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Abstract—Multi-objective optimisation algorithms expose var-
ious parameters that have to be tuned in order to be effi-
cient. Moreover, in multi-objective optimisation, the correlation
between objective functions is known to affect search space
structure and algorithm performance. Considering the recent
success of automatic algorithm configuration (AAC) techniques
for the design of multi-objective optimisation algorithms, this
raises two interesting questions: what is the impact of correlation
between optimisation objectives on (1) the efficacy of different
AAC approaches and (2) on the optimised algorithm designs
obtained from these automated approaches? In this work, we
study these questions for multi-objective local search algorithms
(MOLS) for three well-known bi-objective permutation problems,
using two single-objective AAC approaches and one multi-
objective approach. Our empirical results clearly show that
overall, multi-objective AAC is the most effective approach for
the automatic configuration of the highly parametric MOLS
framework, and that there is no systematic impact of the degree
of correlation on the relative performance of the three AAC
approaches. We also find that the best-performing configurations
differ, depending on the correlation between objectives and the
size of the problem instances to be solved, providing further
evidence for the usefulness of automatic configuration of multi-
objective optimisation algorithms.

Index Terms—Automatic algorithm configuration, Multi-
objective optimisation, Combinatorial optimisation, Heuristic
algorithms

I. INTRODUCTION

Multi-objective optimisation involves two or more objec-
tive functions to be optimised simultaneously. The degree
to which these objectives conflict with each other can vary
and is known to have an impact on the difficulty of multi-
objective optimisation problems. Indeed, Verel et al. [23] have
demonstrated the impact of the correlation between objectives
on the Pareto optimal set for optimising a tunable problem-
independent multi-objective model. Metaheuristics, including
local search and bio-inspired algorithms, are widely used for
solving challenging multi-objective optimisation problems. In
this context, Kessaci-Marmion et al. [14] showed that the
distribution of neighbours of given solutions for classical
multi-objective permutation problems differs, depending on
the degree of correlation between objectives.

Over the last decade, it has become increasingly common to
leverage automatic algorithm configuration (AAC) techniques
in the design and application of high-performance heuristic
algorithms, and in particular, of metaheuristic optimisation
procedures. More recently, AAC approaches have been suc-
cessfully applied to multi-objective optimisation algorithms,
and it has been shown that multi-objective AAC techniques,
which simultaneously optimise multiple performance metrics,
are particularly well-suited in this context [4]. However, it
is unclear how the correlation between optimisation objec-
tives affects AAC for multi-objective optimisation algorithms.
In this work, we investigate this issue, considering multi-
objective local search algorithms [8], [9], [17] for three classi-
cal bi-objective permutation problems: the travelling salesman
problem (TSP), the quadratic assignment problem (QAP) and
the permutation flowshop scheduling problem (PFSP) with
different degrees of correlation between objectives. Specifi-
cally, we address three currently open questions: (1) Does
the performance of the AAC approaches change according
to the degree of correlation between objectives? (2) How are
the optimised configurations produced by AAC affected by
correlation? (3) Do these effects vary with problem instance
size?

The remainder of this paper is organised as follows. Sec-
tion II provides some basic definitions and introduces the
flexible multi-objective local search framework used in our
study. Section III describes the three classical bi-objective
permutation problems we considered. Section IV details three
automated algorithm configuration protocols we used in our
experiments. Results from our experiments are presented in
Section V, and Section VI provides some conclusions and an
outlook on future work.

II. MULTI-OBJECTIVE LOCAL SEARCH ALGORITHMS

In this section, we briefly outline basic notions from multi-
objective combinatorial optimisation, before introducing the
MOLS algorithm framework and its component strategies used
in this work.



A. Multi-objective Combinatorial Optimisation

Multi-objective optimisation problems arise when multiple
criteria have to be optimised simultaneously. To compare two
solutions s1 and s2 of a given problem, the notion of Pareto
dominance is used: s1 is said to dominate s2 if, and only
if, s1 is better or equal to s2 according to all criteria, and
there is at least one criterion according to which s1 is strictly
better than s2. If neither s1 dominates s2 nor s2 dominates
s1, both solutions are called incomparable. Assessing and op-
timising solutions based on Pareto dominance has advantages
over alternatives, such as weighted aggregation of the given
objectives into a single (scalar) measure of solution quality or
ordering objectives lexicographically.

Solving multi-objective combinatorial optimisation prob-
lems based on Pareto dominance involves finding Pareto sets,
i.e., sets of incomparable solutions. Such a set is called a
Pareto optimum with respect to a set of permissible changes to
each of its elements if no such change results in any element
of the set to be dominated.

In order to assess the quality of Pareto sets of solutions, var-
ious indicators have been proposed [15], [19], [25]. These indi-
cators are used to characterise the performance of dominance-
based multi-objective algorithms in terms of convergence,
distribution or cardinality. Since no single quality indicator
is able to capture all of these properties, it is recommended to
consider multiple indicators, preferably ones that complement
each other, in order to assess the performance of multi-
objective algorithms [24].

In this work, we use a combination of two well-known
indicators: hypervolume [25] and a complementary spread
measure. These were chosen in light of their common usage,
their complementarity, and the additional requirements for
unary indicators that do not require reference sets, which
makes them suitable for the automatic algorithm configuration
process at the core of our study.

Hypervolume (HV ) is by far the most broadly used per-
formance indicator in the literature on multi-objective optimi-
sation [21]. Assuming normalised objective values in [0, 1],
unary hypervolume measures the volume between a given
Pareto set of solutions and the point (1, 1). While HV is
primarily a convergence indicator, it also captures information
about the diversity of the set of solutions. In our experiments,
we minimise 1 − HV by means of automated algorithm
configuration (described later).

