
Grow and Serve:
Growing Django Citation Services Using SBSE

Yue Jia, Mark Harman, William B. Langdon, and Alexandru Marginean

CREST, Department of Computer Science,
University College London, Malet Place, London, WC1E 6BT, UK

Abstract. Web services offer a quick and cost-effective way to augment
existing software systems with new functionality. This makes them suit-
able for Genetic Improvement, a subarea of SBSE in which existing code
is automatically improved using search based optimisation. We introduce
a ‘grow and serve’ approach to Genetic Improvement (GI) that grows new
functionality as a web service and apply it to the Django platform. Using
our approach, we successfully grew and released a citation web service.
We wish to demonstrate that GI can grow genuinely useful code in this
way, so we deployed the SBSE-grown web service into widely-used pub-
lications repositories, such as the GP bibliography. In the first 24 hours
of deployment alone, the service was used to provide GP bibliography
citation data 369 times from 29 countries.

1 Introduction

Reusing bespoke features developed for a specific system on other systems re-
quires a substantial amount programmers’ effort. This effort can be reduced by
implementing the features as web services, thereby using standard protocols to
share data and to provide functionality to client applications. We argue that
such service-based architecture, where available, provides a useful possible de-
ployment mechanism for genetic improvement. We use a variant of the ‘grow and
graft’ genetic improvement approach [5] to grow a new feature implemented in
Python, which can then subsequently be served as a Django service module. We
call this approach ‘grow and serve’; it is ‘grow and graft’ genetic improvement
without the graft.

Our approach is a form of genetic improvement [6, 9, 11, 15], which has been
used for code migration [7], improving energy efficiency [3, 10, 13], memory/speed
trade-offs [16], automated repair [1, 9], and performance improvement [8, 11, 12,
14, 15]. More specifically we use the ‘grow and graft’ approach [5], in which
new functionality is grown in isolation and subsequently grafted into an exist-
ing system. However, in previous work, the grafting phase has specialised the
previously grown code for the system into which it is to be grafted. Similar spe-
cialisation is also required in genetic improvement by program transplantation
[2, 12]. However, in our approach, the grafting phase is not only highly general,
it also becomes trivial; the extra functionality we grow simply becomes a web
service module running on the Django framework.



2

This paper follows the result reporting style used in our previous work on
‘grow and graft’ genetic improvement, reporting on the guidance required for
the grow stage as we did previously [5]. However, the primary claim of the
present paper is that we have been able to grow useful functionality that was
not previously available. For this reason we chose to grow an application that
we believe may be useful to some readers. Our agenda is to migrate genetic
improvement research from demonstration examples, grown in the laboratory
and of primarily scientific interest, to real -world usable code. Our starting point
for this outward genetic improvement spread is our own academic community,
since we believe we might hope to understand some of their requirements.

Specifically, we use our tools to provide a citation reporting service. The
reader can use this to augment existing webpages with citation information,
served by Django, genetically improved by the incorporation of the citation ser-
vice module we grew. We make this available, so that the reader can investigate
the code produced by genetic improvement, but also so that he or she can, for
example, automatically augment any publication listing websites with citation
information.

Citation numbers can provide helpful information in publication reposito-
ries. However, this information is missing from many publication repositories
(such as the GP bibliography, the mutation and the SBSE repositories). It is not
straightforward for the provider of the bibliography to provide citation informa-
tion, for example from Google Scholar, without considerable effort or supporting
technology. We believe that this makes this an interesting and worthwhile can-
didate for our genetic improvement approach. To demonstrate the usefulness of
this new functionality, we have used it to augment the GP bibliography website
(and others) with this functionality, an instance of ‘GP for GP’; using GP to
envolve an improvement to the website concerned with GP. We recorded the first
24 hours of deployment usage, finding that the service was used to provide GP
bibliography citation data 369 times from 29 countries.

