
Using Genetic Improvement to Optimise
Optimisation Algorithm Implementations

Aymeric Blot Justyna Petke

University College London

ROADEF 2022 (25 February 2022)

 http://www0.cs.ucl.ac.uk/staff/a.blot/publis#blot:2022:roadef 1

http://www0.cs.ucl.ac.uk/staff/a.blot/publis#blot:2022:roadef


Automated Software Improvement

Software synthesis:

min
s∈S

f(s, T )

With:
▶ s a software
▶ S the set of all software
▶ f the fitness function
▶ T the software specification

Genetic improvement:

min
p(s0)∈S

f(p(s0), T )

With:
▶ s0 a given software
▶ p(s0) a patched version of s0

Hypothesis:
▶ s0 is already very good
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Genetic Improvement (GI)

Applications:
▶ Functional properties

▶ Program repair / bug fixing
▶ Feature transplantation

▶ Non-functional properties
▶ Execution time
▶ Energy / memory usage
▶ Solution quality

As an optimisation problem:
▶ Very expensive

▶ Compilation time
▶ Fitness uncertainty
▶ Fitness approximation

▶ Inconvenient search space
▶ Huge neighbourhoods
▶ Deceiving plateaus
▶ Fractal nature

Motivation:
Evolve software (source code) to improve performance
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Source Code Representation

Example C++ code:
...
if (j > i) {

x = j;
}
...

Software evolution:
▶ Convert source code to XML (SrcML)
▶ Focus on selected tags
▶ Mutate the AST
▶ Scrub XML tags

Example XML code:
...
<stmt >if <condition >(j &gt; i)</ condition > <block >{

<stmt > x = j;</stmt >
}</block ></stmt >
...
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Genetic Improvement (GI)

In a nutshell:
▶ Start from original software
▶ Create software mutations
▶ Apply, recompile, evaluate, accept
▶ Accumulate sequences of edits
▶ Show final patch

Software edits:
▶ Statement deletion
▶ Statement insertion
▶ Statement replacement
▶ Data structure replacement
▶ Literal mutation
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Case Study

Multiobjective optimization problems with complicated Pareto sets,
MOEA/D and NSGA-II (TEVC 2009)
▶ Simple C++ implementation
▶ Nine hardcoded “complicated” problems
▶ Inverted generational distance (IGD)

Selected files:
▶ DMOEA/dmoeafunc.h.xml
▶ NSGA2/nsga2func.h.xml
▶ common/recombination.h.xml

Li and Zhang, IEEE Transactions on Evolutionary Computation, 2009 6



Experimental Setup

Simple local search:
▶ First improvement
▶ Mutation:

▶ 50% create/append edit
▶ 50% delete edit

▶ Fitness:
▶ CPU instructions (perf)
▶ Reject if solution quality > 110%

▶ Budget:
▶ Wallclock time
▶ ≈ 1000 evaluations
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Experimental Protocol

Training: To find improved software variants
▶ Using the search process (local search)
▶ Until budget exhaustion (≈ 3 hours 45 minutes)
▶ Three runs on one problem

Validation: To avoid overfitting
▶ Filter out potentially harmful mutations
▶ Three runs on one unseen problem

Test: To assess generalisation
▶ Three runs on one (new) unseen problem

Sanity check:
▶ Three runs on all nine problems

Blot and Petke, Transactions on Evolutionary Computation, 2021 8



Cross-validation (k = 5)

Data is separated into k disjoint “folds”
Then labelled in k different ways:

a:X

b:Tc:T

d:T

e:V a:T

b:Xc:T

d:V

e:T a:T

b:Tc:X

d:T

e:V a:T

b:Tc:V

d:X

e:T a:V

b:Tc:T

d:T

e:X

Test: (X)
▶ Single fold
▶ Sequentially

Validation: (V)
▶ Single fold
▶ Uniform at random

Training: (T)
▶ k − 2 folds
▶ All remaining
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Results
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Results
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Observations
▶ Consistent −7 to −12%

improvement
▶ Major speedups (up to

−60%) fail to generalise
▶ Various negative impact on

solution quality

11



Patch Examples

Removing IGD computation: (−12% execution time at validation)
+++ after: DMOEA/ dmoeafunc .h

void CMOEAD :: calc_distance () {
distance = 0;

- for(int i=0; i<ps.size (); i++) {
- double min_d = 1.0e+10;
- for(int j=0; j< population .size (); j++) {
- double d = dist_vector (ps[i]. y_obj ,
- population [j]. indiv.y_obj );
- if (d<min_d) min_d = d;
- }
- distance += min_d;
- }

distance /= ps.size ();
}
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Patch Examples

Removing IGD computation: (−12% execution time at validation)
+++ after: DMOEA/ dmoeafunc .h

// load the representative Pareto - optimal solutions
sprintf (filename ,"PF/pf_%s.dat", strTestInstance );

- loadpfront (filename ,ps);

+++ after: DMOEA/ dmoeafunc .h
// load the representative Pareto - optimal solutions

- sprintf (filename ,"PF/pf_%s.dat", strTestInstance );
loadpfront (filename ,ps);

Note:
▶ Final population was captured and externally reassessed
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Patch Examples

Hidden parameter tuning: (−48% execution time at validation)
+++ after: DMOEA/ dmoeafunc .h

// mating selection based on probability
if (rnd < realb) {type = 1;} // neighborhood

- else {type = 2;} // whole population
+ else {} // whole population

Notes:
▶ Brackets added automatically thanks to SrcML
▶ realb = 0.9
▶ Failed to generalise on third problem (test)
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Patch Examples
New strategy: (−27% execution time at validation)
+++ after: DMOEA/ dmoeafunc .h

// produce a child solution
CMOEADInd child;
diff_evo_xover2 ( population [n]. indiv ,

population [p[0]]. indiv ,
population [p[1]]. indiv ,
child );

+ type = 1;
// apply polynomial mutation
realmutation (child , 1.0/ nvar );

Notes:
▶ type is used twice (matingselection(...) and update_problem(...))
▶ Insertion happens between both uses
▶ Fail to generalise on third problem (test)
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Patch Examples
New strategy: (−9% execution time at validation)
+++ after: NSGA2/ nsga2func .h.xml

bool flag = true;
int size = offspring .size ();

- for (int i=0; i<size; i++) {
- if (ind == offspring [i]) {
- flag = false;
- break;
- }
- }
+ nfes = 0;

if(flag) offspring . push_back (ind );

Notes:
▶ Remove duplicity check (reset debug variable)
▶ Generalises, but worse fitness (+50%) during sanity check
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Conclusion

Findings:
▶ “Free” 10% speedup
▶ Algorithmic changes

▶ Some “known”
▶ Some “new”

▶ Overfitting issues

What’s next?
▶ Better multi-objective setup
▶ New targets for edits
▶ Transplantation from optimisation

frameworks
▶ Guidance process

 Work funded by the UK EPSRC grant EP/P023991/1 17



Take Away

To err is human
▶ Practice ̸= theory
▶ Software bugs and defects

Automated performance improvement
▶ Compiler/parameter tuning
▶ Source code evolution (with GI)

Genetic improvement
▶ Evolution applied to software
▶ Functional properties

▶ Bug fixing
▶ Functionality transplantation

▶ Non-functional properties
▶ Execution time
▶ Solution quality
▶ Energy/memory usage

 Aymeric Blot and Justyna Petke, University College London 18
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Complicated Pareto Sets (MOEA/D)
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