Our second indicator is a variant of ∆ spread [5], used to
capture the distributional properties of a Pareto set. Given a
Pareto set S, ordered regarding the first criterion, we define
∆′ :=

∑|S|−1
i=1 |di−d̄|
(|S|−1)·d̄ , where d̄ denotes the average over the

Euclidean distances di for i ∈ [1, |S| − 1] between adjacent
solutions on the ordered set S. This indicator is to be min-
imised; it takes small values for large Pareto sets with evenly
distributed solutions, and values close to or greater than 1 for
Pareto sets with few or unevenly distributed solutions.

Algorithm 1: Iterated Multi-Objective Local Search
Output: A Pareto set of solutions

archive, current ← init ();
until termination criterion is met do

until inner termination criterion is met do
/* Selection */
selected ← select (current);
/* Exploration */
candidates ← ∅;
for solution ∈ selected do

ref ← reference ( solution,
current );
accepted ← explore ( solution, ref );
candidates ← candidates

⋃
accepted;

/* Archive */
current ← current

⋃
candidates;

current ← pareto ( current );
current ← bound ( current );

archive ← archive
⋃

current;
archive ← pareto ( archive );
/* Perturbation */
current ← perturb ( archive );

return archive;

B. Multi-objective Local Search

To solve combinatorial problems, metaheuristics are often
preferred to exact methods, since they tend to quickly find
very good solutions. Commonly used metaheuristics include
bio-inspired methods –such as evolutionary, ant colony, and
particle swarms optimisation algorithms– and other types of
stochastic local search methods.

Multi-objective local search (MOLS) algorithms are effi-
cient metaheuristics obtained by extending relatively simple,
yet powerful stochastic local search (SLS) algorithms to deal
with multi-objective optimisation problems [10]. Many MOLS
algorithms have been proposed, most of them based on the
Pareto local search (PLS) [20]; these include iterated PLS [6],
stochastic PLS [7], and anytime PLS [9].

In our experiments, we use the generalised MOLS frame-
work [3], outlined in Algorithm 1. The high-level MOLS
algorithm iterates over four distinct phases: selection, ex-
ploration, archive and perturbation. All four phases can be
instantiated in many different ways, controlled by categorical
parameters, which specify key aspects of the strategies being
used, and numerical parameters, which are used to calibrate
these strategies. In the following, we give an overview of these
parameters and their permissible values (see Table I) that lead
to 10 920 configurations.

Selection. The first step of every iteration is the selec-
tion of a subset of solutions from the current archive (i.e.,
Pareto set) to be further explored, controlled by parameter
select-strat. From the current archive, either all solu-
tions are selected, or only a specific number (specified by
parameter select-size); in the latter case, solutions can be
selected either uniformly at random, or according to the order



TABLE I
MOLS PARAMETERS AND CONFIGURATION SPACE

Phase Parameter Parameter values

Selection select-strat {all, rand, newest, oldest }
Selection select-size {1, 3, 10}
Exploration explor-strat {all, all_imp, imp,imp_ndom, ndom}
Exploration explor-ref {sol, arch}
Exploration explor-size {1, 3, 10}
Archive bound-size {20, 50, 100, 1000}
Perturbation perturb-strat {kick, kick_all, restart}
Perturbation perturb-size {1, 5, 10}
Perturbation perturb-strength {3, 5, 10}

in which they have been added to the archive (from oldest
to newest). In all cases, a solution whose neighbourhood has
been completely explored is never selected again.

Exploration. Parameter explor-strat determines how
the neighbourhood of each solution is explored and which
neighbours will be included into the archive. If the exploration
is exhaustive (values all, all_imp), all improving and
non-dominated neighbours, or only all improving neighbours,
are added as candidates, respectively. Otherwise, exploration
ends after a given number (parameter explor-size) of
either improving (values imp, imp_ndom) or non-dominated
(value ndom) neighbours have been found and added as
candidates. Non-dominated neighbours evaluated during an
imp_ndom exploration are also added as candidates. The
parameter explor-ref specifies if the “improving” and
“non-dominating” criteria are computed using only the current
solution being explored (value sol) or the current set of all
selected solutions (value arch).

Archive. After the exploration phase, all accepted candidate
solutions are added to the archive, and Pareto-dominated
solutions are filtered out. If the size of the archive exceeds the
value of parameter bound-size, non-dominated solutions
are only added to the archive if they replace at least one of
the current solutions.

Perturbation. When the inner termination criterion is
met, neighbourhood exploration is stopped and perturba-
tion is applied to the current archive in order to diversify
the search. Depending on parameter perturb-strat, ei-
ther new solutions, generated uniformly at random (value
restart) are considered, or a kick move (values kick,
kick_all) is applied to a given number of solutions (pa-
rameter perturb-size) or to all solutions of the archive,
respectively. A solution selected for a kick move is replaced
by a solution reached by given number of search steps (pa-
rameter perturb-strength), performed sequentially and
uniformly at random within the given neighbourhood.