2 Approach Used to Grow and Serve a Citation Service

Django is an open source web application framework with a stateless service
with which we provide a simple URL link to query the number of citations for a
publication. The URL takes the title of the publication and returns the number
of citations it has attracted. We use the Google Scholar website to source citation
information, but our approach could equally be applied to other citation data
providers, such as Microsoft Academic Search or Research Gate.

Django turns features implemented in Python into web applications or web
services. Therefore, we grow the citation service as Python code using the ‘grow’
phase of our ‘grow and graft’ approach [5]. The ‘graft’ phase becomes trivial;
we simply copy the automatically-grown Python code into an existing Django
template running on an Apache server. Our GP system implements a strongly-
typed GP that takes a grammar file and a test harness as input and outputs a
program that passes all the tests specified in the test harness.



3

The grammar file specifies a set of data types and potential APIs suggested
by the developer as likely to be useful to GP. Retrieving citation information
is clearly not straightforward, and we do not expect the GP to discover this
for itself. Rather, we provide GP with several different types of APIs that it
may find useful. These can be divided into four categories: handling HTTP
requests, parsing HTML trees, string manipulation, and list manipulation. All
of these functionaries are Python built-in functions or are supported by widely-
used packages (such as the lxml and requests models).

Our approach is therefore to give the GP phase ‘hints’, in the form of pre-
existing code that may be useful. As we have argued previously [5], we believe
that these hints would be trivial for the human programmer to provide, but
almost impossible for GP to discover by itself. As such, the provision of such
hints represents an ideal trade-off between human and machine-based effort.

The GP system was designed to evolve imperative programs, formed by
a sequential list of assignments and functional calls [5]. We adapted the sys-
tem to evolve Python code by converting the object-oriented APIs into an
imperative form. For example, function foo.bar(arg) is turned into function
foo bar(foo, arg).

We manually created these functions, to expedite experimentation. However,
the process we followed was entirely algorithmic and therefore could have been
fully automated. These functions are provided in the test harness file. The test
harness also includes the functional tests and fitness computation components
for evaluating the evolved code segments. At each generation, GP evolves a
population of code segments and inserts them into the test harness. The test
harness is executed and evaluated for fitness.

Fitness functions: We experimented with 8 different fitness functions, com-
posed of a set of 22 equally-weighted fitness components. The default (starting)
fitness value is set zero, which denotes a completely useless candidate solution.
The fitness value is subsequently incremented, based on the candidate solution’s
ability to satisfy each of the different fitness components.

The first set of components are the ‘essential’ fitness requirements; that the
new code must pass the test cases that capture correct functionality. We designed
five black-box functional tests to cover the different possible forms of input and
feedback from the source of citation data, as shown in Table 1. We increase
the fitness value by 1 if the execution of a test completes without raising an
exception. The fitness value is further increased by 1 if the evolved function also
returns the expected output. This gives us 10 essential fitness components; 2 for
each of the 5 tests, shown in Table 1.

Our grow and graft genetic improvement research agenda starts with a fun-
damental assumption: For many programming tasks, it will prove to be easier
for the programmer to specify a few criteria for successful solutions, than it
will be for the programmer to generate the solutions from scratch. This notion
that ‘checking is easier than generating’ goes the very heart of the motivation
for SBSE itself [4]. We think of these criteria for successful solutions as ‘hints’
provided by the programmer to the GP.



4

1 Characristic Input Expected Output

1 Full Title ‘Higher Order Mutation Testing’ return ‘Cited by 102’

2 Key Words ‘Babel Pidgin’ return ‘Cited by 5’

3 1 Citation ‘Genetic Improvement for Adaptive
Software Engineering’

return ‘Cited by 1’

4 0 Citation ‘Achievements, open problems and chal-
lenges for search based software testing’

return ‘No Citation’

5 Bad Title ‘sdfsdsdf sdoi jsdlkfjsdljlksdlkadslkfsad-
jlsdfkljsdflksd’

return ‘No Citation’

