
Refining Fitness Functions
for Search-Based Program Repair

Zhiqiang Bian
University College London
London, United Kingdom

zhiqiang.bian.19@alumni.ucl.ac.uk

Aymeric Blot
University College London
London, United Kingdom

a.blot@cs.ucl.ac.uk

Justyna Petke
University College London
London, United Kingdom

j.petke@ucl.ac.uk

Abstract—Debugging is a time-consuming task for software en-
gineers. Automated Program Repair (APR) has proved successful
in automatically fixing bugs for many real-world applications.
Search-based APR generates program variants that are then
evaluated on the test suite of the original program, using a fitness
function. In the vast majority of search-based APR work only
the Boolean test case result is taken into account when evaluating
the fitness of a program variant. We pose that more fine-grained
fitness functions could lead to a more diverse fitness landscape,
and thus provide better guidance for the APR search algorithms.

We thus present 2Phase, a fitness function that also incorpo-
rates the output of test case failures, and compare it with ARJAe,
that shares the same principles, and the standard fitness, that only
takes the Boolean test case result into consideration. We conduct
the comparison on 16 buggy programs from the QuixBugs
benchmark using the Gin genetic improvement framework. The
results show no significant difference in the performance of all
three fitness functions considered. However, Gin was able to find
8 correct fixes, more than any of the APR tools in the recent
QuixBugs study.

Index Terms—Software Engineering, Genetic Programming,
Genetic Improvement, Program Repair, Fitness Function

I. INTRODUCTION

Software engineers commonly make mistakes in designing
and writing pieces of code. In 2016 alone, software fail-
ures cost the worldwide economy approximately 1.1 trillion
dollars [1]. Software bugs are faults, flaws or errors in the
software system that lead to unexpected behaviour or incorrect
outputs. Debugging software is extremely expensive — it costs
half of the programming time [2] — raising the need for
effective and cheap bug fixing techniques.

Automated Program Repair (APR) [3], [4] has become
a popular research field in recent years, due to a growing
number of available tools and concrete examples of real-
world repairs. There are two main types of APR approaches:
semantic-based APR [5], [6], that synthesises repairs based on
semantic information of the program (via symbolic execution
and constraint solving), and search-based APR, which we
focus on in this work.

A typical search-based APR tool, such as GenProg [7], [8],
generates program variants to fix a given faulty program using
its test suite as an oracle for software quality. It iteratively
generates sets of variants through source code modifications
until a variant is found that passes every test case. The search
space of software variants is typically navigated using a search

heuristic, such as genetic programming or local search. This
type of approach is also known as generate-and-validate.
In the vast majority of search-based APR work the fitness
function only takes the number of passing and failing test cases
into account. This can lead to a large number of equivalent
program variants sharing the same fitness values.

We present a more fine-grained fitness function using not
only the binary result of test cases but also their output in
case of a failure. Our goal is to create a more diverse fitness
landscape with fewer plateaus, to provide better guidance for
the underlying search algorithm. Indeed, most unit testing
frameworks, such as JUnit, report the expected and actual
value of a test case failure. Our new fitness function will
thus differentiate between program variants that fail due to
compilation or runtime errors and those that simply produce
different output, the latter being considered better. We also
measure the difference between the expected and actual output
value of the failing test cases.

In this paper, we compare our proposed fitness function,
which we call 2Phase, with two other: the often used fitness
function of GenProg and the fitness function of the very
recent ARJAe tool [9], which also implements a more fine-
grained fitness variant. Experiments were conducted using 16
programs of the QuixBugs benchmark, as for these test-suite
adequate patches were found by existing APR tools [10].
We also generated additional test cases using EvoSuite for
validation purposes. The experiments were conducted using
the Gin framework [11], as suggested in [12], which inspired
our work.

Our results show that overall there is no significant differ-
ence between effectiveness and efficiency of the three fitness
functions on our dataset. Moreover, we observed no significant
difference in the distribution of fitness values between the three
fitness functions. This is in contrast to the results obtained
by authors of ARJAe on the Defects4J benchmark set [9].
However, our APR framework was able to find test-suite
adequate patches for 11 programs, with 8 being correct fixes
(more than any of the APR tools in the recent QuixBugs
study [10]1).

1We note here that 10 correct fixes were reported in [13]. However, details
of the programs and the fixes were not provided, so we could not make a
direct comparison.

II. FITNESS FUNCTIONS IN SEARCH-BASED APR

Ever since the introduction of GenProg [8] search-based
APR tools have used Boolean test-case results in fitness
calculations for program variant evaluation. We will call such
a fitness function as standard. Our literature review revealed
only two papers that proposed and evaluated more fine-grained
fitness functions, which we describe below. We also present
our new 2Phase fitness function in this section.

A. ARJAe

ARJA [14] is a state-of-art search-based APR tool. It com-
bines multi-objective genetic programming, lower-granularity
patch representation and test-filtering techniques to improve
on a GenProg-based APR approach.

