
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          

               

 

 

 

The 2nd Student Conference on 

Optimisation of Software

25-26 June 2013 
University College London 

London, UK 
 

 

 

 



 
 

 
 
 

 

Preface 

 

The StuConOS 2013 conference is aimed at current 

undergraduate and master level students in the UK. 

The conference will give students a chance to submit 

their work and to have this reviewed by a 

programme committee of experts. We interpret the 

word "optimisation" in its very broad sense: anything 

that improves (in any way) software or the process of 

making it. It gives students an initial taste of 

research work and a chance to publish and discuss 

their ideas with experts.  

The programme committee reviewed the 

submissions and decided on those to be accepted 

and the prizes to be awarded. All authors received 

feedback on their work and those accepted for the 

conference are published in this printed proceedings 

& are online available and are presented at the 

conference.  

There are prizes for the best papers submitted in the 

form of a gold and silver medal which will be 

accompanied by a gift of £300 and £200 respectively. 

 

 



 
 

 
 
 

Conference Organisation 

 

General Chair 

Mark Harman University College London, UK 

 

Programme Chair 

Yuanyuan Zhang University College London, UK 

 

Industrial Chair 

Dean Mohamedally University College London, UK 

 

Local Arrangements Chair 

Lena Hierl University College London, UK 

 

 

Program Committee 

Kelly Androutsopoulos University College London, UK 

Giuliano Antoniol Ecole Polytechnique de Montréal, 

Canada 

Andrea Arcuri Simula, Norway 

Paul Baker Visa, UK 

http://www.cs.ucl.ac.uk/staff/K.Androutsopoulos/
http://uk.linkedin.com/in/pauldbaker


 
 

 
 
 

Edmund Burke University of Stirling, UK 

Francisco Chicano University of Málaga, Spain 

David Clark University College London, UK 

John A Clark University of York, UK 

Myra B Cohen University of Nebraska - Lincoln, 

USA 

Massimiliano Di Penta University of Sannio, Italy 

Nicolas Gold  University College London, UK 

Wolfgang Grieskamp Google 

Rob Hierons  Brunel University, UK 

Jens Krinke University College London, UK 

Kiran Lakhotia University College London, UK 

Emmanuel Letier University College London, UK 

Leandro L Minku University of Birmingham, UK 

Robert Nilsson Google, Switzerland 

Mel Ó  Cinnéide   University College Dublin, Ireland 

Justyna Petke  University College London, UK 

Simon Poulding University of York, UK 

Brian P Robinson ABB, USA 

Federica Sarro  University College London, UK 

Saurabh Sinha IBM, India 

Jerffeson Teixeira de 

Souza  

State University of Ceará, Brazil 

Nikolai Tillmann Microsoft, USA 

David R White University of Glasgow, UK 

Junchao Xiao Chinese Academy of Sciences, China 

Shin Yoo  University College London, UK 

http://www.stir.ac.uk/about/senior-officers-of-the-university/deputyprincipalforresearch/
http://www.cs.ucl.ac.uk/staff/D.Clark/
http://www-users.cs.york.ac.uk/jac/
http://www.cs.ucl.ac.uk/staff/N.Gold/
http://www.linkedin.com/in/wgrieskamp
http://www.brunel.ac.uk/~csstrmh/
http://www.cs.ucl.ac.uk/staff/j.krinke/
http://www.cs.ucl.ac.uk/staff/K.Lakhotia/
http://www.cs.ucl.ac.uk/staff/ucacbbl/
https://plus.google.com/109948394069166678952/about
http://www.csi.ucd.ie/users/mel-o-cinneide
http://www-users.cs.york.ac.uk/smp/
http://www.linkedin.com/pub/brian-robinson-ph-d/2/283/417
http://researcher.watson.ibm.com/researcher/view.php?person=in-saurabhsinha
http://research.microsoft.com/en-us/people/nikolait/
http://www.berner-mattner.com/en/berner-mattner-home/company/subsidiaries/berlin/index.html
http://www.cs.bham.ac.uk/~xin/
http://www.cs.ucl.ac.uk/staff/s.yoo/index.html


 
 

 
 
 

Sponsors 

 

 

 

 

 

 

 

DAASE Project 
http://daase.cs.ucl.ac.uk/ 

 

 

 

 



 
 

 
 
 

Keynote Speaker 

 

Nikolai Tillmann – Microsoft, USA 

Nikolai’s main areas of research are program authoring on mobile 
devices, program analysis, testing, optimization, and verification. 
 
