILS
 - Multi-objective
 - \((1 - HV), \Delta'\) simultaneously

Protocol
- Few configurations
 - 10×100 runs / 300 MOLS
 - 3 PFSP + 3 TSP scenarios
- More configurations
 - 20×1000 runs / 10920 MOLS
 - 3 PFSP + 3 TSP scenarios
- Crafted instances
 - 20×1000 runs / 10920 MOLS
 - 3 PFSP + 3 TSP scenarios

Results: Automatic Configuration

“Exhaustive” analysis: x (300 configurations)
Configurator: ○ ParamILS △ ParamILS(0.75,0.25) □ MO-ParamILS

MO-ParamILS: excellent spread, no loss of convergence

Analysis

Conclusions
- MO-ParamILS allows much better context
- Configuration of MO algorithms is a MO problem
- Problem: predicts single configurations

Next Steps
- Scheduling
 - Sequence multiple strategies
- Control
 - Interweave multiple predictions
 - Delay predictions

How to better fit the algorithm to the search?

Configuration Scheduling

\[
\begin{array}{c}
\text{Performance may vary during the search} \\
\text{Real-time decisions are difficult} \\
\text{Static schedules can be optimised offline}
\end{array}
\]
Experiments

How efficient are configuration schedules?

Protocol

<table>
<thead>
<tr>
<th>$K = 1$ ($k = 1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaustive analysis; single configurations</td>
</tr>
<tr>
<td>60 configurations = 60 schedules</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$K = 2$ ($k \in {1, 2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic configuration; up to two configurations</td>
</tr>
<tr>
<td>20×1000 runs / 10860 schedules</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$K = 3$ ($k \in {1, 2, 3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic configuration; up to three configurations</td>
</tr>
<tr>
<td>20×10000 runs / 658860 schedules</td>
</tr>
</tbody>
</table>

Selected $K = 3$ Configuration Schedules

\[
\begin{align*}
(T/3, T/3, T/3) & \quad \text{timed} \\
(T/4, T/4, T/2) & \quad \text{timed} \\
(T/2, T/4, T/4) & \quad \text{timed} \\
(T/2, T/2) & \quad \text{timed} \\
(T/4, 3T/4) & \quad \text{timed} \\
(3T/4, T/4) & \quad \text{timed} \\
(T) & \quad \text{timed} \\
\end{align*}
\]

\[3 \times 60^3 + 3 \times 60^2 + 60 = 658,860 \text{ schedules}\]

Results: Configuration Scheduling

<table>
<thead>
<tr>
<th>$K = k = 1$ exhaustive analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFSP 50 jobs, 20 machines</td>
</tr>
</tbody>
</table>

\[\Delta' \quad \text{Pareto dominated} \]

\[\Delta' \quad \text{dominated} \]

Better balanced algorithms!

K = k = 1 Pareto dominated

Analysis

Conclusions

| $k = 1$ schedules are limited |
| Schedules can be optimised offline |
| Combinatorial explosion |

Offline Adaptation

| Schedules are still predicted |
| No real-time decisions |
Control

<table>
<thead>
<tr>
<th>Offline Design</th>
<th>Online Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Prediction based</td>
<td>▶ Adaptation based</td>
</tr>
<tr>
<td>▶ Instance classes / distributions</td>
<td>▶ Single current instance</td>
</tr>
<tr>
<td>▶ Computationally expensive</td>
<td>▶ Slight overhead</td>
</tr>
</tbody>
</table>

Motivations

▶ Use control as an extension of offline learning
▶ Take advantage of multiple strategies during the run
▶ Delay the final prediction

Control Mechanisms

Generic Parameter Control

▶ Random
▶ Probability based
▶ Multi-armed bandits
▶ Reinforcement learning

[Karafotias et al., 2015]

Experiments

Can efficient strategies be determined online?

Protocol

▶ 2 simple control mechanisms
▶ 12 PFSP scenarios
▶ 200 runs per scenario

Strategies

▶ 3 arms (imp, imp-ndom, ndom)
▶ 2 arms (imp-ndom, ndom)
▶ 3 → 2 arms

Simple Control Mechanisms

▶ Uniform random: \(p_i(t + 1) = \frac{1}{N} \)
▶ \(\varepsilon \)-greedy: \(p_i(t + 1) = \begin{cases} (1 - \varepsilon) + \frac{\varepsilon}{N}, & \text{if } i = \arg \max_j q_j(t) \\ \varepsilon / N, & \text{otherwise} \end{cases} \)
Results: 3-arm Ranking

Wilcoxon signed ranked tests, Friedman post-hoc analysis

<table>
<thead>
<tr>
<th>Approach</th>
<th>Instance (n, m)</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>imp</td>
<td>5 5 5 5 5 5 5 5 5 5 5 5</td>
<td>5</td>
</tr>
<tr>
<td>imp-ndom</td>
<td>4 4 3 4 4 4 4 1 2 1 2 1</td>
<td>2.8</td>
</tr>
<tr>
<td>ndom</td>
<td>1 1 3 1 1 1 1 1 1 1 1 1</td>
<td>1.2</td>
</tr>
<tr>
<td>rand_3</td>
<td>1 1 1 1 1 1 1 1 2 3 3 3</td>
<td>1.6</td>
</tr>
<tr>
<td>greedy_3</td>
<td>1 1 1 1 1 1 1 1 2 3 3 3</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Control fails on larger instances