ARJAe [9] extends the ARJA framework with a new fitness
function. In addition to the number of test case failures, ARJAe
also tracks all assertion methods invoked during the execution
of each test case. It then measures the distance between
the expected and actual assertion values for each assertion
failure. ARJAe defines a distance metric for each assertion type
supported by the JUnit Assertion class. For example, the
String comparison function uses the Levenshtein distance
(minimal number of single-character insertions, deletions, or
substitutions), while for numeric types (e.g., int, double)
absolute difference is used. All distance values are normalised
to [0, 1] by the function v(x) = x/(x+1) [15]. ARJAe defines
the error ratio h(x, t) as the degree of a program variant x that
violates a test case t, with d(e) representing the normalised
distance of an assertion e and E(x, t) is the set of all executed
assertions in t.

h(x, t) =

∑
e∈E(x,t) d(e)

|E(x, t)|
(1)

The fitness function f(x) is finally defined as a weighted
sum of all assertion distances, with Tpos and Tneg the subsets
of positive and negative test cases, and w ∈ (0, 1] the weight
parameter that introduces bias against the latter.

f(x) =

∑
t∈Tpos

h(x, t)

|Tpos|
+ w ∗

∑
t∈Tneg

h(x, t)

|Tneg|
(2)

B. 2Phase

A fitness function similar to the ARJAe one has been
independently proposed [12], however without being properly
implemented and analysed. In order to provide a comparison
between the standard fitness and the more fine-grained vari-
ants, we provide an implementation for the ftiness function
proposed in [12], and call it 2Phase.

2Phase is based on the idea that patches with more passing
test cases should always be preferred, while variants with the
same number of passing test cases should be compared through
assertion distances, i.e., the distances between the expected
and actual outputs.

Equation (3) details the fitness function, with n and m the
number of passing and failing tests, and

∑
e∈E d(e) the sum

class GCD {
public static int gcd(int a, int b) {

if (b == 0) {
return 0;

} else {
return gcd(a % b, b); // fix: gcd(b, a % b)

}
}

}

Listing 1. GCD.java

of assertion distances for failing tests. Assertion distances are
normalised to [0, 1) using v(x) = x/(x+1), following ARJAe.

f(x) = n+
(
1−

∑
e∈E d(e)

m

)
(3)

The main difference between ARJAe and 2Phase is that
2Phase prioritises the number of test case failures, while
ARJAe penalises the assertion distances computed from the
original passing test cases with the intuition being to actively
avoid breaking test cases that passed for the original software.

Specifics of all assertion distances are detailed hereafter. For
tests leading to exceptions or mismatched types, a maximal
penalty max_int is applied; otherwise, the assertion distance
depends on the output type. 2Phase and ARJAe use the same
distance assertion distance metrics. For strings the Levenshtein
distance is computed and for numerical outputs the absolute
difference is used. For different Boolean values the maximal
penalty max_int is applied. Finally, for arrays, the assertion
distance combines both the length difference and the respective
element distances, as given in Equation (4), with lens and
lenl the lengths of the shortest and longest arrays and d(i)
the assertion distance between the values at index i of the
expected and actual array.

darr(x) = (lenl − lens) +

∑lens

i=0 d(i)

lens
(4)

For example, the distance between the arrays [0,1,2] and
[1,3,5,7] would be (4−3)+ 1

3×
(
v(1)+v(2)+v(3)

)
≈ 1.639.

We illustrate 2Phase on the faulty program GCD shown in
Listing 1, for which five of the six test cases given in Table
I fails. The fitness is then 1 + (1 − 5

5 × v(max_int)) ≈
1.000. Let us consider a program variant in which the second
argument of the recursive call, b is replaced with a % b. The
fitness is then 1+(1− 1

5×(v(13)+v(1)+v(20)+v(18913)+
v(3))) ≈ 1.174. With a higher fitness, this variant can be
preferred to the original program and, as an intermediate step,
may lead to the fix in which the first argument of the recursive
call is in turn modified to b.

C. Checkpoints

Fast et al. [16] proposed in a pre-GenProg work the idea
of tracking predicate values to smooth the fitness landscape.
While abandoned in later GenProg works, as requiring a
specific training and not generalising beyond a single study,
a similar idea is introduced by De Souza et al. [17] with
Checkpoints, an approach that tracks and uses changes in
numerical values. Similarly, the idea is to provide a more
fine-grained technique for search-based APR approaches to

TABLE I
TEST CASES FOR GCD, WITH OUTPUTS FROM BUGGY CODE (LISTING 1)

AND VARIANT GCD(A % B, B)-> GCD(A % B, A % B)

Inputs Output

(a, b) buggy variant expected

17, 0 17 17 17
13, 13 infinite loop 0 13

37, 600 infinite loop 0 1
20, 100 infinite loop 0 20

624129, 2061517 infinite loop 0 18913
3, 12 infinite loop 0 3

distinguish between software variants and avoid plateaus in
the search landscape by monitoring intermediate program
states. Checkpoints are placed around statements that contain
numerical variables and, in case of a failing test case, distances
between the computed values and the values of the original
faulty program are computed. The final fitness function com-
bines the original test results and the checkpoints distance.

We chose not to evaluate this approach, as it has shown little
to no improvement over GenProg’s default fitness function.
Moreover, our benchmark set contains few instances of useful
checkpoint application, and thus the overhead of keeping track
of numeric values (mostly those being for/while loop indices)
would have been wasteful.

III. METHODOLOGY

Our goal is to evaluate the effectiveness of various fitness
functions in search-based APR for finding bug fixes. In
particular, we compare the standard one, as implemented in
GenProg, with two more-fine grained variants: ARJAe and
2Phase. We aim to answer the following research questions:

RQ1: How effective are the various fitness functions
at providing a diverse set of patches, thus avoiding large
fitness plateaus?
In RQ1, we compare the diversity of patches generated using
the three fitness functions.