He started the TouchDevelop project, which enables end-users to 
write programs for mobile devices on mobile devices. This project 
brings the excitement of the first programmable computers to 
mobile devices such as smartphones. 
 
Nikolai is leading the Pex project, in which he develop together with 
Peli de Halleux a framework for runtime verification and automatic 
test case generation for .NET applications based on parameterized 
unit testing and dynamic symbolic execution. Try out Pex on the 
web: www.pexforfun.com 
 
He is also involved in the Spur project, where he is working on a 
tracing Just-In-Time compiler for .NET and JavaScript code. 
 
Previously Nikolai worked on AsmL, an executable modeling 
language that comes with a compiler and a test generation tool, and 
the Spec Explorer 2004 model-based testing tool. Together with 
Wolfgang Grieskamp he developed XRT, a concrete/symbolic state 
exploration engine and software model-checker for .NET code. Spec 
Explorer 2007 is based on this engine, which is now productized 
internally by the Protocol Engineering Team at Microsoft to 
facilitate quality assurance of protocol documentation (link). 
 
Before coming to Microsoft Research, Nikolai was involved in the 

development of a school management system in Germany. 

 

 



 
 

 
 
 

UCL  
 

About UCL  
UCL was established in 1826 to open up 
education in England for the first time 
to students of any race, class or religion. 
UCL was also the first university to 
welcome female students on equal 
terms with men.  
 
Academic excellence and conducting 
research that addresses real-world 
problems inform our ethos to this day.  

 

Our research 
In the most recent Research Assessment 
Exercise, 62% of UCL’s submissions were 
ranked at the highest grades of 4* (“of 
world-leading quality”), or 3* 
(“internationally excellent”), placing it 
third in the UK. 

 
UCL attracts the third highest number of 
academic citations in the UK showing 
the high esteem and relevance of the 
institution’s research. 

Local and global 
impact 
In 2011–2012, UCL ran more than 40 
schemes to support start-ups and 
growing businesses, and helped 
strengthen more than 300 small 
businesses in London.  
 
We share our resources and engage 
with the local community to enrich 
London’s social, cultural and academic 
life.  

http://www.ucl.ac.uk/research/rae-2008/


 
 

 
 
 

CREST Centre 

 

The CREST centre at UCL builds on the three foundations of 
Program Dependence, Information Theory and Optimisation 
Algorithms.  

On these three foundations we develop ways to analyse, 
understand and improve software, with applications 
throughout the spectrum of software development activities. 
We are widely known for our work on Empirical Software 
Engineering, Evolutionary Computation, Code Provenance, 
Quantified Information Flow, Security, Software Testing, 
Program Slicing and Search Based Software Engineering.  

Like other centres at UCL, the CREST Centre is truly 
multidisciplinary; we apply our algorithms and methods to the 
analysis and improvement of Digital Humanities and the Arts 
from which our work of Software Engineering also draws 
inspiration. 

The centre also hosts a series of monthly open workshops.  

 

 

 

 

  

http://crest.cs.ucl.ac.uk/cow/


 
 

 
 
 

DAASE Project 

 

DAASE (Dynamic Adaptive Automated Software Engineering) is a 

four site project between UCL, Birmingham, Stirling and York. The 

lead at each site is, respectively, Professors Harman, Yao, Burke and 

Clark, with Professor Harman as the overall project director. The 

project also has a growing list of industrial partners, which currently 

includes Air France - KLM, Berner and Mattner, BT Laboratories, 

Dstl, Ericsson, GCHQ, Honda Research Institute Europe, IBM, 

Microsoft Research and VISA UK. 

 

DAASE builds on two successful longer larger projects, funded by 

the EPSRC and which were widely regarded as highly successful and 

ground breaking. The project also draws inspiration and support 

from and feeds into the rapidly growing worldwide Search Based 

Software Engineering (SBSE) community. A repository of SBSE 

papers and people can be found here. 

 

Current software development processes are expensive, laborious 

and error prone. They achieve adaptivity at only a glacial pace, 

largely through enormous human effort, forcing highly skilled 

engineers to waste significant time adapting many tedious 

implementation details. Often, the resulting software is equally 

inflexible, forcing users to also rely on their innate human 

adaptivity to find "workarounds". Yet software is one of the most 

inherently flexible engineering materials with which we have 

http://www.ucl.ac.uk/
http://www.birmingham.ac.uk/index.aspx
http://www.stir.ac.uk/
http://www.york.ac.uk/
http://www.epsrc.ac.uk/Pages/default.aspx
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/


 
 

 
 
 

worked, DAASE seeks to use computational search as an overall 

approach to achieve the software's full potential for flexibility and 

adaptivity. In so-doing we will be creating new ways to develop and 

deploy software. This is the new approach to software engineering 

DAASE seeks to create. It places computational search at the heart 

of the processes and products it creates and embeds adaptivity into 

both. DAASE will also create an array of new processes, methods, 

techniques and tools for a new kind of software engineering, 

radically transforming the theory and practice of software 

engineering. 

