
Regression Test Case Prioritisation for Guava

Yi Bian2, Serkan Kirbas3,4, Mark Harman1, Yue Jia1, and Zheng Li2

1 CREST, Department of Computer Science,
University College London, Malet Place, London, WC1E 6BT, UK

2 Department of Computer Science,
Beijing University of Chemical Technology, Beijing 100029, P.R.China

3 Department of Computer Science,
Brunel University London, Kingston Lane, Uxbridge, London, UB8 3PH, UK

4 Computer Engineering Department,
Bogazici University, Bebek, Istanbul, 34342, Turkey

Abstract. We present a three objective formulation of regression test
prioritisation. Our formulation involves the well-known, and widely-used
objectives of Average Percentage of Statement Coverage (APSC) and
Effective Execution Time (EET). However, we additionally include the
Average Percentage of Change Coverage (APCC), which has not pre-
viously been used in search-based regression test optimisation. We ap-
ply our approach to prioritise the base and the collection package of the
Guava project, which contains over 26,815 test cases. Our results demon-
strate the value of search-based test case prioritisation: the sequences we
find require only 0.2% of the 26,815 test cases and only 0.45% of their
effective execution time. However, we find solutions that achieve more
than 99.9% of both regression testing objectives; covering both changed
code and existing code. We also investigate the tension between these
two objectives for Guava.

Keywords: Regression Testing, Test Case Prioritisation, NSGA-II

1 Introduction

Test Case Prioritisation (TCP) reorders a sequence of test cases, based on testing
objectives [2, 7, 8]. Most previous work on test case prioritisation has been single
objective, though it has been argued that much more work is needed on multiple
active approaches [11]. Yoo et al. [9] extended single objective test case selection
to the multiple objective paradigm, but there is far less work on multi objective
prioritisation [12–15].

This paper introduces a multi objective formulation of the test prioritisation
problem, in which we include an additional objective which, perhaps surprisingly,
has not previously been studied in any multi objective regression test optimisa-
tion work. That is, in addition to statement coverage, and execution time, which
have been widely studied, we also use coverage of changed code as an objec-
tive, since this is clearly critical in regression test optimisation. Our formulation



2

therefore balances the tension between coverage of (specifically) changed code
against all code, while seeking to minimise the overall execution time.

We apply our approach to Guava [4], an open source Java project containing
several google versions of core Java utility libraries. These libraries provide day-
to-day functionalities including collections, data caching, concurrency support,
string manipulation5. In this work, we selected tests suite for one of the major
package of Guava, com.google.common.collect, which contains 26,815 test cases.
We chose to test this package because it provides the core data collection that
are used in every Java program, such as, list, set, maps, tables etc. [5].

2 Our Approach to Test Case Prioritisation

This section presents our algorithm representation and fitness functions to test
case prioritisation problem. Given a test suite T with n elements, and a set of n
objectives, f1, ..., .fn. We seek to find a new permutation of T , T ′ = < t′1, ..., t

′
n >

where ∃i ∈ {1, ..., n} ∧ fi(T
′) > fi(T

′′) [11].

We use NSGA-II [10], with a permutation encoding in which the N test
cases are given a sequence number from 0 to N − 1. We used rank selection,
order crossover, and order-changing mutation operators in the NSGA-II. Figure 1
shows an example of the order crossover operator. It first randomly selects two
points and then swaps elements between these points and order the remainder
from the beginning of the position. The crossover rate is 0.1 and mutation rate
is 0.001.

Fig. 1: An example of the order crossover

We have considered three objectives in test case prioritisation. The first one is
Average Percentage of Change Coverage (APCC). APCC allows us to priories
tests focused on the code that has been added or modified recently. To extract
the code change information, we first extract the current version of Guava from
the git repository and then use the “Blame” function to determine which lines
have been changed. Given a line number as input, the “Blame” function returns
the previous revision numbers in which if the line was added or a modified.
We mark the line as “changed” if the date of the revision returned is after the
previous release of the Guava library. APCC is defined as follow:

APCC = (1− TC1 + TC2 + · · ·+ TCM

NM
+

1

2N
) ∗ 100% (1)

5 https://code.google.com/p/guava-libraries/



3

In this formula, N is the number of test cases, M is total number of changed
statements, and TCi denotes the identifier of the test case that first covers the
changed statement i in the execution sequence. A higher APCC value means the
given test sequence cover more source code changed faster.

In addition to prioritising for the objective of covering changed code, we also
include two more standard (and previously studied) objectives: Average Percent-
age of Statements Covered (APSC) and Effective Execution Time (EET) [14].
APSC has been widely used in TCP work [8], which measures the rate of average
number of lines of code covered by given execution of test sequence. Effective
Execution Time (EET) calculates execution time required for the test sequence
to achieve 100% of the test objectives (so, 100% of either APCC, APSC or both
depending on the problem formulation). Let ETi be the execution time of test
case i, and Nlength is the number of test cases that achieve the test objectives,
EET is defined as follow:

EET =

Nlength∑
i=0

ETi (2)

3 Experiments and Results

In order to understand the impact of the newly introduced APCC metric, we
have carried out three different multiple objective experiments, as set out in
Table 1.