RQ2: How effective and efficient are the various fitness
functions at finding test-suite adequate patches?
In RQ2, we compare the effectiveness and efficiency of the
three fitness functions in finding test-suite adequate patches.
More specifically, we investigate: (1) the number of experi-
mental trials producing at least one test-suite adequate patch,
(2) the number of total and unique test-adequate patches
produced, (3) the number of evaluations to produce the first
test-suite adequate patches (if any exists), and (4) the minimum
number of edits to find a test-suite adequate patch.

Metrics (1) and (2) represent the effectiveness of a fitness
function. For (2) uniqueness is determined using equality
between sequences of edits, as the very large number of
patches makes semantic manual investigation of every patch
impractical. Metrics (3) and (4) measure the efficiency of a
fitness function, i.e., how quickly test-suite adequate patches
are found.

RQ3: How well do the test-suite adequate patches
generalise to unseen tests?

Algorithm 1: Gin’s GP Search Algorithm
Input: faulty program OrigProgram
Input: number of generations Gen
Input: population size PopSize
Output: the set of patches produced Set

Pop ← ∅
repeat PopSize times

add mutate (clone of OrigProgram) into Pop

repeat Gen times
parents ← tournSelect (Pop, OrigProgram)
offspr ← crossover (parents, OrigProgram)
newPop ← ∅
foreach patch in offspr do

newPatch ← mutate (patch)
if newPatch.fitness > 0 then

add newPatch into newPop

add newPatch into Set

Pop ← newPop

return Set

Recent research [18], [19] reports that a patch that passes all
test cases might still be incorrect if test cases fail to exploit
all unexpected software behaviour. This is often regarded as
the patch overfitting problem [20].

In RQ3, we validate the correctness of test-suite adequate
patches in two steps. First, we use EvoSuite to automatically
generate new test cases for each of our programs, using the
correct program versions provided in the QuixBugs bench-
mark. Then, we manually evaluate a selection of generated
patches that pass both the training set (used during the repair
process) and the test set (held-out EvoSuite tests).

A. Genetic Improvement Search Process

All three fitness functions (i.e., GenProg, ARJAe, and
2Phase) are implemented using the Gin framework [11], an
extensible and modifiable toolbox for GI experimentation.

Algorithm 1 shows the logic of Gin’s genetic algorithm for
the APR task, derived from GenProg’s search function [7].
The mutation operator either appends a random new edit to a
patch or removes one from a non-empty patch. The crossover
operator combines two parent solutions by concatenating, in
both orders, the two sequences of edits before each edit is
removed with 50% probability to create the two children
patches. The tournament selection selects parent patches from
the population based on their fitness.

Gin supports source code modifications at the line, state-
ment and expression levels. The experiments will use all
types of statement and expression edits available in Gin2:
deletion, swap, copy, or replacement of statements; swap and
replacement of expressions; and replacement of binary (e.g.,
addition +, Boolean “and” &&) and unary (e.g., increment
++) operators. We chose Gin as it contains a richer set
of mutation operators than used in previous search-based
APR work. Moreover, it also supports non-functional software
improvement, hence the experiments can be easily extended
to that domain in the future.

2More edits have been introduced since we ran our experiments. [21]

TABLE II
SELECTED 16 QUIXBUGS PROGRAMS, WITH SIZE OF THE TEST SUITE

(ORIGINAL+EVOSUITE) AND BUG AND FAILURE TYPES

Program Tests Bug type Failure type

depth first search 5+3 missing line stack overflow
detect cycle 5+4 missing condition null pointer
find in sorted 7+9 off-by-one error stack overflow
get factors 11+3 wrong array slice wrong output
hanoi 7+6 incorrect variable wrong output
is valid parenthesization 3+4 incorrect variable wrong output
knapsack 10+6 incorrect operator wrong output
levenshtein 7+4 off-by-one error wrong output
lis 28+4 missing expression wrong output
mergesort 13+8 incorrect operator stack overflow
next permutation 8+8 incorrect operator wrong output
powerset 5+3 incorrect variable wrong output
quicksort 13+6 incorrect operator wrong output
rpn eval 6+7 variable swap wrong output
shortest path lengths 4+10 variable swap wrong output
sqrt 7+5 incorrect arithmetic infinite loop

B. QuixBugs Benchmark

We use QuixBugs [22] as the program repair benchmark.
It consists of 40 Java programs with associated test cases,
each faulty program containing a single bug on a single line.
A recent empirical study [10] on QuixBugs reports that test-
suite adequate patches were found by existing APR tools for
16 of the 40 buggy programs. The features of the 16 chosen
problems are given in Table II. The problem sets include eight
different types of bugs, such as incorrect array slices and
variable swaps.

We noticed that not all programs in the benchmark had
passing tests, thus we extended the test suite, which was later
also added to the official QuixBugs benchmark.

C. Experimental Setup

For a given QuixBugs program and fitness function (i.e.,
either GenProg, ARJAe, or 2Phase), the search algorithm from
Gin is executed as detailed in Algorithm 1. The GP algorithm
is run with a budget of 10 generations with a population of 40
individuals, meaning a total of 400 patches evaluated for each
trial, following recent work using the GenProg algorithm [23].
Additionally, a cutoff of 1000 millisecond is used for every
test case to kill potentially non-terminating variants — long
enough so that non-buggy code can terminate successfully.