 

 

  

  

 

     

 
                              

 
 

  

http://www.ucl.ac.uk/
http://www.stir.ac.uk/
http://www.york.ac.uk/
http://www.birmingham.ac.uk/index.aspx


 
 

 
 
 

 

Programme 

25th June: 

11:30 Arrival and lunch  

12:30 Welcome and Introduction by Professor Mark Harman 

12:45 Keynote: Nikolai Tillmann, Microsoft Research 

13:30 Questions 

13:45 Michaela Newell, University of the West of England – StuConOS 
paper 

14:15 Discussion 

14:30 BSc Final Year Computer Science Project reports 

Anthony Stewart, Durham University 

 Krishna Patel, Brunel University 

15:00 Discussion 

15:15 Refreshments 

15:45 BSc Final Year Computer Science Project reports 

 Kim Barrett, University of Warwick 

Matthew Smith, University of Warwick 

 Christiana Agapiou, University of Surrey 

 James Marchant, University of Warwick 

16:45 Discussion 

17:00 Wrap-up 

17:15 Leave for reception at the London Eye 

19:00 Reception at the London Eye 

19:30 Leave for dinner at China Town 

20:00 Dinner 

http://research.microsoft.com/en-us/people/nikolait/


 
 

 
 
 

26th June: 

10:00 Arrival, coffee, tea and pastries 

10:30 Pavlo Bazilinskyy & Markus Brunner, University of St Andrews – 
StuConOS paper 

11:00 Discussion 

11:15 BSc Final Year Computer Science Project reports  

Karol Pogonowski, University of Edinburgh 

 Christy Kin-Cleaves, Durham University 

 Stephen McGruer, University of Edinburgh 

 Deepak Ramchandani Vensi 

12:15 Discussion 

12:30 Sandwich lunch at the venue 

13:30 BSc Final Year Computer Science Project reports 

Horatio Caine, University of Birmingham 

 Razvan Ranca, University of Edinburgh 

 Jibran Khan, University of Edinburgh 

 Barney Jackson, University of Edinburgh 

14:30 Discussion 

14:45 Refreshments 

15:15 BSc Final Year Computer Science Project reports 

Aaron Cosgrove, Manchester Metropolitan University 

 Arun Kumar, University College London 

 Mariyana Koleva, University of Edinburgh 

16:00 Discussion 

16:30 Wrap up and Prize Announcement 

17:00 Finish 

  



 
 

 
 
 

Shortlist for the BSc Project Prize 

- Presenting their work – 

 

Christiana Agapiou. Analysis and monitoring of tremor - University of 

Surrey 

Kim Barrett. Mario and AI - University of Warwick 

Horatio Caine. Prediction and Classification for Optimisation of Object 

Tracking in Market-Based Networks of Distributed Smart Cameras - 

University of Birmingham 

Aaron Cosgrove. Fuzzy Decision Trees for Medical and Financial 

Applications - Manchester Metropolitan University  

Barnaby Jackson. The effectiveness of previews on search engine results - 

University of Edinburgh 

Jibran Khan and Michael Rovatsos. Plan Recognition in RISK - University 

of Edinburgh 

Christy Kin-Cleaves. Backgammon with Variable Luck - Durham 

University 

Mariyana Koleva. Automated Classification of Butterfly Images - 

University of Edinburgh 

Arun Kumar. An English Writing Search Engine – UCL 

James Marchant. The Effect of Placement Strategy on Convention 

Emergence - University of Warwick 

Stephen McGruer. Automated Compiler Optimization: Does it really 

work? - University of Edinburgh 

Krishna Patel. Assessing the Feasibility and Desirability of a Genetic 

Algorithm Based Routing Protocol - Brunel University  

Karol Pogonowski. Cloud computing on Heterogeneous cores: 

MapReduce on GPUs - University of Edinburgh 



 
 

 
 
 

Deepak Ramchandani Vensi. Groupee - A solution for Group Social 

Innovation - University of Bath 

Razvan Ranca. Reconstructing Shredded Documents - University of 

Edinburgh 

Anthony Stewart. A study of Ant Colony Algorithms and a potential 

application in Graph Drawing - Durham University 

Matthew Smith. Giving Up Smoking: Modelling how Social Networks 

Impact upon the Breaking of Habits - University of Warwick 

 

