
Synthetic Benchmarks for Genetic Improvement
Aymeric Blot

University College London
London, United Kingdom

a.blot@cs.ucl.ac.uk

Justyna Petke
University College London
London, United Kingdom

j.petke@ucl.ac.uk

ABSTRACT
Genetic improvement (GI) uses automated search to find improved
versions of existing software. If over the years the potential of many
GI approaches have been demonstrated, the intrinsic cost of evalu-
ating real-world software makes comparing these approaches in
large-scale meta-analyses very expensive. We propose and describe
a method to construct synthetic GI benchmarks, to circumvent
this bottleneck and enable much faster quality assessment of GI
approaches.

CCS CONCEPTS
• Software and its engineering → Search-based software

engineering.
KEYWORDS

Genetic improvement; Search-based software engineering

ACM Reference Format:
Aymeric Blot and Justyna Petke. 2020. Synthetic Benchmarks for Genetic
Improvement. In IEEE/ACM 42nd International Conference on Software Engi-
neering Workshops (ICSEW’20), May 23–29, 2020, Seoul, Republic of Korea.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3387940.3392175

1 INTRODUCTION
Genetic improvement (GI) [7] uses automated search to find im-
proved versions of existing software. In the last decade many works
have repeatedly demonstrated the potential of GI for the improve-
ment of both functional and non-functional properties of software.
The GI field however suffers frommajor segmentation, due to a lack
of standard GI benchmarks, as work usually focuses on different
software, at different granularity levels, for different application
scenarios, using slightly different search processes. If many of these
steps are determined by the problem at hand (e.g., the programming
language, the fitness function), many others require to be manually
fixed, at great costs, using expert knowledge.

There is still much to learn on how to, given a specific applica-
tion scenario, select the most suitable approach. Ideally one would
simply select a set of various different software, compute a set of
features (e.g., programming language, size, application), and per-
form a comprehensive study to understand relationships between
features and approaches. This is currently infeasible due to the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392175

inherently very high cost of running GI experiments. Indeed, in
essence all GI approaches suffer from the inevitable bottleneck that
is fitness assessment, requiring in most cases to repeatedly run the
(slow) targeted software. Although GI runs are easily parallelis-
able, the product of the number of scenarios, number of search
algorithms, number of parameter configurations, and repetitions
required for statistical validation, drastically reduces the scope for
quick experimentation. Additionally, meta-approaches such as au-
tomated algorithm configuration, automated algorithm selection,
or even genetic improvement of the GI approaches are also cur-
rently infeasible, being orders of magnitude slower than the GI
approaches.

To enable such large-scale experiments, it is necessary to be
able to avoid the expense of repetitive fitness evaluation. We pro-
pose to construct new, artificial scenarios, in which the fitness
evaluation would not require any costly computation. These new
scenarios would use synthetic data, automatically generated fol-
lowing statistics obtained from real scenarios obtained beforehand
using preliminary analyses. Generating artificial data is often done
when data is too scarce or too expensive to obtain [4], and mostly
prevalent in machine learning and data science [5]. Other possible
solutions may include simulating the execution of software variants,
or computing surrogate models to predict its performance [2].

2 FORMALISM
GI focuses on improving somemeasure of a given software, typically
its ability to clear a test suite without error or a performance mea-
sure such as running time, or memory or energy consumption [7].
GI can be formalised [1] as an abstract optimisation problem, as
shown in Equation 1, given the space 𝑆 of variants of the target
software 𝑠0, a distributionD (e.g., the test suite of an automated pro-
gram repair scenario or the inputs or instances of a non-functional
property optimisation scenario), a cost metric 𝑜 : 𝑆 × D → R, and
a statistical population parameter 𝐸 (e.g., the arithmetic mean).

(GI)
{

optimise 𝐸 [𝑜 (𝑠, 𝑖), 𝑖 ∈ D]
subject to 𝑠 ∈ 𝑆

(1)

We propose to completely substitute in Equation 1 the costly fit-
ness estimation 𝐸 [𝑜 (𝑠, 𝑖), 𝑖 ∈ D] of the software variant 𝑠 , requiring
compilation and subsequent multiple executions of 𝑠 over elements
of D, by a single query to synthetic model, following the list of mu-
tations between 𝑠 and 𝑠0. In practice, the model needs to associate
with each possible software variant 𝑠 both a final state—e.g., for
cases when the mutated software failed to compile, or provides an
invalid result—and the actual measure of the quality of 𝑠 .

3 PROPOSAL
For the sake of simplicity, we assume an extremely simple scenario,
in which: (1) the targeted software is represented by an abstract

https://doi.org/10.1145/3387940.3392175
https://doi.org/10.1145/3387940.3392175

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Aymeric Blot and Justyna Petke

syntax tree (AST) of 𝑛 statements, (2) software variants are repre-
sented by lists of mutations, (3) mutations are either deletions or
replacements of statements, (4) the quality measure of a software
is the average running time over a set of inputs, and (5) validity of
a variant can be checked simply by comparing outputs.

3.1 Analysing the Original Software
GI search spaces are huge. Even by only considering deletions
and replacements, there are around 𝑛 + 𝑛2 different mutations, and
therefore around

∑𝑚
𝑘=1 (𝑛+𝑛

2)𝑘 software variants up to𝑚mutations
to consider. In order to keep the complexity of our model low, we
will suppose that the contribution of mutations are all independent.

The first step of our proposition is to collect statistics from the tar-
geted real-world software. Unless 𝑛 is extremely large, it should be
reasonable to consider all deletions, but mutations such as replace-
ments will necessarily require uniform random sampling. Each of
the selected mutations is to be individually investigated, each time
recording if the mutated variant compiled, successfully returned an
acceptable output, and the associated running time normalised to
the running time of the original software. Aggregating these data
provides for each type of mutation the distributions that will be
used to create the synthetic data.