Experiments were repeated 20 times and conducted inde-
pendently on the 16 selected QuixBugs faulty programs. All
experiments were conducted on a MacBook Air, 1.7 GHz
Dual-Core Intel Core i7, 8GB RAM.

IV. RESULTS AND ANALYSIS

In this section we present and analyse our results, providing
answers to our three research questions.

A. RQ1: Fitness Plateaus

We first investigate each fitness function’s ability to dif-
ferentiate between the fitness values of all generated patches.
Table III shows the average and standard deviation of numbers

TABLE III
AVERAGE PERCENTAGE OF VARIANTS WITH NON-UNIQUE FITNESS

Program GenProg ARJAe 2Phase

depth first search 99.9 ±0.1 99.9 ±0.2 99.9 ±0.2
detect cycle 99.9 ±0.2 100.0 ±0.0 100.0 ±0.0
find in sorted 99.9 ±0.1 97.6 ±0.6 97.6 ±0.6
get factors 99.9 ±0.2 99.9 ±0.2 99.9 ±0.2
hanoi 100.0 ±0.1 100.0 ±0.1 100.0 ±0.1
is valid parenthesization 99.9 ±0.1 100.0 ±0.0 100.0 ±0.0
knapsack 99.6 ±0.3 96.3 ±0.8 96.6 ±1.1
levenshtein 99.9 ±0.2 96.9 ±1.0 97.0 ±1.2
lis 98.9 ±0.5 97.2 ±0.8 97.4 ±0.6
mergesort 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0
next permutation 99.4 ±0.3 99.8 ±0.2 99.8 ±0.2
powerset 100.0 ±0.1 100.0 ±0.1 100.0 ±0.1
quicksort 99.5 ±0.4 99.6 ±0.4 100.0 ±0.3
rpn eval 99.9 ±0.1 99.4 ±0.4 99.6 ±0.5
shortest path lengths 99.6 ±0.3 97.4 ±1.8 88.5 ±20.7
sqrt 99.9 ±0.1 99.6 ±0.3 99.5 ±0.2

of patches for which there is at least another distinct patch with
the same fitness value. Lower figures are better as they imply
that there is more diversity between fitness function values for
the generated patches.

The results show that for most programs, the differ-
ences between the three fitness functions are within 3%.
shortest path lengths is the only exception, with 2Phase pro-
ducing a more diverse set of fitness values.

Table IV shows the average percentage of program vari-
ants with a fitness value either strictly better (<) or equal
(=) to the fitness value of the unmodified buggy program.
Higher numbers of fitter variants are preferred, as they
imply that the search is better guided towards more test-
suite adequate patches. The results show that all three fit-
ness functions produce roughly the same percentages of
better and equal fitness values (within 5%), except for five
programs (depth first search, detect cycle, find in sorted,
is valid parenthesization, and shortest path lengths), for
which the standard fitness function produces at least 10%
more patches of better or equal fitness as the original, and
one (levenshtein) for which the standard function produces
10% less.

Answer to RQ1: Overall, neither of the two analysis
conducted shows any significant difference between the three
fitness functions with regard to the general distribution of
fitness values.

B. RQ2: Effectiveness and Efficiency

Table V shows the results yielded by each fitness function
over the 20 repeated trials. More specifically, it indicates the
number of successful trials (i.e., that resulted in a test-suite
adequate patch), the total number of test-suite adequate patches
obtained, the number of such unique patches obtained, and
finally the associated ratio.

We first compare the number of successful trials for each
fitness function. For 11 of the 16 faulty programs at least
one test-adequate patch was found using all three fitness
functions. For lis, 2Phase was unsuccessful while the two

TABLE IV
AVERAGE PERCENTAGE OF VARIANTS WITH BETTER OR EQUAL FITNESS

Program GenProg ARJAe 2Phase

< = < = < =

depth first search 25.6 21.9 0.0 35.7 0.0 34.8
detect cycle 43.6 6.3 0.4 24.9 0.6 24.7
find in sorted 49.6 5.3 13.3 19.9 13.0 20.0
get factors 25.1 24.2 24.9 23.6 32.2 20.0
hanoi 0.0 100.0 1.7 36.6 1.9 36.1
is valid parenthesization 59.5 2.0 0.0 33.6 0.0 31.2
knapsack 1.7 11.3 2.4 11.1 3.2 11.8
levenshtein 38.2 20.4 49.0 5.6 50.0 4.7
lis 10.9 6.0 8.7 6.8 9.3 6.5
mergesort 0.0 48.4 0.0 47.9 0.0 48.8
next permutation 19.4 25.2 21.8 25.2 26.3 22.1
powerset 1.2 27.6 3.2 25.0 0.8 29.7
quicksort 11.0 16.5 23.6 5.8 23.3 5.9
rpn eval 9.6 19.3 11.0 16.5 4.0 21.4
shortest path lengths 57.8 1.4 43.9 3.3 42.1 4.5
sqrt 67.6 3.2 71.0 2.3 67.8 3.2

other produced several test-suite adequate patches. For both
is valid parenthesization and mergesort, GenProg’s fitness
function is the only one to find a test-suite adequate patch.
Finally, no test suite-adequate patch was found for the five
remaining programs. For programs for which all three fitness
functions succeeded in producing test-suite adequate patches,
there is no significant difference in the number of trials in
which a patch was found.