III. PERMUTATION PROBLEMS

A. The Bi-objective Permutation Flowshop Problem

In the permutation flow-shop scheduling problem (PFSP),
N jobs {J1, . . . , JN} have to be scheduled on M machines
{M1, . . . ,MM}. Each job Ji is processed sequentially on each
of the machines, with fixed processing times {pi,1, . . . , pi,M},

and machines are critical resources that can only process
one job at a time. The sequencing of jobs is identical on
every machine, so that a solution may be represented by a
permutation of size N . Several objectives are commonly used
for the classical multi-objective PFSP, including makespan
(total completion time of the schedule), total flowtime (sum
of the individual completion times) and total tardiness (when
a due date is associated to each job). In this work, we need
to control the correlation between the objectives. Therefore,
we consider a bi-objective PFSP minimising two makespan
objectives computed from separate matrices (P k)k={1,2} of
processing times, with controlled correlation between P 1 and
P 2, such that pki,j is the processing time of job i on machine
j. The two objectives f1 and f2 are computed from these
matrices as fk(π) =

∑N
i=1 C

k
πi
, where π is the sequence

of jobs and Ckπi
the completion time of job i regarding to

matrix P k.
For this work, we generated our own instances following the

idea of uniform random generation underlying the commonly
used Taillard instances [22] and using a protocol introduced
in [14]. The processing times of matrix P 1 are generated fol-
lowing the uniform distribution U([1; 99]). In the uncorrelated
version of the problem, matrix P 2 is generated independently
of matrix P 1, following the same distribution U([1; 99]). For
the two ρ−correlated versions, the coverage method is used
to generate matrix P 2 from matrix P 1. For each p2

i,j value
of matrix P 2, a real number α is drawn uniformly at random
from [0; 1]. Then, p2

i,j = p1
i,j if α < ρ; otherwise, p2

i,j is
sampled from U([1; 99]). PFSP instances with medium and
high correlation were obtained for ρ = 0.6 and ρ = 0.9,
respectively.

Classical PFSP neighbourhoods include the exchange neigh-
bourhood, where the positions of two jobs are exchanged, and
the insertion neighbourhood, where one job is reinserted at
another position in the permutation. In this study, we consider
a hybrid neighbourhood defined as the union of the exchange
and insertion neighbourhoods, which is known to lead to better
performance than considering each neighbourhood indepen-
dently [9].

B. The Bi-objective Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is one of the most
widely studied combinatorial optimisation problems. It can be
defined by a complete weighted graph G whose nodes repre-
sent cities, while edges corresponds to direct paths between
cities. In the symmetric TSP, the graph is undirected, and edge
weights correspond to distances between cities. Given a TSP
instance G, the goal is to determine a tour passing through
every city exactly once, such that the total distance travelled
is minimised, i.e., a minimum-weight Hamiltonian cycle in G.
This cycle corresponds to a permutation of the cities.

In this work, we consider the bi-objective symmetric TSP,
in which each instance is defined by a graph G, as in the
standard TSP, but each edge between two nodes i and j has
two weights, d1

i,j and d2
i,j . The two objectives, f1 and f2, are



defined as the total distance covered by a given tour according
to each of the two distance matrices D1 and D2, respectively.

Once again, we follow the protocol presented in [14]:
First, the coordinates of the N cities are uniformly sampled
from [0; 3163]2, and the distance values in matrix D1 are
computed as Euclidean distances between these points. In the
uncorrelated version, matrix D2 is independently generated
using the same protocol. For the two ρ−correlated versions,
the original coordinates of each city are moved based on a
normal distribution N (0, ρ), and then, the Euclidean distances
between the new coordinates form the entries of D2. The lower
ρ, the higher the correlation between D1 and D2. Following
Kessaci-Marmion et al. [14], we obtained TSP instances with
medium and high correlation using ρ = 600 and ρ = 150,
respectively.

In the following, we consider the so-called 2-opt neigh-
bourhood, where two tours are neighbours if, and only if, one
can be obtained from the other by removing two non-adjacent
edges reconnecting the resulting tour fragments by two other
edges.

C. The Bi-objective Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) involves as-
signing a set of N facilities to a set of N given locations,
minimising a cost function that depends on the distance
between locations and the flow required between the facilities
assigned to these locations. A solution is then a permutation
π = {π1, . . . , πN}, where πi is the facility of location i.
This well-known single-objective problem has been extended
to multiple objectives by Knowles and Corne [16]. In this
work, we consider a bi-objective QAP with distance matrix
D, where di,j is the distance between locations i and location
j, and two flow-matrices (W k)k={1,2}, such that wki,j is the
required flow between facility i and facility j according to
flow-matrix W k: fk(π) =

∑N
i=1

∑N
j=1 w

k
i,jdπi,πj

.
As for the PFSP and TSP, we follow the same protocol [14]

for generating problem instances. First, we compute D as a
symmetric matrix of size N×N using the Manhattan distance
between N locations uniformly generated within the interval
[0; 99].

The values of the flow-matrix W 1 are sampled from
U([0; 99]). In the uncorrelated version, W 2 is also sam-
pled from U([0; 99]), independently of W 1. For the two
ρ−correlated versions, we use the coverage method to generate
matrix W 2 from matrix W 1. For each w2

i,j value of matrix
W 2, a real number β is sampled uniformly at random from
[0; 1]. Then, w2

i,j = w1
i,j if β < ρ; otherwise, w2

i,j is sampled
from U([0; 99]). As for the PFSP, we obtain QAP instances
with medium and high correlation for ρ = 0.6 and ρ = 0.9,
respectively.

In this work, we consider the commonly used exchange
operator for the QAP, under which a neighbour of a solution
is obtained by swapping two facilities between their two
locations.

D. Benchmark Sets

For each of these three bi-objective permutation problems,
we considered six benchmark sets, using two instances sizes
and three degrees of correlation between the given objectives.
For the PFSP, we considered a set of medium-size instances
with 50 jobs and 20 machines, as well as a set of instances
with 100 jobs and 20 machines. For the TSP, we considered
a set of 50-city instances and a set with 100-city instances.
Similarly, for the QAP, we considered two sets of 50- and
100-facility instances.

For each of the 18 resulting benchmark sets, we generated
30 bi-objective instances for use as training and validation
sets during automated configuration, and a second set of 10
additional instances for subsequent performance testing.