Table 1: Three groups of experiments are conducted

Group Optimisation Objectives

G1 APSC and EET

G2 APCC and EET

G3 APSC, APCC and EET

All experiments were run on a CentOS 5.11 with 8 Intel E5426 CPU cores and
16G memory. In each experiment, there are 26,815 test cases in the optimisation
sequences for 62 classes in the collection package. We manually extracted the
code change information as explained in the approach section. Based on this Git
analysis, we found that 140 lines have changed. As the Guava is quite mature
and stable now, so there wasn’t many major changes to the collection package.

For our search, we use the popular and widely-used NSGA-II algorithm. We
experimented with three different population sizes: 100, 200, and 500, Each with
a generation upper limit (termination condition) of 1000 generations. We also
terminate the search if the sum value of average change in different optimisation
objectives is smaller than 0.0001 in 10 consecutive generations. We compared
the original sequence and average results from a set of random sequences. We
generated 100,000 random sequences, from which we construct a pareto front
using elite sorting based APSC, APCC and EET, repeating this process 100
times, so that 10,000,000 random test sequences are constructed in total.

The results for each of the three experiments are presented in Table 2. In
Table 2, the APSC APCC and EET columns show the average best fitness value
respectively over 100 runs. The Length and Time(s) show the number of selected



4

Table 2: Average value of objectives in different group of experiments

Strategy APSC APCC EET(s) Length Time(s) Generation Front set

original 24.8085% 9.1243% 210.47 26808.00 - - -
random 86.1261% 89.7498% 188.26 24031.36 442.02 - 19.30

100
G1 99.9584% - 1.13 80.65 71.82 800.09 2.39
G2 - 99.9834% 0.39 22.94 4.06 82.40 1.24
G3 99.9563% 99.9900% 1.40 111.32 71.48 721.30 4.84

200
G1 99.9674% - 1.03 59.02 99.65 477.70 2.78
G2 - 99.9925% 0.28 7.13 5.47 34.57 1.66
G3 99.9657% 99.9921% 1.08 65.76 107.39 432.58 5.61

500
G1 99.9709% - 0.96 49.93 180.33 214.70 2.73
G2 - 99.9927% 0.28 7.00 12.91 31.50 1.77
G3 99.9692% 99.9923% 0.94 48.15 210.27 223.69 7.43

tests to achieve maximum coverage (all statement coverage for G1 and G3 and
statement coverage for G2) and execution time on average. The generation and
front set columns show the average number of generations and the size of pareto
front. The original row reports the results of running the default test suite where
the random row shows the results using random generated sequence as a baseline.
In the experiments involving random generation, the time spent (recorded in the
sixth column) is that time on the fitness function calculation and elite sorting
of randomly generated individuals.

The results of our experiments suggest that prioritisation can be very effective
for Guava, finding test sequences that achieve coverage of both test adequacy
criteria with only a tiny fraction of the budget required by the entire test suite.
That is, both 100% APCC and APSC can be achieved with 0.2% of test cases
and 0.45% of total execution time for the entire suite. For the Guava developer
this highlights the value of prioritising test cases in order to maximise early
coverage of both changed and unchanged statements.

Table 3: The p−value of Mann-Whitney-Wilcoxon test and Vargha and Delaney
Â12 between two different set of TCP experiment groups

Group
100 VS. 200 100 VS. 500 200 VS. 500
MWW VDA MWW VDA MWW VDA

G1 3.24E-08 0.7263 2.71E-20 0.8778 6.10E-10 0.7533
G2 2.32E-30 0.9687 9.67E-33 0.9877 1.66E-07 0.7142
G3 1.67E-13 0.8018 1.39E-23 0.9097 7.09E-07 0.7030

The 100, 200, 500 rows show the overall results of three experiments run-
ning with population size of 100,200 and 500 respectively. We used the Mann−
Whitney−Wilcoxon test with Bonferroni correction to check the hypervolume
distribution of pareto front sets in different population size and then we compare
the significants between these results by using Vargha and Delaney Â12 effect.
The results are in Table 3. In Table 3, MWW and VDA show the p-value and the



5

Â12 value. The results show that the hypervolume of the pareto front generated
from three different population settings has significant differences with a high
effect size.

We also calculated the number of similar test cases used by the different
sequences as shown in Table 4. In order to avoid double counting, we combined
the test cases with the same statement coverage which reduced the number of
test cases considered from 26,815 to 14,516 different test cases. In Table 4, the
number on each cell denotes the number of test cases in the intersection of the
two different test sequences (row and column values) considered and the last
column is the total number of those test cases in the sequences. Again the the
results are total number over all 100 runs.