Next, we compare the uniqueness of test-suite adequate
patches generated by three fitness functions. For all three
fitness functions uniqueness ratio ranges from 67% to 100%
(for is valid parenthesization the 91 patches, all generated
using the standard fitness function, are all unique). When
test-suite adequate patches are found there is no significant
difference in uniqueness between fitness functions.

Finally, Table VI reports on two metrics used to represent
the minimum effort to find a test-suite adequate patch: the
smallest number of evaluations before finding a test-suite
adequate patch in any trial, and the size of the shortest
test-suite adequate patch found across all trials. Excluding
programs for which no test-suite adequate patch was found,
most GI runs produced a test-suite adequate patch within 200
evaluations (i.e., 5 generations). Furthermore, most test-suite
adequate patches consist of at most three edits, with many
requiring a single source code modification.

Answer to RQ2: Overall there is no significant difference in
effectiveness or efficiency between the three fitness functions.
While the standard one led to test-suite adequate patches for
two more faulty programs, it did so in a single trial.

C. RQ3: Patch Correctness

The third and final research question relates to the ability
of a test-suite adequate patch to generalise to additional
test cases. Because manually checking all test-suite adequate
patches is impractical (see Table V), to ease the manual
verification effort we only focus on a single test-suite adequate

Node hare = node;
Node tortoise = node;
while (true) {

// if (null == hare || hare.getSuccessor() == null)
if (hare.getSuccessor() == null)

return false;
- tortoise = tortoise.getSuccessor();
- hare = hare.getSuccessor().getSuccessor();
- if (hare == tortoise)
+ hare = hare.getSuccessor();
+ if (hare.getSuccessor() == tortoise)

return true;
}

}

Listing 2. DETECT CYCLE

patch for each program: the patch with lowest number of edits
that also passes the held-out EvoSuite test suite.

Results are shown in Table VII. Data related to other state-
of-the-art APR tools is based on the QuixBugs study [10].
Additionally, Table VIII reports the percentage of unique test-
suite adequate patches that are not killed by the new EvoSuite-
generated test cases. On seven of the eleven programs with
test-suite adequate patches, more than 99% of all unique
patches also passes the EvoSuite test cases; on the remaining
five programs, the percentage of killed patches greatly varies,
especially for sqrt on which most patches were killed.

With regards to results reported in the recent QuixBugs
study [10], Gin fixes more QuixBugs programs than any of
the reported APR tools. The reason might lie in the use of
the binary operator replacement edit type, crucial to several of
the buggy programs. However, Gin cannot fix buggy programs
that are missing an ingredient such as a line or a parameter, a
drawback of most search-based APR tools [18].

Answer to RQ3: For 7 out of 11 programs at least 99%
of unique patches generalised to the held-out EvoSuite tests,
regardless of the fitness function used. Overall there is little
difference between the three fitness functions.

D. Details of Manual Patch Analysis

In the following section we analyse a selection of test-suite
adequate patches that we used to answer RQ3. Edits to the
buggy code are shown following the diff format while the
ground truth fix is shown as a comment.

1) detect cycle: [Listing 2]. This patch passes both the
original and the EvoSuite test suites, yet is incorrect. Here,
the graph 1 2 3 is a counterexample: with 1 as input
the cycle is not detected and instead the program runs into an
infinite loop.

2) get factors: [Listing 3] All test-suite adequate patches
for get factors were first killed by the EvoSuite test suite.
After investigation, this was due to a difference to the oracle
for an invalid input value (get_factors(0)). Without this
faulty test case every test-suite adequate patches pass the
EvoSuite test suite.

Listing 3 shows a patch in which the two expressions n and
Math.sqrt(n) have been swapped. While it removes the
optimisation that only factors up to sqrt(n) are checked, it
leads to the check n%n==0 making so that the faulty return
statement is never used. Because this work’s focus is on

TABLE V
RESULTS OVER 20 TRIALS FOR ALL THREE FITNESS FUNCTIONS: NUMBER OF TRIAL YIELDING AT LEAST ONE TEST-ADEQUATE PATCH; TOTAL NUMBER

OF TEST-ADEQUATE PATCHES; TOTAL NUMBER OF UNIQUE TEST-ADEQUATE PATCHES AND ASSOCIATED RATIO

Program GenProg ARJAe 2Phase

success patches unique ratio success patches unique ratio success patches unique ratio

depth first search 0 0 0 - 0 0 0 - 0 0 0 -
detect cycle 3 153 123 80.39 1 35 23 65.71 1 48 36 75.00
find in sorted 0 0 0 - 0 0 0 - 0 0 0 -
get factors 8 239 236 98.74 10 392 388 98.98 9 341 335 98.24
hanoi 0 0 0 - 0 0 0 - 0 0 0 -
is valid parenthesization 1 91 91 100.00 0 0 0 - 0 0 0 -
knapsack 11 89 79 88.76 8 72 65 90.28 11 99 87 87.88
levenshtein 6 729 630 86.42 5 488 404 82.79 9 1003 827 82.45
lis 5 118 112 92.94 3 63 60 95.24 0 0 0 -
mergesort 1 1 1 100.00 0 0 0 - 0 0 0 -
next permutation 16 452 439 97.12 15 366 351 95.90 17 748 739 98.80
powerset 0 0 0 - 0 0 0 - 0 0 0 -
quicksort 20 1822 1300 71.35 20 1894 1292 68.22 20 1870 1249 66.79
rpn eval 12 596 427 71.64 15 737 530 71.91 8 285 214 75.09
shortest path lengths 0 0 0 - 0 0 0 - 0 0 0 -
sqrt 5 217 194 89.40 3 111 99 89.19 2 22 17 77.27