IV. AUTOMATIC ALGORITHM CONFIGURATION

A. Background

Given an algorithm A with parameters that affect its per-
formance, e.g. running time on a given input, automatic al-
gorithm configuration (AAC) aims to automatically determine
performance-optimising settings of these parameters for a
given set or distribution of inputs of A. In this context, A
is called the target algorithm, each combination of settings of
A’s performance parameter is called a configuration of A, and
the procedure used to find performance-optimising configura-
tions is known as a configuration procedure or configurator.
Furthermore, we refer to the set of all valid configurations of
A as the configuration space of A. We note that automatic
algorithm configuration can be seen as a supervised learning
problem, with the set or distribution of inputs of the given
target algorithm as training data.

AAC involves the optimisation of a single performance
objective, such as running time or solution quality as the
optimisation objective. However, the problem can easily be ex-
tended to deal with multiple performance measures of a given
target algorithm, which leads to the multi-objective automated
algorithm configuration (MO-AAC) problem we consider in
the following. Formally, in MO-AAC, the performance of a
given configuration is characterised by a vector, and the goal
is to find a Pareto-optimal set of configurations.

There has been a substantial amount of research on
single-objective algorithm configuration (SO-AAC) proce-
dures, resulting in several widely used high-performance,
general-purpose configurators, including ParamILS [12], [13],
SMAC [11] and irace [1], [18]. Recently, ParamILS has been
extended to multi-objective algorithm configuration, and the
resulting MO-ParamILS procedure has been demonstrated to
be effective in a number of MO-AAC scenario [2]. In light of
their performance, versatility, and ready availability, we chose
to use ParamILS as SO-AAC and MO-ParamILS as MO-AAC
in this study.

B. Experimental Protocol

We consider three AAC approaches for optimising the
performance of a multi-objective local search algorithms in



TABLE II
PFSP 50 JOBS 20 MACHINES (optimised configurations)

1-HV ∆′ Selection Explo. Arch. Perturb.

(high correlation)
0.494 1.385 oldest 1 ndom arch 1 1000 kick 1 10
0.494 1.355 oldest 1 ndom arch 1 50 kick 1 5
0.495 1.230 oldest 1 ndom sol 1 20 kick 1 3
0.505 1.112 rand 10 ndom arch 10 1000 restart
0.508 1.084 rand 10 all 50 kick all 3
0.512 1.044 rand 10 ndom arch 1 1000 kick all 3
0.513 1.036 all ndom arch 3 20 restart
0.514 0.753 rand 1 all imp arch 100 restart
0.515 0.662 rand 1 imp arch 3 100 restart
0.515 0.662 rand 1 imp arch 3 50 restart
0.517 0.328 rand 1 imp sol 1 100 restart
0.519 0.115 rand 1 imp arch 1 20 kick 10 10
0.520 0.090 oldest 1 imp arch 1 20 kick 1 3

(medium correlation)
0.503 1.209 oldest 1 ndom sol 3 1000 kick 5 3
0.503 1.186 oldest 1 ndom sol 3 100 kick 5 10
0.505 1.125 oldest 1 ndom arch 1 50 kick 10 10
0.509 1.056 rand 10 all 50 restart
0.509 0.945 oldest 1 ndom sol 3 20 kick 1 3
0.517 0.882 all ndom arch 3 20 kick 1 5
0.520 0.855 rand 1 imp arch 3 1000 restart
0.521 0.723 rand 1 imp arch 3 100 kick all 5
0.521 0.723 rand 1 imp arch 3 1000 kick all 5
0.521 0.723 rand 1 imp arch 3 20 kick all 10
0.522 0.493 rand 1 imp sol 1 100 restart
0.522 0.493 rand 1 imp sol 1 50 restart
0.522 0.478 rand 1 imp arch 1 1000 restart
0.522 0.478 rand 1 imp arch 1 20 restart
0.525 0.195 rand 1 imp arch 1 20 kick all 10
0.527 0.116 oldest 1 imp arch 1 20 kick 10 10
0.527 0.028 rand 1 imp arch 1 100 kick 1 5
0.527 0.028 rand 1 imp sol 1 20 kick 1 10
0.527 0.028 rand 1 imp sol 1 50 kick 1 10
0.528 0.025 oldest 1 imp arch 1 20 kick 1 3

(no correlation)
0.521 0.971 rand 10 ndom arch 3 1000 kick 5 10
0.521 0.970 rand 10 ndom arch 3 1000 kick 10 3
0.524 0.841 rand 3 imp ndom sol 10 50 kick all 10
0.531 0.806 newest 1 ndom arch 3 50 kick 5 10
0.533 0.806 rand 10 all 20 kick 5 10
0.540 0.762 rand 1 imp sol 3 100 kick 10 3
0.541 0.586 all imp arch 1 100 restart
0.541 0.586 all imp arch 1 1000 restart
0.541 0.586 all imp arch 1 50 restart
0.541 0.586 newest 10 imp arch 1 100 restart
0.542 0.579 oldest 3 imp sol 1 20 restart
0.542 0.579 rand 10 imp sol 1 1000 restart
0.542 0.579 rand 10 imp sol 1 50 restart
0.542 0.579 rand 3 imp sol 1 1000 restart
0.545 0.318 rand 1 imp arch 1 20 kick 10 10
0.545 0.317 rand 1 imp sol 1 1000 kick 10 10
0.548 0.227 oldest 1 imp sol 1 1000 kick 10 5
0.550 0.129 rand 1 imp sol 1 50 kick 1 10

terms of hypervolume and spread indicators [4]. HV is a SO-
AAC approach that optimises the hypervolume indicator only;
it gives a baseline for the other two approaches that take into
account both performance metrics of interest. HV +∆′ is a SO-
AAC approach that optimises a weighted sum of hypervolume
and spread. Finally, HV ||∆′ is a MO-AAC approach that
simultaneously optimises hypervolume and spread with Pareto
consideration.