Results: 2-arm Ranking

Wilcoxon signed ranked tests, Friedman post-hoc analysis

<table>
<thead>
<tr>
<th>Approach</th>
<th>Instance (n, m)</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>imp-ndom</td>
<td>4 4 3 4 4 4 4 4 4 4 4 1</td>
<td>3.7</td>
</tr>
<tr>
<td>ndom</td>
<td>1 1 3 1 1 1 1 1 1 1 1 1</td>
<td>1.2</td>
</tr>
<tr>
<td>rand_2</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1</td>
<td>1.1</td>
</tr>
<tr>
<td>greedy_2</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

imp was the culprit

Results: Long Term Learning Ranking

Wilcoxon signed ranked tests, Friedman post-hoc analysis

<table>
<thead>
<tr>
<th>Approach</th>
<th>Instance (n, m)</th>
<th>Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>rand_3</td>
<td>4 4 2 4 4 4 4 4 4 4 4 3</td>
<td>3.8</td>
</tr>
<tr>
<td>rand_ltl_50</td>
<td>3 1 2 1 1 1 3 3 3 2 3 3</td>
<td>2.2</td>
</tr>
<tr>
<td>rand_ltl_20</td>
<td>1 1 2 1 1 1 1 1 1 2 2 2</td>
<td>1.3</td>
</tr>
<tr>
<td>rand_2</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1</td>
<td>1</td>
</tr>
<tr>
<td>greedy_3</td>
<td>1 1 1 1 4 4 4 4 4 4 4 3</td>
<td>2.9</td>
</tr>
<tr>
<td>greedy_ltl_50</td>
<td>1 1 1 1 1 1 3 3 3 3 2 3</td>
<td>1.9</td>
</tr>
<tr>
<td>greedy_ltl_20</td>
<td>1 1 1 1 3 1 1 1 1 2 2 2</td>
<td>1.3</td>
</tr>
<tr>
<td>greedy_2</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1</td>
<td>1</td>
</tr>
</tbody>
</table>

Ineffective arms should be automatically removed

General Contributions and Conclusions

Automatic Algorithm Design
- Taxonomy proposition
- Multi-objective configuration, MO-ParamILS
 - MO algorithms are better optimised using a MO configurator
- Configuration scheduling
 - Better balanced algorithms can be predicted
- Control as extension of automatic configuration
 - Some design choices can be postponed to the search itself

Multi-objective Optimisation
- Wider generalisation of MOLS algorithms
- Automatic design of multi-objective algorithms
Short-Term Perspectives

Automatic design
▶ Extension to other algorithms
▶ Other multi-objective configurators
▶ Robustness in configurators

Automatic configuration
▶ Validation on other types of problems

Configuration scheduling
▶ Guided experimentation protocol
▶ More semantic representation

Online mechanisms
▶ More strategies, more complex mechanisms

Long-Term Perspectives

Anytime Behaviour of Algorithms

Insight Other applications of multi-objective algorithm design
Example Quality/running time trade-off
Ideas ▶ Designing for multiple running times
▶ Area-under-the-curve as fitness
▶ Configuration scheduling

Artificial Configuration Spaces

Insight Automatic configuration extremely time-expensive
Problem So is developing/improving/comparing configurators
Ideas ▶ Semantic parameter analysis
▶ Zero-cost configuration spaces

Publications I

Blot, Hoos, Jourdan, Kessaci-Marmion, and Trautmann – LION 2016
MO-ParamILS: A Multi-objective Automatic Algorithm Configuration Framework

Blot, Pernet, Jourdan, Kessaci-Marmion, and Hoos – EMO 2017
Automatically Configuring Multi-objective Local Search Using Multi-objective Optimisation

Blot, Kessaci-Marmion, and Jourdan – MIC 2017
AMH: a new Framework to Design Adaptive Metaheuristics

Blot, Kessaci-Marmion, and Jourdan – GECCO 2017
Automatic design of multi-objective local search algorithms: case study on a bi-objective permutation flowshop scheduling problem

Publications II

Blot, Kessaci, Jourdan, and de Causmaecker – LION 2018
Adaptive Multi-Objective Local Search Algorithms for the Permutation Flowshop Scheduling Problem

Blot, López-Ibáñez, Kessaci, and Jourdan – PPSN 2018
Archive-aware Scalarisation-based Multi-Objective Local Search for a Bi-objective Permutation Flowshop Problem

Blot, Hoos, Kessaci, and Jourdan – ICTAI 2018
Automatic Configuration of Multi-objective Optimization Algorithms. Impact of Correlation between Objectives

Blot, Kessaci, and Jourdan – Journal of Heuristics, 2018
Survey and Unification of Local Search Techniques in Metaheuristics for Multi-objective Combinatorial Optimisation