TABLE VI
LOWEST NUMBER OF STEPS TO FIND THE FIRST TEST-ADEQUATE PATCH;

AND SIZE OF THE SHORTEST TEST-ADEQUATE PATCH

Program GenProg ARJAe 2Phase

steps size steps size steps size

depth first search - - - - - -
detect cycle 41 2 171 2 81 2
find in sorted - - - - - -
get factors 4 1 9 1 9 1
hanoi - - - - - -
is valid parenthesization 42 2 - - - -
knapsack 2 1 16 1 1 1
levenshtein 2 1 3 1 7 1
lis 14 1 121 1 - -
mergesort 379 4 - - - -
next permutation 9 1 2 1 1 1
powerset - - - - - -
quicksort 1 1 1 1 1 1
rpn eval 5 1 1 1 39 1
shortest path lengths - - - - - -
sqrt 34 1 212 8 300 9

functional fixes rather than optimisation, we report this patch
as a functionally correct fix.

3) mergesort: [Listing 4] This patch transforms the buggy
merge sort procedure to a weirdly implemented, yet fully func-
tional, insertion sort. Unfortunately this leads to a time com-
plexity of O(N2) as compared to the expected O(N log(N)).
As for get factors, despite the difference in complexity to the
oracle, this patch is reported as a correct fix.

4) is valid parenthesization: [Listing 5] This patch passes
both original and EvoSuite test suites. However, when manu-
ally checking the patch we find it to be incorrect. The patched
program correctly passes the initially failing “((” test case, but
fails the manually constructed “())” test case. Most EvoSuite
test cases are unhelpful as they mostly include unrelated non-
parenthesises characters, such as digits and letters.

public static ArrayList<Integer> get_factors(int n) {
- if (n == 1) {
+ if (Math.sqrt(n) == 1) {

return new ArrayList<Integer>();
}

- int max = (int) (Math.sqrt(n) + 1.0);
+ int max = (int) (n + 1.0);

for (int i = 2; i < max; i++) {
if (n % i == 0) {

ArrayList<Integer> prepend = new ArrayList<Integer
>(0);

prepend.add(i);
prepend.addAll(get_factors(n / i));
return prepend;

}
}
// return new ArrayList<Integer>(Arrays.asList(n));
return new ArrayList<Integer>();

}

Listing 3. GET FACTORS

if (arr.size() == 0) { // if (arr.size() <= 1) {
return arr;

} else {
- int middle = arr.size() / 2;
+ int middle = 2 / 2;

ArrayList<Integer> left = new ArrayList<Integer>(100);
left.addAll(arr.subList(0, middle));

- left = mergesort(left);
ArrayList<Integer> right = new ArrayList<Integer>(100);
right.addAll(arr.subList(middle, arr.size()));
right = mergesort(right);

return merge(left, right);
}

Listing 4. MERGESORT

5) levenshtein: [Listing 6] The buggy program exposes an
off-by-one error in its return statement. Rather than eliminating
the superfluous “1+” operation, the Gin-produced patch re-
placed the addition “+” with “∗” for an equivalent expression.

6) rpn eval: [Listing 7] The reference patch swaps the
names of the two variables that hold values popped out from
the stack. The Gin-produced patch swaps the two statements
containing the calls to stack.pop() instead, resulting in a
semantically equivalent function.

7) lis: [Listing 8] This non-obvious patch passes both
the original and the EvoSuite-generated test suites; manual

TABLE VII
RESULTS AGAINST ORIGINAL AND EVOSUITE-AUGMENTED TEST SUITES FOR MANUALLY INVESTIGATED PATCHES

Program Failure Original EvoSuite Manual Known fix

depth first search missing line - - - -
detect cycle missing condition X X × NPEFix
find in sorted off-by-one error - - - -
get factors wrong array slice X × X -
hanoi incorrect variable - - - -
is valid parenthesization incorrect variable X X × -
knapsack incorrect operator X X X jMutRepair
levenshtein off-by-one error X X X Cardumen
lis missing expression X X X Arja, jGenProg, Nopol, Cardumen, RSRepair, Tibra
mergesort incorrect operator X X X Cardumen
next permutation incorrect operator X X X -
powerset incorrect variable - - - -
quicksort incorrect operator X X X Arja, Dynamoth, jKali, jMutRepair, Nopol, RSRepair
rpn eval variable swap X X X Cardumen
shortest path lengths variable swap - - - -
sqrt incorrect arithmetic X X × -

“X”: patch validated; “×”: patch killed; “-”: no patch found.