Table 1. The 5 Functional Black Box Test Cased Used for Essential Fitness

We designed three sets of assistant fitness functions to provide these hints
(See Table 1). These functions are classified according to our assessment of hu-
man effort required to provide them. The set of ‘Inclusion’ fitness functions
specify the names of functions that might be included in a successful solution.
We do not give the GP any information about the parameters to pass nor the
expected results with these fitness components. The programmer simply has to
identify a set of candidate functions which may (or may not) prove to be useful
in a candidate solution. We believe that this requires very little human effort,
since most programmers will be readily able to call to mind a set of such possible
candidate functions for any given programming task. In the case of the problem
in hand, the functions we make available with the ‘Inclusion’ fitness are simply
the data structure manipulation functions likely to be useful in any
solution.

The ‘Order’ fitness components1 Inclusion Call to request get
2 Inclusion Call to generate html tree
3 Inclusion Call to search html tree
4 Inclusion Call to filter list
5 Inclusion Call to concat

6 Ordering concat before send
7 Ordering generate html after input
8 Ordering search html after generated
9 Ordering filter list after search

10 Necessary concat gives correct link
11 Necessary Correct call to Google Scholar
12 Necessary result contains citation data

Fig. 1. The 12 Fitness Component Hints

denote a slightly more sophisticated
requirement of human effort. They
capture constraints on the ordering
in which included calls are performed.
Clearly, this requires more thought
on the part of the programmer. How-
ever, we believe that even novice pro-
grammers are aware of simple order-
ing constraints such as ‘concatenat-
ing partial results together before pass-
ing onto the output’. It may even be
possible for non-programmers to pro-
vide this kind of hint.

Finally, the most sophisticated fitness components are the ‘necessity condi-
tions’, which denote pre-and post-conditions on the states of computation. These
can be thought of as intermediate white box assertion checks that complement
the essential black box test cases. Providing such assertions requires more effort
from the programmer, but it may help to guide the GP to solutions faster. Per-
haps, more importantly, these assertions may provide a useful interface between
human understanding and search-based automation. The assertions can be used
to constrain solutions such that they satisfy the programmer’s conception of
expected behaviour at key checkpoints in the computation.



5

Without such assertions, a perfectly valid solution may be evolved that passes
all black box tests, yet remains incomprehensible to the human programmer. Ul-
timately, such evolved ‘source’ code may become ‘the new object code’, removing
this concern for all programmers who are content to trust the backend object
code that emerges from the ‘compilation’ process [6]. However, in the intermedi-
ate period during which we seek uptake of ideas like genetic improvement, such
checkpoints may provide a useful human-machine interface.

Experiment: We used the default crossover, mutation, and elitism operators
from the original babel pidgin system [5] with values 0.5, 1.0 and 0.05 respec-
tively and population size 200. The GP terminates when best fitness remains
unchanged for 30 generations. We run our experiments on an iMac running
OSX 10.10. To speed up the evaluation, we cached the Google Scholar webpage
test case results for faster fitness evaluation. This cached call is replaced by an
external Google Scholar enquiry link in the final version evolved. All experiments
were repeated 30 times to allow for inferential statistical comparison of results.

Results: The results are shown in Table 2. Fitness components are labelled as
follows: E: Essential, I: Inclusion, O: Ordering and N: Necessity. In Table 2 we
list the eight choices of fitness components in increasing order of sophistication,
loosely denoting the programmer effort required to provide the hints to the
GP. We analyse the results using a nonparametric two-tailed binomial test to
compare success achieved using the essential fitness, E, with each and all of those
we achieved using more sophisticated fitness. We use the Hochberg correction in
order to account for the fact that we are performing seven different inferential
statistical tests.