 

  



 
 

 
 
 

BSc Project Prizes 

 

The Effect of Placement Strategy on Convention Emergence  

James Marchant - University of Warwick 

 

Automated Classification of Butterfly Images 

Mariyana Koleva - University of Edinburgh 

 

 

 

 

 

 

 

 

 
 



 
 

 
 
 

StuConOS Best Paper Awards 

 

Gold Prize 

Improving Testing of Complex Software Models through 

Evolutionary Test Generation  

Michaela Newell - University of the West of England 

 

 

Silver Prize 

Performance Engineering and Testing: The Challenges on 

Mobile Platforms 

Markus Brunner and Pavlo Bazilinskyy - University of St Andrews 

 

 

 

 

 

 

 

     



Improving Testing of Complex Software Models through 

Evolutionary Test Generation 

 

ABSTRACT 

Considerable cognitive effort is required to write test cases for 

complex software and fix any defects found. As the generation of 
test cases using evolutionary computation has a long established 

track record, this paper explores whether this pedigree can be 

exploited to improve efficiencies in larger testing suites that 
typically address complex software models. A genetic algorithm 

has been designed and implemented with complex software 

models in mind, and then trialled against five real world programs 
that vary in scale and complexity. Results show that test case 

generation using an evolutionary algorithm on average can 

improve the number of coverage goals met by 75.83%. Therefore 
we conclude that even with complex models that have thousands 

of objects improvements can be made.   

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging – Testing 

tools (e.g., data generators, coverage testing). 

I.2.8 [Computing Methodologies]: Problem Solving, Control 
Methods, and Search – Heuristic methods. 

General Terms 
Algorithms, Design, Human Factors 

Keywords 
Automatic Test Generation, Evolutionary Algorithm, 

Metaheuristic Search, Unified Modelling Language, Complex 
Data Models 

1. INTRODUCTION 
Manual software testing of complex software is a cognitively 

demanding task and so can be expensive, time consuming and 
occasionally unreliable [1]. Figures released for the USA suggest 

that approximately $20 billion each year could be saved if more 

efficient and effective software testing was performed prior to 
deployment and release. [2]. The need to improve on this situation 

is significant as in addition to the loss of considerable amount of 

money, failures of complex safety-critical software systems 
potentially put human life in jeopardy. As a spectacular example 

of a complex software systems failure, the European Space 

Agency estimates losses of $500,000,000 caused by the launch 
failure of the Arianne 5 rocket in 1996; the root cause of the 

failure is thought to be inadequate testing coverage [3]. 

Evolutionary Test Generation (ETG) has attracted significant 

research interest and shows great promise in reducing the 

development costs and improving the quality (and hence the level 

on confidence) in the software under test [4]. Within the field of 

Search Based Software Engineering (SBSE) [5], many meta-

heuristic search techniques have been applied which treat the 
generation of test cases as a search problem. Meta-heuristic search 

approaches encode candidate solutions using a problem specific 
representation, and fitness functions and operations to preserve 

solution diversity. The technique is typically measured on how 

expensive, effective and scalable the algorithm is at reaching the 
test objectives [6]. A widely applied objective fitness function 

used in meta-heuristic search for test cases is branch coverage [7], 

where the goal is to arrive at a restricted number of test cases that 
achieve the maximum degree of branch coverage. However, 

generating a set of test cases for software systems of realistic 

complexity presents a challenge not only due to the size of the 
search space expanding rapidly, but furthermore, many 

researchers acknowledge solving a complex search problem 

means there is no optimal or exact solution [8]. This paper 
therefore sets out to design and implement a genetic algorithm 

that exploits models of complex software, specifically object-

oriented class models, as a basis for generating test cases. 

2. BACKGROUND 
Evolutionary Algorithms (EA) typically use a population of 

individuals, rather than one individual candidate. The algorithm 

then uses optimisation techniques inspired by the biological 
evolution processes; reproduction, mutation and selection. EAs 

consist of a number of varying techniques including: genetic 

algorithms, genetic programming and evolutionary programming. 
Genetic Algorithms (GA) are arguably the most well known form 

of EA [9]. Genetic algorithms require three components in order 

to achieve effective search: a solution representation, a measure of 
solution fitness and a mechanism for diversity preservation. A 

representation can typically take the form of real numbers, binary 

digits or floating point numbers. Examples of GAs using more 
complex data structures have attempted to address some 

challenging problems such as scalability, predictability and 

robustness [10]. 