TABLE VIII
PERCENTAGE OF UNIQUE TEST-SUITE ADEQUATE PATCHES THAT ALSO

PASS THE EVOSUITE-GENERATED TEST CASES

Program GenProg ARJAe 2Phase

depth first search - - -
detect cycle 100.00 100.00 100.00
find in sorted - - -
get factors 100.00 100.00 100.00
hanoi - - -
is valid parenthesization 67.03 - -
knapsack 99.79 100.00 100.00
levenshtein 100.00 99.46 100.00
lis 66.24 100.00 -
mergesort 100.00 - -
next permutation 100.00 99.14 100.00
powerset - - -
quicksort 100.00 99.44 98.15
rpn eval 79.72 83.28 77.02
shortest path lengths - - -
sqrt 49.40 10.62 0.00

public static Boolean is_valid_parenthesization(String parens){
int depth = 0;
for (int i = 0; i < parens.length(); i++) {

Character paren = parens.charAt(i);
if (paren.equals(’(’)) {

depth++;
} else {

depth--;
- if (depth < 0)
- return false;
+ if (depth > 0)
+ return true;

}
}
// return depth == 0;

- return true;
+ return false;
}

Listing 5. IS VALID PARENTHESIZATION

investigation revealed it to be functionally correct. The bug lies
in the update of the longest variable, which value should
only increase. In the ground truth version this is done using
the Math.max() function; in this patch, that statement is
replaced by the if statement in which it is enclosed.

if (source.isEmpty() || target.isEmpty()) {
return source.isEmpty() ? target.length() : source.length();

} else if (source.charAt(0) == target.charAt(0)) {
// return lvshtn(source.substring(1), target.substring(1));

- return 1 + lvshtn(source.substring(1), target.substring(1));
+ return 1 * lvshtn(source.substring(1), target.substring(1));

Listing 6. LEVENSHTEIN

token = (String) token;
Double c = 0.0;

- Double b = (Double) stack.pop();
Double a = (Double) stack.pop();

+ Double b = (Double) stack.pop();
BinaryOperator<Double> bin_op = op.get(token);
c = bin_op.apply(a, b); // c = bin_op.apply(b, a);
stack.push(c);

Listing 7. RPN EVAL

First, the duplicated line ends.put(length+1, i);
can be ignored as that value is already set in the outer if state-
ment. Thanks to that the right-hand part of the inner if con-
dition can be simplified: it is equivalent to val < arr[i],
therefore to val < val, which is always false. Over-
all, the inserted condition is semantically equivalent to
if (length==longest){ longest = length+1;}
and in turn equivalent to the provided oracle.

V. THREATS TO VALIDITY

Internal validity. ARJAe and GenProg fitness functions were
reimplemented within the Gin framework to ensure a cohesive
comparison environment. Some implementation details, in
particular the undocumented multiple normalisation functions
appearing in the ARJAe source code that were not described
in ARJAe’s paper might not have been perfectly replicated.
To mitigate this threat and encourage high code quality our
implementation is open-source.

Another internal threat is the parameters used in the ex-
periment that may lead to GP runs not representative of the
performance of each fitness function. Finally, experiments are
repeated 20 times in order to minimise bias due to the heuristic
nature of the GP algorithm.

for (int val : arr) {
// ... code elided for concision ...
int length = !prefix_lengths.isEmpty() ? Collections.max(

prefix_lengths) : 0;
if (length == longest || val < arr[ends.get(length + 1)]) {
ends.put(length + 1, i);
// longest = Math.max(longest, length + 1);

- longest = length + 1;
+ if (length == longest || val < arr[ends.get(length + 1)]){
+ ends.put(length + 1, i);
+ longest = length + 1;
+ }

}
i++;

}
return longest;

Listing 8. LIS

External validity. The results of our research and ARJAe’s
paper are surprisingly different. Specifically, ARJAe’s fitness
function was found to outperform the GenProg’s one, whereas
we observe the latter being slightly more effective than the
other two investigated fitness functions. Since experiments
are conducted on a single benchmark, there is a threat that
results do not generalise for the other common benchmarks
such as Defects4J. However, it should be noted that QuixBugs
is regarded as a hard dataset for APR tools to find test-suite
adequate patches for [18].

Construct validity. Correctness of the test-suite adequate
patches is manually investigated, and uses as an oracle se-
mantic equivalence to a provided reference program.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present 2Phase, a new fitness function
for search-based automated program repair (APR). 2Phase
considers the difference between the expected and actual value
of a test case failure to rank program variants. In this work,
2Phase was implemented, alongside two other state-of-the-
art fitness functions, within the Gin genetic improvement
framework and empirically evaluated over 16 buggy programs,
for which test-suite adequate patches were found in previous
work. Furthermore, the EvoSuite tool was used to supplement
the original set of test suites to study patch generalisation.
Overall, our experiments have produced test-suite adequate
patches for 11 of the 16 selected programs. Our manual
investigation revealed that 8 patches were true fixes. This is
more than any of the APR tools in recent empirical evaluation
of APR tools on the QuixBugs benchmark.

Regarding effectiveness and efficiency of the implemented
fitness functions, we were unable to show any major significant
difference between the standard GenProg fitness function, the
more fine-grained ARJAe and our proposed 2Phase. We plan
to extend our empirical evaluation to the other programs of the
QuixBugs benchmark, as well as to other APR benchmarks,
to see if indeed more fine-grained fitness functions could lead
to improvement of efficacy and efficiency of APR tooling, and
what are the characteristics of programs for which more fine-
grained fitness variants work well.

