Using Genetic Improvement to Optimise Optimisation Algorithm Implementations

Aymeric Blot Justyna Petke

University College London

ROADEF 2022 (25 February 2022)

L http://www0.cs.ucl.ac.uk/staff/a.blot/publis#blot:2022:roadef

Automated Software Improvement

Software synthesis:

$$\min_{s \in S} \quad f(s, T)$$

With:

- s a software
- \blacktriangleright S the set of all software
- ► *f* the fitness function
- \blacktriangleright T the software specification

Genetic improvement:

 $\min_{p(s_0)\in S} \quad f(p(s_0), \ T)$

With:

- \blacktriangleright s_0 a given software
- \blacktriangleright $p(s_0)$ a patched version of s_0

Hypothesis:

 \blacktriangleright s_0 is already very good

Genetic Improvement (GI)

Applications:

- Functional properties
 - Program repair / bug fixing
 - Feature transplantation
- Non-functional properties
 - Execution time
 - Energy / memory usage
 - Solution quality

As an optimisation problem:

- Very expensive
 - Compilation time
 - Fitness uncertainty
 - Fitness approximation
- Inconvenient search space
 - Huge neighbourhoods
 - Deceiving plateaus
 - Fractal nature

Motivation:

Evolve software (source code) to improve performance

Source Code Representation

Example C++ code:

```
if (j > i) {
    x = j;
}
...
```

Software evolution:

- Convert source code to XML (SrcML)
- Focus on selected tags
- Mutate the AST
- Scrub XML tags

Example XML code:

```
<stmt>if <condition>(j &gt; i)</condition> <block>{
    <stmt> x = j;</stmt>
}</block></stmt>
...
```

Genetic Improvement (GI)

In a nutshell:

- Start from original software
- Create software mutations
- Apply, recompile, evaluate, accept
- Accumulate sequences of edits
- Show final patch

Software edits:

- Statement deletion
- Statement insertion
- Statement replacement
- Data structure replacement
- Literal mutation

Case Study

Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II (TEVC 2009)

- Simple C++ implementation
- Nine hardcoded "complicated" problems
- Inverted generational distance (IGD)

Selected files:

- DMOEA/dmoeafunc.h.xml
- NSGA2/nsga2func.h.xml
- common/recombination.h.xml

Experimental Setup

Simple local search:

- First improvement
- Mutation:
 - ▶ 50% create/append edit
 - 50% delete edit
- Fitness:
 - CPU instructions (perf)
 - Reject if solution quality > 110%
- Budget:
 - Wallclock time
 - \blacktriangleright pprox 1000 evaluations

Experimental Protocol

Training: To find improved software variants

- Using the search process (local search)
- Until budget exhaustion (\approx 3 hours 45 minutes)
- Three runs on one problem

Validation: To avoid overfitting

- Filter out potentially harmful mutations
- Three runs on one unseen problem
- Test: To assess generalisation
 - Three runs on one (new) unseen problem

Sanity check:

Three runs on all nine problems

Cross-validation (k = 5)

Data is separated into k disjoint "folds" Then labelled in k different ways:

Test: (X)

- Single fold
- Sequentially

Validation: (V)

- Single fold
- Uniform at random

Training: (T)

- $\blacktriangleright k-2$ folds
- All remaining

Results

100% 100% 267.4% 231.7% 133.7% 100% 100% 131.6% 90% CPU instructions 80% 95% 116.6% 70% 329% 474.5% 2925.5% 106.6% 60% 127.4% 14912.7% O 90% 50% 40% 150.7% 85% Validation All instances Training Validation All instances Training Test Test

MOEA/D

NSGA-II

Results

MOEA/D

Observations

- Consistent -7 to -12% improvement
- Major speedups (up to -60%) fail to generalise
- Various *negative* impact on solution quality

Removing IGD computation: (-12% execution time at validation)

```
+++ after: DMOEA/dmoeafunc.h
void CMOEAD::calc_distance() {
     distance = 0;
     for(int i=0; i<ps.size(); i++) {</pre>
         double \min_d = 1.0e+10;
         for(int j=0; j<population.size(); j++) {</pre>
             double d = dist_vector(ps[i].y_obj,
                                      population[j].indiv.v obj);
             if (d \le min d) = d:
         7
         distance += min_d;
     }
     distance /= ps.size();
 }
```

Removing IGD computation: (-12% execution time at validation)

Note:

Final population was captured and externally reassessed

Hidden parameter tuning: (-48% execution time at validation)

Notes:

Brackets added automatically thanks to SrcML

▶ realb = 0.9

Failed to generalise on third problem (test)

New strategy: (-27% execution time at validation)

Notes:

- type is used twice (matingselection(...) and update_problem(...))
- Insertion happens between both uses
- Fail to generalise on third problem (test)

New strategy: (-9% execution time at validation)

```
+++ after: NSGA2/nsga2func.h.xml
    bool flag = true;
    int size = offspring.size();
- for (int i=0; i<size; i++) {
        if (ind==offspring[i]) {
            flag = false;
            break;
-            }
-            }
+ nfes = 0;
        if(flag) offspring.push_back(ind);</pre>
```

Notes:

- Remove duplicity check (reset debug variable)
- \blacktriangleright Generalises, but worse fitness (+50%) during sanity check

Conclusion

Ⅲ

Findings:

- ▶ "Free" 10% speedup
- Algorithmic changes
 - Some "known"
 - Some "new"
- Overfitting issues

What's next?

- Better multi-objective setup
- New targets for edits
- Transplantation from optimisation frameworks
- Guidance process

Take Away

To err is human

- ▶ Practice \neq theory
- Software bugs and defects

Automated performance improvement

- Compiler/parameter tuning
- Source code evolution (with GI)

Genetic improvement

- Evolution applied to software
- Functional properties
 - Bug fixing
 - Functionality transplantation
- Non-functional properties
 - Execution time
 - Solution quality
 - Energy/memory usage

Selected References

Aymeric Blot and Justyna Petke.

Empirical comparison of search heuristics for genetic improvement of software. *IEEE Transactions on Evolutionary Computation*, 25(5):1001–1011, 2021.

🔋 Hui Li and Qingfu Zhang.

Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II.

IEEE Transactions on Evolutionary Computation, 13(2):284–302, 2009.

Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon, David R. White, and John R. Woodward.

Genetic improvement of software: A comprehensive survey.

IEEE Transactions on Evolutionary Computation, 22(3):415–432, 2018.

Complicated Pareto Sets (MOEA/D)