Experiments are conducted for a given scenario following
three phases [2] using ParamILS or MO-ParamILS config-
urators. First, during the training phase, the configurator is
run 20 times with a budget of 1000 target algorithm runs,
using a different and random ordering of the training instances.

TABLE III
PFSP 100 JOBS 20 MACHINES (optimised configurations)

1-HV ∆′ Selection Explo. Arch. Perturb.

(high correlation)
0.354 1.885 oldest 1 ndom arch 1 1000 kick 1 10
0.356 1.760 oldest 1 ndom arch 1 100 kick 1 3
0.365 1.511 oldest 1 ndom sol 1 20 kick 10 5
0.375 1.468 oldest 1 ndom arch 1 20 kick 1 3
0.375 1.499 rand 3 all 100 kick 10 10
0.375 1.429 oldest 1 ndom sol 1 20 restart
0.377 1.306 rand 10 all 20 restart
0.379 1.268 newest 10 ndom arch 3 20 restart
0.380 1.240 newest 10 ndom arch 10 20 restart
0.380 0.996 rand 1 all imp arch 1000 kick 10 10
0.380 0.982 rand 1 all imp arch 1000 restart
0.382 0.796 rand 1 imp arch 3 1000 restart
0.382 0.796 rand 1 imp arch 3 20 restart
0.383 0.779 rand 3 all imp sol 50 kick 5 3
0.384 0.120 rand 1 imp arch 1 20 restart
0.384 0.071 rand 1 imp arch 1 50 kick all 5

(medium correlation)
0.369 1.748 oldest 1 ndom arch 1 1000 kick 1 5
0.369 1.747 oldest 1 ndom arch 1 1000 kick 1 3
0.369 1.746 oldest 1 ndom arch 1 1000 kick 1 10
0.367 1.594 oldest 1 ndom arch 1 100 kick 5 3
0.370 1.551 oldest 1 ndom arch 1 100 kick 1 3
0.370 1.548 oldest 1 ndom arch 1 100 kick 1 5
0.372 1.440 oldest 1 ndom arch 1 50 kick 10 3
0.378 1.431 rand 1 ndom arch 10 1000 restart
0.379 1.325 oldest 1 ndom arch 1 20 kick 10 10
0.379 1.241 rand 3 ndom arch 10 100 kick all 3
0.381 1.083 rand 3 imp ndom arch 10 100 kick 5 10
0.381 1.058 rand 1 imp ndom sol 10 100 kick 5 5
0.381 1.050 rand 10 imp ndom arch 10 100 kick all 10
0.382 1.015 rand 3 imp ndom arch 10 50 restart
0.382 1.007 rand 10 imp ndom sol 10 50 kick all 10
0.384 0.962 rand 10 all 50 kick 1 10
0.385 0.946 all ndom arch 3 20 kick 1 3
0.387 0.862 rand 10 all 20 kick all 10
0.390 0.166 rand 1 imp arch 1 1000 restart
0.392 0.057 rand 1 imp sol 1 50 kick 10 10
0.393 0.006 rand 1 imp sol 1 20 kick 1 10
0.393 0.006 rand 1 imp sol 1 50 kick 1 10

(no correlation)
0.387 1.214 rand 1 ndom arch 1 1000 restart
0.387 1.169 rand 3 ndom arch 3 1000 kick all 3
0.387 1.167 rand 3 ndom arch 3 1000 kick 5 5
0.387 1.165 rand 3 ndom arch 3 1000 kick all 10
0.388 0.996 rand 10 ndom arch 10 1000 restart
0.388 0.989 rand 10 ndom arch 10 1000 kick 1 10
0.389 0.957 rand 1 ndom arch 10 100 kick 5 3
0.389 0.948 rand 10 ndom arch 10 100 kick all 3
0.389 0.942 rand 10 ndom arch 10 100 kick 1 10
0.390 0.923 rand 1 imp ndom arch 3 100 kick all 3
0.390 0.922 rand 1 imp ndom arch 3 100 restart
0.393 0.804 all ndom arch 3 50 kick 10 5
0.403 0.148 rand 1 imp sol 1 50 restart
0.403 0.150 rand 1 imp arch 1 1000 restart
0.403 0.150 rand 1 imp arch 1 50 restart
0.408 0.148 rand 1 imp sol 1 50 kick 10 10
0.408 0.130 rand 1 imp arch 1 1000 kick all 3
0.411 0.074 all imp arch 1 100 kick 1 5
0.411 0.074 all imp arch 1 50 kick 1 5
0.411 0.074 all imp sol 1 1000 kick 1 3
0.411 0.074 all imp sol 1 20 kick 1 10
0.411 0.074 newest 10 imp arch 1 100 kick 1 3

The search starts from 10 configurations uniformly sampled
on the configuration space. A threshold was set to limit, for
a given configuration, the number of runs to 100, in order
to force diversification. Indeed, preliminary experiments show
that the threshold may be reached overall 5 times for both HV
and HV +∆′ approaches. Both approaches using ParamILS
followed the recommendation of using adaptive and aggressive



capping [12]. All SO and MO approaches used the Focused
variant of (MO-)ParamILS.

During the validation phase, each configuration returned by
the configurator is run 1 time on each of the 30 training in-
stances, totalling 30 runs per configuration. Pareto-dominated
configurations are then filtered.