There are many methods of generating test cases, including search 

based [8][10], model based [11][12][13][14] and specification 
based [15]. Model based test generation is very different to the 

search techniques discussed. The tests are generated from 

modelling languages including the most widely used [11], Unified 
Modelling Language (UML) [16]. The benefit of this method is 

that in many cases, designs in the form of UML have already been 

completed; consequently less additional effort is required. Data 
can be gathered from various UML diagrams including: use cases 

[14], interaction diagrams [15] or a combination of diagrams [16]. 

Michaela Newell 
Department of Computer Science and Creative Technologies 

University of the West of England 
Bristol BS16 1QY United Kingdom 

michaela2.newell@live.uwe.ac.uk 



Figure 1 summarises the different techniques that can be used and 

the level of testing that they are suitable for: 

 Unit  

Testing 

Integration 

Testing 

Functional 

Testing 

Search Based 

Technique 

 McMinn [8] 

Harman [10] 

McMinn [8] 

Harman [10] 

Model Based 

Technique 

Prasanna et al. 

[11] 

Nebut et al. 

[12] 

Swain et al. 

[14] 

Prasanna et al. 

[11] 

Tonella and 

Potrich. [13] 

Swain et al. 

[14] 

Swain et al. 

[14] 

Specification 

Based Technique 

  Liu and 

Nakajima [15] 

Figure 1. Techniques suitability to different stages of testing. 

Figure 1 summarises all of the previously mentioned frameworks 
by their technique and how the authors assess their suitability in 

the various stages of software testing. The figure shows that the 

only framework that is suitable for all levels is a model based 
technique proposed by Swain et al. [16]. Additionally Figure 1 

highlights that various techniques and frameworks can be adapted, 

one most appropriate to the problem. 

3. PROPOSED APPROACH 
The proposed approach uses a combination of a model and search 

based technique to generate test cases and to address the 

challenges of a complex data model. Other authors have also 
proposed combining these two techniques and their methods show 

promising results [17]. A description of how this approach is 

implemented is included in the following sections. 

3.1 Problem Encoding 
A prerequisite of the system is that the user must input a UML 
Class Diagram. As the tool is an initial prototype only one 

structure of UML is currently supported. The structure supported 

is the automatically generated structure of StarUML [18]. An 
example of the structure can be seen from Figure 2. 

<XPD:OBJ name="OwnedElements[0]" type="UMLClass" 

guid="95FFK+ln1kOVRD4GJYRJhQAA"> 

<XPD:ATTR name="Name" type="string">Class1</XPD:ATTR> 

<XPD:REF name="Namespace">YMt6yt/Y90qiBdvoCPhIcwAA</XPD:REF> 

<XPD:ATTR name="#Views" type="integer">4</XPD:ATTR> 

<XPD:REF name="Views[0]">0tQXfFFEhkaabBimWRCnpAAA</XPD:REF> 

<XPD:REF name="Views[1]">Phczm+38hEqdvBhZpBDf3AAA</XPD:REF> 

<XPD:REF name="Views[2]">s/+vlwh5EEC9dhihI0tb5gAA</XPD:REF> 

<XPD:REF name="Views[3]">zYgdJGmGL0uBTrgKDz2F3wAA</XPD:REF> 

<XPD:ATTR name="#Operations" type="integer">2</XPD:ATTR> 

<XPD:OBJ name="Operations[0]" type="UMLOperation" 

guid="zOXxGE8kH0CZy0upBp5RnAAA"> 

<XPD:ATTR name="Name" type="string">method1</XPD:ATTR> 

<XPD:REF name="Owner">95FFK+ln1kOVRD4GJYRJhQAA</XPD:REF> 

</XPD:OBJ> 

<XPD:OBJ name="Attributes[0]" type="UMLAttribute" 

guid="hPKc2Pm4k0arRtSG5BMetgAA"> 

<XPD:ATTR name="Name" type="string">var1</XPD:ATTR> 

<XPD:ATTR name="Visibility" 

type="UMLVisibilityKind">vkPrivate</XPD:ATTR> 

<XPD:REF name="Owner">95FFK+ln1kOVRD4GJYRJhQAA</XPD:REF> 

</XPD:OBJ> 

</XPD:OBJ> 

Figure 2. StarUML structure: class, attribute and operation. 

However, not all models in the case study are as simple as the one 

that can be seen in Figure 2. One of the models used to validate 
how the program manages complexity can be seen in Figure 3. 

 
Figure 3. Class diagram for md5deep and hashdeep. 