The results indicate that, as we might expect, covering all objectives (G3)
is similar to covering statements with minimal execution time (G1). This is
because there are relatively few changed statements, so covering all statements
and all changed statements is very much similar to covering all statements;
the former subsumes the latter. However, targeting the coverage of only the
changed statements at minimal cost, yields very different test suites that either
attempting statement coverage alone or both statement coverage and changed
statement coverage.

Table 4: The total number of test cases in one group and intersection number
between two different groups

100 200 500
Total

G1 G2 G3 G1 G2 G3 G1 G2 G3

100
G1 - 430 2060 624 71 2221 489 64 571 2591
G2 - 1008 295 59 1101 237 52 265 1260
G3 - 1223 140 8889 823 134 945 10758

200
G1 - 65 1337 420 59 483 1486
G2 - 142 63 30 66 167
G3 - 859 142 995 11933

500
G1 - 49 448 935
G2 - 49 165
G3 - 1066

In the future we will consider to include the fault information based on
Guava project to verify which combine of objectives is more effective for testing
the errors in Guava project. Also we need to include more objective to satisfy
the requirements of industrial needed, for example, adding the mutation testing
to measure the errors detection ability between test sequences or considering to
give a higher the coverage value for the test sequence that can quickly coverage
the most important classes in project. At last we are also considering to use
GPGPU technology to accelerate the TCP process which will obviously improve
the efficiency of regression testing.



6

4 Conclusions and Actionable Findings
In our experiments, we extended multi-objective test case prioritisation process
to consider coverage of changed statements and applied it to test prioritisation
for Guava’s collection package. Our experiments revealed that prioritisation can
dramatically reduce the size of test sequences required to achieve early coverage
of changed statements (and all statements) for Guava developer. Also targeting
only coverage of the changed statements yields very different test sequences to
targeting coverage of all statements.

References

1. Yoo, S., Harman, M. (2012). Regression testing minimization, selection and priori-
tisation: a survey. Software Testing, Verification and Reliability, 22(2), 67-120.

2. Rothermel, G., Untch, R. H., Chu, C., Harrold, M. J. (2001). Prioritizing test cases
for regression testing. Software Engineering, IEEE Transactions on, 27(10), 929-948.

3. Huang, P., Ma, X., Shen, D., Zhou, Y. (2014, May). Performance regression test-
ing target prioritisation via performance risk analysis. In Proceedings of the 36th
International Conference on Software Engineering (pp. 60-71). ACM.

4. Guava Project Web Site, https://github.com/google/guava
5. http://blog.takipi.com/google-guava-5-things-you-never-knew-it-can-do/
6. Jiang B, Chan W K. On the integration of test adequacy, test case prioritisation, and

statistical fault localization[C]//Quality Software (QSIC), 2010 10th International
Conference on. IEEE, 2010: 377-384.

7. Elbaum S, Malishevsky A G, Rothermel G. Test case prioritisation: A family of
empirical studies[J]//Software Engineering, IEEE Transactions on, 2002, 28(2): 159-
182.

8. Li Z, Harman M, Hierons R M. Search algorithms for regression test case prioriti-
sation[J]. Software Engineering, IEEE Transactions on, 2007, 33(4): 225-237.

9. Yoo S, Harman M. Pareto efficient multi-objective test case selec-
tion[C]//Proceedings of the 2007 international symposium on Software testing and
analysis. ACM, 2007: 140-150.

10. Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algo-
rithm: NSGA-II[J]. Evolutionary Computation, IEEE Transactions on, 2002, 6(2):
182-197.

11. Harman M. Making the Case for MORTO: Multi Objective Regression Test Opti-
mization[C]//ICST Workshops. 2011: 111-114.

12. Sun W, Gao Z, Yang W, et al. Multi-objective test case prioritization for GUI ap-
plications[C]//Proceedings of the 28th Annual ACM Symposium on Applied Com-
puting. ACM, 2013: 1074-1079.

13. Snchez A B, Segura S, Ruiz-Corts A. A comparison of test case prioritization
criteria for software product lines[C]//Software Testing, Verification and Validation
(ICST), 2014 IEEE Seventh International Conference on. IEEE, 2014: 41-50.

14. Li Z, Bian Y, Zhao R, et al. A fine-grained parallel multi-objective test case prioriti-
sation on GPU[M]//Search Based Software Engineering. Springer Berlin Heidelberg,
2013: 111-125.

15. Micheal Epitropakis, Shin Yoo, Mark Harman, Edmund Burke, Empirical E-
valuation of Pareto Efficient Multi Objective Regression Test Case Prioritisa-
tion[C]//ISSTA 2015, To appear.