Finally, during the test phase, each non-dominated config-
uration is run 10 times on each of the 10 testing instances,
totalling 100 runs, and Pareto-dominated configurations are
filtered to obtain the final set of optimal configurations,
presented and discussed in the next Section.

V. EXPERIMENTAL RESULTS

In this section, we present the results of our experiments
on the three problems we studied, followed by a general
discussion of the impact of objective correlation on AAC.

A. Optimised Configuration

PFSP. Tables II and III show the final non-dominated con-
figurations found by the three AAC approaches HV , HV +∆′

and HV ||∆′ on our six PFSP scenarios. The configurations
found across all six scenarios are very similar. The combi-
nation of ndom exploration with either the oldest or the
rand selection strategy seems to lead to the best performance
in terms of hypervolume, while the combination of the imp
exploration strategy with the rand selection strategy leads to
solution sets with worse hypervolume but better spread. While
both the sol and arch exploration reference choices are
found within the final configurations for all scenarios, arch
is slightly more favoured on larger instances, indicating that
referencing more stringently against the current archive during
exploration is beneficial for larger instance sizes.

The degree of correlation between objective does not seem
to impact the set of optimised configurations.

TSP. Tables IV and V show the final non-dominated
configurations found by our three AAC approaches, HV ,
HV +∆′ and HV||∆′, on the six TSP scenarios. Compared
to the PFSP scenarios, the number of distinct non-dominated
configurations is much smaller. The configurations we found
vary strongly with both correlation level and problem size.
Overall, the ndom exploration strategy is preferred, together
with either the rand or the oldest strategy. However, for
instance with medium or no correlation, the arch exploration
reference leads to better HV performance, and may be used
together with the imp_ndom exploration strategy when the
number of cities increases. Furthermore, on smallest high
correlated instances the MOLS algorithm may benefit from
using a bounded archive and restart between iterations, while a
large archive of size 1000 is chosen (i.e., basically unbounded),
along with a kick-based perturbation strategy, for all other
instances. This is consistent with the idea that larger TSP in-
stances benefit from a less aggressive perturbation mechanism
in combination with a more diverse archive of candidate tours.

On the TSP, we note that correlation between objective has
an impact similar to the problem size, making low (and no)
correlated small instances significantly harder and requiring

TABLE IV
TSP 50 CITIES (optimised configurations)

1-HV ∆′ Selection Explo. Arch. Perturb.

(high correlation)
0.157 0.804 oldest 1 ndom sol 3 1000 restart
0.157 0.804 oldest 1 ndom sol 3 100 restart
0.157 0.732 rand 1 ndom sol 1 50 restart
0.158 0.670 rand 1 ndom sol 3 1000 restart
0.158 0.669 rand 1 ndom sol 3 100 restart
0.158 0.646 rand 1 ndom sol 3 50 restart
0.159 0.612 rand 1 ndom sol 10 50 restart
0.159 0.606 all ndom arch 10 50 restart
0.160 0.591 oldest 1 ndom sol 3 1000 kick 10 3
0.162 0.562 oldest 1 imp sol 10 50 restart
0.162 0.452 oldest 1 imp arch 1 100 restart

(medium correlation)
0.163 0.662 rand 1 ndom arch 1 1000 kick all 3
0.165 0.658 rand 1 ndom arch 10 1000 kick 10 3
0.167 0.658 rand 1 ndom arch 10 1000 kick 10 10
0.167 0.657 rand 1 ndom arch 10 1000 restart

(no correlation)
0.185 0.676 rand 1 ndom arch 1 1000 kick all 5
0.185 0.676 rand 1 ndom arch 1 1000 kick all 10
0.185 0.676 rand 1 ndom arch 1 1000 kick all 3
0.190 0.655 rand 1 ndom arch 1 1000 restart
0.195 0.655 rand 1 ndom sol 1 1000 kick all 10
0.196 0.625 rand 3 ndom sol 3 1000 restart
0.207 0.617 rand 1 ndom sol 1 1000 restart

TABLE V
TSP 100 CITIES (optimised configurations)

1-HV ∆′ Selection Explo. Arch. Perturb.

(high correlation)
0.115 0.629 rand 1 ndom sol 3 1000 kick 10 3
0.115 0.6232 rand 3 ndom sol 10 1000 kick all 3

(medium correlation)
0.123 0.816 rand 10 imp ndom arch 1 1000 kick 10 10
0.123 0.662 rand 3 ndom sol 10 1000 kick all 10
0.123 0.662 rand 3 ndom sol 10 1000 restart
0.123 0.661 rand 3 ndom sol 10 1000 kick 1 3
0.123 0.661 rand 3 ndom sol 10 1000 kick all 3
0.123 0.660 rand 3 ndom sol 10 1000 kick all 5
0.125 0.654 rand 1 ndom sol 3 1000 restart
0.125 0.653 rand 1 ndom sol 1 1000 kick all 5
0.126 0.644 rand 1 ndom sol 1 1000 restart

(no correlation)
0.139 0.956 oldest 1 imp ndom arch 1 1000 kick 5 3
0.139 0.956 oldest 1 imp ndom arch 1 1000 kick 10 3
0.139 0.955 oldest 1 imp ndom arch 1 1000 kick 5 5
0.139 0.902 oldest 3 ndom sol 10 1000 kick 10 10
0.139 0.901 oldest 3 ndom sol 10 1000 kick 10 5
0.140 0.885 oldest 1 ndom sol 10 1000 kick all 5
0.140 0.857 oldest 10 ndom sol 10 1000 kick 10 10
0.141 0.654 rand 10 ndom sol 10 1000 kick 10 3
0.141 0.653 rand 10 ndom sol 10 1000 kick 10 5
0.145 0.645 rand 1 ndom sol 3 1000 kick 10 3
0.145 0.643 rand 3 ndom sol 3 1000 kick 10 5
0.145 0.636 rand 10 ndom sol 3 1000 kick all 3

more aggressive mechanisms than equally sized high corre-
lated instances.