Figure 3 illustrates a diagram used to check the frameworks ability 

to handle model complexity, with 18 classes and hundreds of 
attributes and operations. The framework begins by parsing the 

UML to gain information. In order to identify relevant 

information within the UML, the required information must first 
be identified by its XML tag. The tag ‘<XPD:OBJ>' will 

differentiate between the type of object (Class, Variable or 

Method). Inside the objects the parsing looks for the tag 
‘<XPD:ATTR>’, which will identify information relating to the 

object such as the object name.  

3.2 Solution Representation 
The tool splits by each object narrowing the search space. There is 

then a separate method that gets specific information from the 
object. For example, the method can be called to return all method 

names. Both of these methods are generic to allow for future 

expansion to obtain more information from the UML.  

There are four methods that request information from the generic 
methods. These four methods are split into types of objects. The 

logic of these methods is: for each class diagram check for all 

classes and for each class check for all variables and methods. 
Currently these four classes return the object names and in the 

structure specified, add them to a vector. This initial structure 

includes all the objects and is used later in the fitness function. 
The benefit of obtaining this information from a design diagram 

as opposed to the program’s code is that we are assuming the 

design diagrams are correct and we cannot assume this for the 
program. An example of an initial vector can be seen in Figure 4. 

 
Figure 4. Example of an initial vector. 

Figure 4 shows a genotype representation, Figure 5 the 

phenotype. 

 
Figure 5. Example of an individual. 

3.3 Diversity Preservation 
The standard selection schemes include: tournament, ranking and 

proportional truncation selection [19]. This framework uses three 
techniques: tournament selection, one point crossover and single 

point mutation. The tournaments run by pairing each individual in 

the population together at random. The winner of the tournament 
is determined using a fitness proportional selection, as opposed to 

the absolute fitness value that is determined at the end of each 

generation. The winner of each tournament is selected for 
crossover. One point crossover is where one point is selected at 



random in the individual and all the data beyond that point is 

swapped between the two parents, resulting in offspring. 

3.4 Fitness Operation 
The fitness function assesses the population for coverage goals. 
Each individual in the population is assessed for its’ coverage. A 

higher coverage can be achieved by including the testing of each 

object. The individual’s assessments are then used for diversity 
preservation. Once complete, the population’s fitness is assessed. 

The population can increase its fitness score by increasing the 

number of objects that will be tested. The score is awarded by 
giving one point if an individual contains an element that exists in 

the initial vector. 

3.5 Genetic Algorithm 
The general scheme in psuedocode [20] can be seen in Figure 6. 

 
 Figure 6. Scheme of an evolutionary algorithm in psuedocode. 

4. EXPERIMENTAL METHODOLOGY 
Each test will be structured in the same way in order to guarantee 

the fairness of a comparison. Each test will have a main variable, 

the program. The test vehicles are five real world programs. Each 
program varies in the number of objects and the complexity of the 

model.  

The algorithm parameters are: 20 runs for each program, similar 

to the works of Forrest et al. [21]. The number of generations will 

be 100, similar to the works of Arcuri et al. [22]. The population 
size will be 40 similar to sizes in previous literature [21][22]. 

100% of individuals are paired together in a tournament selection 

which is a common practise in GA’s [20]. The crossover rate is 
75% which is considered to be ideal [23]. The mutation rate is 5% 

as this typically shows the best performance [23]. 

5. RESULTS 
The fitness curve for Program 2 is shown in Figure 7. 

 
Figure 7. Mean fitness score for 20 runs of Program 2 over 100 

generations on a logarithmic scale. 

As it can be seen in Figure 7, the fitness score peaks before the 

20th generation, which is why every further run used 20 

generations, instead of 100. The highest standard deviation point 
is 17, which is observed at the 7th and 9th generations. As it can be 

seen, the later generations have a lower standard deviation this is 

expected as at the beginning the diversity between individuals is 
larger due to the size of the exploration space is larger. As the 

candidate solution begins to form the search space decreases, 

lowering the deviation. 

In order to test the results by model complexity and the 
frameworks ability to scale, Figure 8 shows the total number of 

objects for each program used in testing. The number of objects 

directly influences the complexity of the model. 

 
Figure 8. The total number of objects per program. 

All of the programs chosen were open source, written in either 
Java or C++. Source code, test cases and design diagrams were 

freely available. However, the source code is not used by the 

framework. The design diagrams are used in the test generation 
which is then compared to the manual test cases to assess 

improvement. Figure 9 shows the fitness curve relative to the total 

number of possible objects listed in Figure 8. 