Artefact: https://github.com/SOLAR-group/apr2021artefact
Funding: supported by UK EPSRC Fellowship EP/P023991/1

REFERENCES

[1] R. Azevedo, “What is the cost of a bug?” Apr. 2018. [Online]. Available:
https://azevedorafaela.com/2018/04/27/what-is-the-cost-of-a-bug/

[2] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen,
“Reversible debugging software,” Univ. Cambridge, Tech. Rep, 2013.

[3] M. Monperrus, “Automatic software repair: A bibliography,” ACM
Comp. Surveys, vol. 51, no. 1, pp. 17:1–17:24, 2018.

[4] ——, “The Living Review on Automated Program Repair,” HAL
archives-ouvertes.fr, Tech. Rep., 2018.

[5] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. R. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in java programs,” IEEE Trans. Softw.
Eng., vol. 43, no. 1, pp. 34–55, 2017.

[6] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in International Con-
ference on Software Engineering. ACM, 2016, pp. 691–701.

[7] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in International Conference on Software Engineering. IEEE,
2012, pp. 3–13.

[8] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Trans. Softw. Eng.,
vol. 38, no. 1, pp. 54–72, 2012.

[9] Y. Yuan and W. Banzhaf, “Toward better evolutionary program repair:
An integrated approach,” ACM Trans. Softw. Eng. Methodol., vol. 29,
no. 1, pp. 5:1–5:53, 2020.

[10] H. Ye, M. Martinez, T. Durieux, and M. Monperrus, “A comprehensive
study of automatic program repair on the QuixBugs benchmark,” J. Syst.
Softw., vol. 171, p. 110825, 2021.

[11] A. E. I. Brownlee, J. Petke, B. Alexander, E. T. Barr, M. Wagner,
and D. R. White, “Gin: Genetic improvement research made easy,” in
Genetic and Evolutionary Computation Conference. ACM, 2019, pp.
985–993.

[12] J. Petke and A. Blot, “Refining fitness functions in test-based program
repair,” in International Conference on Software Engineering, Work-
shops. ACM, 2020, pp. 13–14.

[13] M. Asad, K. K. Ganguly, and K. Sakib, “Impact of similarity on
repairing small programs: A case study on QuixBugs benchmark,” in
International Conference on Software Engineering: Workshops. ACM,
2020, pp. 21–22.

[14] Y. Yuan and W. Banzhaf, “ARJA: Automated repair of Java programs via
multi-objective genetic programming,” IEEE Trans. Softw. Eng., vol. 46,
no. 10, pp. 1040–1067, 2020.

[15] A. Arcuri, “It really does matter how you normalize the branch dis-
tance in search-based software testing,” Softw. Test. Verification Reliab.,
vol. 23, no. 2, pp. 119–147, 2013.

[16] E. Fast, C. L. Goues, S. Forrest, and W. Weimer, “Designing better
fitness functions for automated program repair,” in GECCO 2010.
ACM, 2010, pp. 965–972.

[17] E. F. de Souza, C. Le Goues, and C. G. Camilo-Junior, “A novel
fitness function for automated program repair based on source code
checkpoints,” in Genetic and Evolutionary Computation Conference.
ACM, 2018, pp. 1443–1450.

[18] T. Durieux, F. Madeiral, M. Martinez, and R. Abreu, “Empirical review
of Java program repair tools: A large-scale experiment on 2,141 bugs and
23,551 repair attempts,” in ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2019, pp. 302–313.

[19] D. X. Bach, “Overfitting in automated program repair: Challenges and
solutions,” Ph.D. dissertation, Singapore Management University, 2018.

[20] R. Doornbosch and R. Steenblik, “Biofuels: Is the cure worse than the
disease,” Revista Virtual REDESMA, vol. 2, pp. 63–100, 2008.

[21] A. E. I. Brownlee, J. Petke, and A. F. Rasburn, “Injecting shortcuts for
faster running Java code,” in Congress on Evolutionary Computation.
IEEE, 2020, pp. 1–8.

[22] D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “Quixbugs: a multi-
lingual program repair benchmark set based on the Quixey challenge,”
in Systems, Programming, Languages, and Applications: Software for
Humanity. ACM, 2017, pp. 55–56.

[23] C. Le Goues, N. J. Holtschulte, E. K. Smith, Y. Brun, P. T. Devanbu,
S. Forrest, and W. Weimer, “The ManyBugs and IntroClass benchmarks
for automated repair of C programs,” IEEE Trans. Softw. Eng., vol. 41,
no. 12, pp. 1236–1256, 2015.

https://github.com/SOLAR-group/apr2021artefact
https://azevedorafaela.com/2018/04/27/what-is-the-cost-of-a-bug/

	Introduction
	Fitness Functions in Search-Based APR
	ARJAe
	2Phase
	Checkpoints

	Methodology
	Genetic Improvement Search Process
	QuixBugs Benchmark
	Experimental Setup

	Results and Analysis
	RQ1: Fitness Plateaus
	RQ2: Effectiveness and Efficiency
	RQ3: Patch Correctness
	Details of Manual Patch Analysis
	detect_cycle
	get_factors
	mergesort
	is_valid_parenthesization
	levenshtein
	rpn_eval
	lis

	Threats to Validity
	Conclusions and Future Work
	References