QAP. Tables VI and VII show the final non-dominated
configurations found by our three AAC approaches for the
six QAP scenarios. Again, much fewer configurations were
obtained than for the PFSP scenarios. These configurations are
much more varied than for the PFSP and TSP, and vary with
instance size as well as correlation between the objectives.
The restart perturbation strategy is favoured for small,



TABLE VI
QAP 50 FACILITIES (OPTIMISED CONFIGURATIONS)

1-HV ∆′ Selection Explo. Arch. Perturb.

(high correlation)
0.319 0.893 oldest 1 ndom sol 1 1000 restart
0.319 0.882 oldest 1 ndom sol 1 100 restart
0.319 0.872 oldest 1 ndom sol 1 20 restart
0.320 0.443 oldest 1 imp arch 3 50 restart
0.320 0.343 rand 1 imp arch 1 50 restart
0.321 0.309 oldest 1 imp arch 1 100 restart
0.321 0.301 rand 1 imp sol 1 50 restart
0.321 0.266 oldest 1 imp sol 1 20 restart
0.321 0.169 oldest 1 imp arch 1 20 kick all 10

(medium correlation)
0.321 0.884 oldest 1 ndom arch 1 1000 restart
0.321 0.876 oldest 1 ndom arch 1 100 restart
0.321 0.861 oldest 1 ndom sol 1 100 kick 1 3
0.321 0.849 oldest 1 ndom sol 1 1000 kick 1 3
0.321 0.848 oldest 1 ndom sol 1 100 kick 1 5
0.322 0.498 oldest 1 imp arch 3 100 kick 5 3
0.322 0.172 oldest 1 imp arch 1 100 kick 5 3

(no correlation)
0.322 0.797 rand 10 ndom arch 3 1000 restart
0.322 0.787 rand 1 ndom arch 3 1000 restart
0.322 0.784 rand 1 ndom arch 3 1000 kick 10 3
0.322 0.782 rand 1 ndom arch 3 1000 kick all 10
0.322 0.770 rand 1 ndom sol 10 1000 kick all 10
0.322 0.716 rand 1 imp sol 1 100 restart
0.322 0.710 oldest 1 imp sol 1 50 restart

TABLE VII
QAP 100 FACILITIES (OPTIMISED CONFIGURATIONS)

1-HV ∆′ Selection Explo. Arch. Perturb.

(high correlation)
0.319 0.839 oldest 1 ndom sol 1 50 restart
0.320 0.815 oldest 1 ndom sol 1 20 restart
0.320 0.525 rand 1 imp arch 3 1000 kick 10 3
0.320 0.297 rand 1 imp sol 3 50 kick 5 3
0.320 0.100 rand 1 imp sol 1 100 kick all 10
0.321 0.090 newest 10 imp arch 1 1000 kick all 10
0.321 0.080 all imp sol 1 50 kick 10 3

(medium correlation)
0.320 0.907 oldest 1 ndom arch 1 1000 restart
0.320 0.886 oldest 1 ndom arch 1 1000 kick 10 3
0.320 0.878 oldest 1 ndom sol 1 1000 kick 10 5
0.320 0.868 oldest 1 ndom sol 1 1000 kick 1 5
0.320 0.838 oldest 1 ndom arch 1 1000 kick 1 3
0.321 0.808 rand 1 imp ndom arch 1 1000 kick all 3
0.321 0.797 rand 3 imp ndom arch 1 1000 kick all 3
0.321 0.408 rand 1 all imp sol 1000 kick all 5
0.321 0.302 rand 1 all imp sol 100 kick 5 5
0.321 0.272 rand 1 all imp sol 100 kick 10 10
0.321 0.157 rand 1 imp sol 3 50 kick all 5
0.321 0.000 rand 1 imp arch 1 50 kick 1 10

(no correlation)
0.321 0.713 rand 3 imp ndom arch 1 1000 restart
0.321 0.710 rand 3 imp ndom arch 1 1000 kick 1 3
0.321 0.708 rand 1 imp ndom arch 1 1000 kick all 3
0.321 0.702 rand 3 imp ndom arch 1 1000 restart
0.321 0.702 rand 10 imp ndom arch 1 1000 kick all 10
0.321 0.261 rand 1 imp sol 3 50 kick 5 3
0.321 0.000 rand 1 imp arch 1 1000 kick all 5

50-facility instances, while kick-based perturbation strategies
appear to work better for the larger 100-facility instances.
Interestingly, the larger instances seem to be amenable to a
wider range of exploration strategies. However, the degree of
objective correlation affects the choice of exploration strategy;
e.g., for the larger instances, the imp_ndom exploration

TABLE VIII
AAC PERFORMANCE: NUMBER OF FINAL CONFIGURATIONS AND

OBJECTIVE RANGES

# 1-HV values ∆′ values # 1-HV values ∆′ values

PFSP 50 jobs 20 machines PFSP 100 jobs 20 machines
(high correlation)

HV 3 0.494–0.495 1.230–1.385 3 0.354–0.375 1.499–1.884
HV +∆′ 5 0.495–0.519 0.402–1.523 3 0.355–0.375 1.485–1.930
HV ||∆′ 13 0.495–0.519 0.090–1.454 15 0.355–0.384 0.071–1.930