 
Figure 9. Fitness scores relative to the total number of objects. 

Figure 9 shows that every program has a similar fitness curve. The 
small decreases in the fitness curve are due to the program using a 

generational model, as opposed to steady state. Figure 9 also 
shows that the scalability affects the curve. Program 3 has the 

highest number of objects and the lowest relative fitness score. 

Program 4 has the second lowest number of objects and the 
highest fitness score. This indicates that the programs complexity 



affects the fitness score. The percentage improvement when 

comparing automatically generated test cases to manual test 

development shows that there is a larger room for improvement 
when the programs complexity is greater. For example, Program 3 

achieved a percentage improvement of 95% whilst; Program 1 

achieved an improvement of 77%. This could arguably be due to 
the difficulty of developing tests cases manually for larger 

programs. 

6. CONCLUSION 
Results show that significant improvement can be made when 
using automatic test generation as opposed to manual 

development. The improvement can be made on software that 

already exists and is used in the public domain. The complexity 
affects the final fitness and based on the limited testing, complex 

programs with more objects, score slightly lower fitness scores. In 

order to achieve a reasonable relative score (50% or higher) the 
program size has to be around 1000 objects or lower. However, 

using the final code base, the average improvement of the 

programs used was 75.83%. This is strong evidence to suggest 
that the proposed approach addresses the challenges of a complex 

model. 

Limitations include: the user must have an accurate class diagram 

written in StarUML. However if desired the ‘UMLParser’ can be 

modified to accept various structures chosen by the UML tools. 
Another limitation is that class diagrams do not typically contain 

information such as boundary conditions and run time 

information. The class diagram is currently used as a pre 
validation to make sure all the objects in design are included. 

Future work would include obtaining information such as run 
time information from a sequence diagram or other suitable 

method. Currently boundary conditions are taken from the user 

via a GUI, in order to achieve complete automation; this to could 
be taken from a UML diagram or alternative method. Lastly a 

multi-objective fitness function would be preferable. After 

viewing the test cases generated, whilst they make a significant 
improvement in terms of object coverage, it would be beneficial to 

improve test cases based on variables such as: length of test, 

diversity in test set, execution time et cetera.  

The challenges of a complex model have been addressed. Each of 

the five programs tested against, were variant in complexity. The 
improvement in efficiency appears not to be based on the size of 

the program and/or testing suite but on the quality of the current 

tests. Reinforcing that irrespective of the problem model 
complexity, automatic test case generation can be an improvement 

on manual test development. 

7. ACKNOWLEDGMENTS 
Thanks to Dr Chris Simons for his continued support. 

8. REFERENCES 
[1] Katanić, N., Nenadić, T., Dečić, S., Skorin-Kapov, L. 2010. 

Automated generation of TTCN-3 test scripts for SIP-based 

calls. MIPRO, 33rd International Convention. 

[2] Tassay, G. 2002. The Economic Impacts of Inadequate 

Infrastructure for Software Testing. Final Report. 

[3] Kosindrdecha, N. and Daengdej, J. 2010. A Test Case 

Generation Process and Technique. Journal of Software 
Engineering. 265-287. 

[4] Clark, J., Mander, K., Mcdermid, J., Tracey, N. 2002. A 

Search Based Automation Test-Data Generation Framework 

for Safety-Critical Systems. 1-41. 

[5] Harman, M. 2010. Why the Virtual Nature of Software 

Makes it Ideal for Search Based Optimization.  

[6] Shaukat, A., Lionel C. B., Hadi, H., Rajwinder K. 2010. A 

Systematic Review of the Application and Empirical 

Investigation of Search-Based Test Case Generation. IEEE 

Transactions on Software Engineering. 742-762. 

[7] Fraser, G., Arcuri, A. 2011. Whole Test Suite 

Generation. Software Engineering, IEEE Transactions. 

[8] Pavlov, Y., Fraser, G. 2012. Semi-automatic Search-

Based Test Generation. IEEE Fifth International Conference 
on Software Testing, Verification and Validation. 

[9] McMinn, P. 2004. Search-based Software Test Data 

Generation: A Survey. 105-156. 

[10] Harman, M. 2007. The Current State and Future of Search 

Based Software Engineering. Future of Software 

Engineering, 2007. 342-357. 

[11] Prasanna, M., Sivanandam, S., Sundarrajan, R., Venkatesan, 
R. 2005. A survey on Automatic Test Case Generation. 

Academic Open Internet Journal. 