3.2 Forging the Synthetic Model
We need to construct a model that can, given a list of mutations,
provide a consistent and coherent alternative to compiling and
running the associated mutated software. The model is ultimately
equivalent to a simple hash table, with software variants as keys
and results as values. As mentioned before, we consider here a very
simplistic model in which the contributions of individual mutations
are independent, so the hash table only needs to contain around
𝑛 + 𝑛2 keys, while the values are randomly generated according to
the previously acquired statistics.

To generate values on-the-fly and avoid to actually storing that
much data, we propose to rely instead on the pseudo-random num-
ber generator. From a canonical string representation of the muta-
tion, supposedly unique, salted with the root random seed of the
model, it is easy to generate a hash that can be used as a random
seed to regenerate the characteristics of that particular mutation.

To then aggregate the individual contributions, we propose to
abide by the following rules. First, if one or more mutations fail
to compile, the complete patch is deemed to have failed to com-
pile. Similarly, a mutation leading to a wrong output will cause the
complete patch to also lead to a wrong output. If all the individual
mutations are valid, the normalised running time of the complete
patch is obtained by computing the product of all normalised run-
ning times. Finally, multiple appearances of a single mutation are
ignored. For example, if a patch contains three mutations, one be-
ing 20% faster, one having no impact on running time, and one
slowing the software by 5%, then the combined running time will
be 0.8 × 1.0 × 1.05 = 84% of the original software.

At last, changing the root random seed of the model will modify
all hashes and thus provide other instances of models based on the
same initial analysis. Performing analyses on many different soft-
ware with different features will hopefully provide GI researchers
with diverse and cheap benchmarks.

3.3 Discussion
The model we propose is purposely simple, and many drawbacks
could be alleviated by considering more complex models, e.g., the
independence assumption it requires is quite strong. To lessen it one
solution would be to sample sets of mutations during the prelimi-
nary analysis to then reuse the collected statistics when aggregating
individual contributions. Data pertaining to result variability, e.g.,
noise or affinity to given inputs, could also be integrated in the
model. Similarly, the current model uniformly uses unified statistics
for all nodes of the AST; clustering samples at the end of the anal-
ysis (e.g., by type, content, results, or simply position in the AST)
would also lead to a more complex but hopefully better model.

In general, synthetic models should ultimately reflect known
GI search spaces [6] and include features that can have a strong
impact on GI approaches (e.g., mutational robustness [8], or plastic
regions [3]). However, models should also compromise between
high complexity and fidelity, and overall speed usage.

Finally, because correctness or consistency of such artificial mod-
els cannot really be proven, they cannot replace real-world scenar-
ios but they can provide a very convenient way to prototype new
approaches and conduct large-scale comparisons.

4 CONCLUSION
The main bottleneck of GI is software quality assessment, which
prevents large-scale comparisons andmeta-analyses of GI processes.
We presented a method to completely circumvent executing the
target software by replacing it by a very simple deterministic syn-
thetic model. If this method can be shown to be efficient in creating
reasonable and quick to evaluate models, we believe it to be of great
potential for GI researchers.

ACKNOWLEDGMENTS
This work is supported by UK EPSRC Fellowship EP/P023991/1.

REFERENCES
[1] Aymeric Blot and Justyna Petke. 2019. On Adaptive Specialisation in Genetic Im-

provement. In Companion Material Proceedings of the 14th Genetic and Evolutionary
Computation Conference (GECCO 2019 companion). ACM, 1703–1704.

[2] Nguyen Dang, Leslie Pérez Cáceres, Patrick De Causmaecker, and Thomas Stützle.
2017. Configuring irace using surrogate configuration benchmarks. In Proceedings
of the 12th Genetic and Evolutionary Computation Conference (GECCO 2017). ACM,
243–250.

[3] Nicolas Harrand, Simon Allier, Marcelino Rodriguez-Cancio, Martin Monperrus,
and Benoit Baudry. 2019. A journey among Java neutral program variants. Genetic
Programming and Evolvable Machines 20, 4 (2019), 531–580.

[4] Yuri Malitsky, Marius Merschformann, Barry O’Sullivan, and Kevin Tierney. 2016.
Structure-Preserving Instance Generation. In Proceedings of the 10th International
Conference on Learning and Intelligent Optimization (LION 10) (LNCS), Vol. 10079.
Springer, 123–140.

[5] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. 2016. The Synthetic Data
Vault. In Proceedings of the IEEE International Conference on Data Science and
Advanced Analytics (DSAA 2016). IEEE, 399–410.

[6] Justyna Petke, Brad Alexander, Earl T. Barr, Alexander E.I. Brownlee, Markus
Wagner, and David R. White. 2019. A Survey of Genetic Improvement Search
Spaces. In Companion Material Proceedings of the 14th Genetic and Evolutionary
Computation Conference (GECCO 2019 companion). ACM, 1715–1721.

[7] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David R. White, and John R. Woodward. 2018. Genetic Improvement of Software:
A Comprehensive Survey. IEEE Transactions on Evolutionary Computation 22, 3
(2018), 415–432.

[8] Eric M. Schulte, Zachary P. Fry, Ethan Fast, Westley Weimer, and Stephanie For-
rest. 2014. Software mutational robustness. Genetic Programming and Evolvable
Machines 15, 3 (2014), 281–312.

	Abstract
	1 Introduction
	2 Formalism
	3 Proposal
	3.1 Analysing the Original Software
	3.2 Forging the Synthetic Model
	3.3 Discussion

	4 Conclusion
	Acknowledgments
	References