With an α level of 0.05, the widely-Fitness Successful runs Time in f=Fitness
Used in 30 trials seconds evaluations

E 0 (p=N/A) 204 6,306
EI 0 (p=N/A) 281 7,400
EO 0 (p=N/A) 379 10,226
EN 0 (p=N/A) 348 9,686
EIO 1 (p=0.500) 425 10,806
ENI 0 (p=N/A) 438 11,133
ENO 9 (p=0.020) 443 11,633
ENIO 16 (p=0.002) 499 12,700

Fig. 2. Results for Growing Django service

used threshold for statistical signifi-
cance, this corrected statistical test
indicates that the result for ENIO
and for ENO is significantly different
to that for E (with a Vargha-Delaney
Â12 effect sizes 0.76 and 0.65 respec-
tively). Overall, the results indicate
the importance of ordering constraints,
and the power of providing the ne-
cessity constraints to capture simple
pre- and post-conditions.

Encouragingly, the results also suggest that, perhaps, these more sophisti-
cated pre-and post-conditions are not always required in order to find successful
solutions. Since the approach can be repeated multiple times, and the program-
mer can and use fitness to reject inadequate solutions, we need only be successful
on one occasion within reasonable time, after repeated executions. Since a suc-
cessful solution is found using EIO fitness after only 425 seconds, we have ten-
tative evidence that useful functionality can be grown in isolation and deployed
as a service using relatively modest programmer hints.



6

3 Deployment, Conclusions and Future Work

We deployed the service on the Microsoft Azure cloud, incorporating it into the
GP1 and Mutation testing repositories2. We also made the citation counting
service available as text-returning3 and image-returning 4 services for others to
use. We believe that ‘grow and serve’ may prove to be widely applicable: The
approach will be applicable to any software framework, such as Django, into
which behaviour-describing modules can be deployed.

References

1. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug
fixing. In: CEC. pp. 162–168 (2008)

2. Barr, E.T., Harman, M., Jia, Y., Marginean, A., Petke, J.: Automated software
transplantation. In: ISSTA (2015), to appear

3. Bruce, B.R., Petke, J., Harman, M.: Reducing energy consumption using genetic
improvement. In: GECCO (2015), to appear.

4. Harman, M., Jones, B.F.: Search based software engineering. IST 43(14), 833–839
(2001)

5. Harman, M., Langdon, W.B., Jia, Y.: Babel pidgin: SBSE can grow and graft
entirely new functionality into a real world system. In: SSBSE (2014)

6. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.A.: The
gismoe challenge: Constructing the pareto program surface using genetic program-
ming to find better programs (keynote paper). In: ASE. pp. 1–14 (2012)

7. Langdon, W., Harman, M.: Evolving a CUDA kernel from an nVidia template. In:
CEC. pp. 1–8 (July 2010)

8. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. TEC 19(1), 118–135 (Feb 2015)

9. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: A generic method
for automatic software repair. TSE 38(1), 54–72 (Jan 2012)

10. Li, D., Tran, A.H., Halfond, W.G.J.: Making web applications more energy efficient
for OLED smartphones. In: ICSE. pp. 527–538 (2014)

11. Orlov, M., Sipper, M.: Flight of the FINCH through the Java wilderness. TEC
15(2), 166–182 (April 2011)

12. Petke, J., Harman, M., Langdon, W., Weimer, W.: Using genetic improvement and
code transplants to specialise a C++ program to a problem class. In: EuroGP. pp.
137–149 (2014)

13. Schulte, E., Dorn, J., Harding, S., Forrest, S., Weimer, W.: Post-compiler software
optimization for reducing energy. In: ASPLOS. pp. 639–652 (2014)

14. Sitthi-amorn, P., Modly, N., Weimer, W., Lawrence, J.: Genetic programming for
shader simplification. ACM TOG 30(6), 152:1–152:11 (2011)

15. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. TEC
15(4), 515–538 (Aug 2011)

16. Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisation.
In: GECCO (2015), to appear.

1 http://www.cs.bham.ac.uk/~wbl/biblio/
2 crestweb.cs.ucl.ac.uk/resources/mutation testing repository/index.php
3 yuejia.cloudapp.net/gpcitation/publication-title/
4 yuejia.cloudapp.net/gpcitation/img/publication-title/