(medium correlation)
HV 1 0.503 1.186 3 0.369–0.370 1.551–1.748

HV +∆′ 4 0.503–0.508 1.056–1.209 8 0.369–0.382 1.015–1.746
HV ||∆′ 19 0.503–0.527 0.025–1.187 14 0.370–0.393 0.006–1.548

(no correlation)
HV 1 0.521 0.970 1 0.387 1.167

HV +∆′ 1 0.521 0.971 5 0.387–0.390 0.822–1.170
HV ||∆′ 17 0.521–0.550 0.129–0.975 20 0.386–0.411 0.074–1.215

TSP 50 cities TSP 100 cities
(high correlation)

HV 3 0.157–0.158 0.669–0.804 2 0.115 0.623–0.629
HV +∆′ 4 0.158–0.160 0.591–0.670 2 0.115 0.627–0.629
HV ||∆′ 6 0.157–0.164 0.452–0.732 2 0.115 0.623–0.630

(medium correlation)
HV 1 0.167 0.657 2 0.123 0.662–0.816

HV +∆′ 2 0.167 0.658–0.662 3 0.123 0.660–0.662
HV ||∆′ 2 0.167 0.658–0.663 5 0.123–0.126 0.644–0.815

(no correlation)
HV 1 0.185 0.676 4 0.139–0.140 0.884–0.956

HV +∆′ 1 0.185 0.676 5 0.139–0.141 0.654–0.957
HV ||∆′ 5 0.185–0.207 0.617–0.676 8 0.139–0.145 0.636–0.955

QAP 50 facilities QAP 100 facilities
(high correlation)

HV 2 0.319 0.881–0.882 1 0.319 0.839
HV +∆′ 2 0.319 0.872–0.893 1 0.319 0.821
HV ||∆′ 8 0.319–0.321 0.169–0.891 6 0.320–0.321 0.080–0.815

(medium correlation)
HV 3 0.321 0.849–0.884 1 0.320 0.868

HV +∆′ 3 0.321 0.848–0.878 5 0.320–0.321 0.000–0.886
HV ||∆′ 3 0.321–0.322 0.172–0.861 8 0.320–0.321 0.000–0.907

(no correlation)
HV 2 0.322 0.787–0.794 4 0.321 0.702–1.219

HV +∆′ 2 0.322 0.781–0.796 3 0.321 0.710–1.249
HV ||∆′ 5 0.322 0.710–0.7973 4 0.321 0.000–0.708

strategy is only chosen when the objectives are uncorrelated.
Similarly, we found that bounding the archive size appears to
work only well for sufficiently correlated objectives, while the
same observation holds for the oldest selection strategy.

B. Configurator Performance

Table VIII summarises the performance of our three AAC
approaches, HV , HV +∆′, and HV ||∆′, on all 18 scenarios,
and details the number of final configurations and the range
of hypervolume and ∆′ indicator values.

Clearly, HV ||∆′ produces much larger sets of configura-
tions than HV and HV +∆′, in particular for the PFSP. While
HV +∆′ and HV ||∆′ achieve overall similar hypervolume val-
ues to the dedicated HV approach, on some scenarios (highly
correlated PFSP and uncorrelated 100-city TSP), HV achieves
the best hypervolume, as could be expected. Surprisingly,
on the uncorrelated 100−job PFSP scenario, the HV ||∆′
approach performs best in terms of hypervolume. Regarding
the complementary ∆′ spread indicator, HV ||∆′ generally
achieves much better results, which are only occasionally
matched by the HV +∆′ approach, when the direction of
aggregation is compatible with the shape of the optimised front



of solutions; but to ensure this is the case, a costly preliminary
analysis is required to permit appropriate normalisation of
hypervolume and ∆′ spread. These observations are consistent
with the work of Blot et al. [3]. As for correlation between
objectives, there is no clear overall impact on the three AAC
approaches. We note, however, that the single-objective HV
approach clearly achieves the best hypervolume for the highly
correlated PFSP scenarios.

VI. CONCLUSION

In our experiments, we automatically configured multi-
objective local search (Algorithm 1) on 18 different scenar-
ios, spanning three bi-objective permutation problems, two
instance sizes per problem, and three degrees of correlation
between optimisation objectives.

We found that of the three configuration approaches we
considered, the multi-objective AAC procedure HV ||∆′ tends
to work best; for most of our scenarios, it was able to find
larger sets of non-dominated configurations that typically span
a larger range of ∆′ values. At the same time, HV ||∆′ still
achieves hypervolume values that compare favourably against
those obtained from HV , which only optimises hypervolume.
The HV +∆′ approach shows performance similar to that
of HV , while only sometimes achieving better spread of
configurations, when its aggregation direction closely matches
the shape of the optimal front of solutions.

Interestingly, although the automatically optimised config-
urations of MOLS found by our three AAC approaches are
similar within each scenario, they vary markedly between
scenarios, and we found that for each parameter we con-
sidered, every possible value was present in at least one of
the optimised, non-dominated configurations. Looking closer,
we noticed differences induced by all three factors, problem,
instance size, and objective correlation, as well as preferred
values for some parameters. While the optimal configurations
on PFSP instances does not seem to be affected by correlation,
larger instances slightly favour more aggressive strategies.
Performance on TSP instances is similarly affected by low
correlation between objectives and large instances, which both
make the problem considerably harder.

Finally, correlation level and instance size both impact
different parameters of MOLS algorithms on QAP instances.

Overall, our results show that the correlation between objec-
tives can impact the optimal configuration of a given problem
as much as problem size, strongly implying that automatic
algorithm configuration should be performed for each instance
class independently. Further insights might be obtained based
on an exhaustive analysis of a reduced configuration space for
each scenario, in which the effects of all parameters can be
determined more precisely.
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