[12] Nebut, C., Fleurey, F., Le Traon, Y., Jezequel, J. 2006. 
Automatic test generation: a use case driven 

approach. IEEE Software Engineering. 140-155. 

[13] Tonella, P., Potrich, A. 2003. Reverse Engineering of the 

Interaction Diagrams from C++ Code. IEEE International 

Conference on Software Maintenance, 159-168. 

[14] Swain, A. K., Mohapatra, D. P., Mall, R. 2010. Test Case 

Generation Based on Use case and Sequence Diagram. Int. 

J. of Software Engineering. 21-52. 

[15] Liu, S., Nakajima, S. 2010. A Decompositional Approach to 

Automatic Test Case Generation Based on Formal 

Specifications. Fourth International Conference on Secure 

Software Integration and Reliability Improvement. 147-155. 

[16] Object Management Group. 2013. http://www.uml.org/ [2 
June, 2013]. 

[17] Neto, A., de Freitas Rodrigues, R., Travassos, G. 2011. 

Porantim-Opt: Optimizing the Combined Selection of Model-

Based Testing Techniques. ICSTW. 174-183. 

[18] StarUML. 2005. http://staruml.sourceforge.net/en/ [26 

January, 2012]. 

[19] Legg, S., Hutter, M., Kumar, A. 2004. Tournament versus 

fitness uniform selection. 2144-2151. 

[20] Eiben, A.E., Smith, J.E. 2003. Introduction to Evolutionary 

Computing. 2nd edn.  

[21] Forrest, S., Nguyen, T., Le Goues, C., Weimer, W. 2009. A 

Genetic Programming Approach to Automated Software 

Repair. 947-954. 

[22] Arcuri. A., Yao, X. 2007. Coevolving Programs and Unit 

Tests from their Specification. 

[23] Andrade, V.A., Errico, L., Aquino, A.L.L., Assis, L.P., 

Barbosa, C.H.N.R. 2008. Analysis of Selection and 

Crossover Methods used by Genetic Algorithm-based 

Heuristic to solve the LSP Allocation. 



Performance Engineering and Testing

The Challenges on Mobile Platforms

Pavlo Bazilinskyy
University of St Andrews

School of Computer Science
pb52@st-andrews.ac.uk

Markus Brunner
University of St Andrews

School of Computer Science
mb246@st-andrews.ac.uk

ABSTRACT
This paper discusses the challenges which mobile devices
raised in terms of Performance Engineering and Perfomance
Testing. Possible improvements and adaptions to increase
the awareness of importance of both areas are presented.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics

Keywords
Software Optimisation, Perfomance Engineering, Performance
Testing, Software Metrics

1. INTRODUCTION
Performance is a universal quality of software that is affected
by all aspects of the code, design and means of execution.
A recent study reports that at least half of executives of IT
companies have encountered performance issues in as many
as 20% of their projects [1]. Acceptance of software products
and how successful they are depends largely on experience
that users of the system receive from using the applications
and poor performance is often linked with dissatisfaction and
frustration of clients. Ensuring high performance of software
systems is especially critical in mobile devices.

Adoption of mobile devices is the fastest technology adop-
tion curve in history. Mobile application market is expected
to reach $25 billion by year 2015 [10]. Success of applications
deployed to mobile devices depends on their responsiveness:
in case of poor performance of the application levels of rev-
enue, brand and customer loyalty decline [8]. Moreover, as
reported by IBM, 66% of mobile device users are less likely
to purchase goods or services from a company following poor
performance of the company’s mobile application [7].

Clearly, performance is crucial for software solutions tar-
geted to mobile applications market. This paper focuses
on Performance Engineering as a whole and on its practical

application during the development process - Performance
Testing. The focus of this work is on how Performance En-
gineering and Testing can be organized and optimised on
mobile platforms whose advent over the course of the recent
years entailed new challenges for software manufacturers.

2. BACKGROUND
2.1 Performance Engineering
Software Development for mobile platforms is one of the the
fastest growing fields of Software Engineering. The connec-
tion between business recognition and application success
when applied to mobile-based software is now becoming ap-
parent [17]. User requirements for software performance are
often neglected before it is too late and required changes
become costly [13]. Similarly to other fields of Software
Engineering, Performance Engineering is limited by intense
schedules, badly designed requirements, and over-optimistic
objectives [19]. However, these days it is becoming common
knowledge that all types of software have specific perfor-
mance requirements that need to be taken into consideration
on the stage of conceptualizing.

Working on undesired changes and going over budget may be
avoided by following principles of Software Performance En-
gineering or just Performance Engineering, which is focused
on software system performance and scalability [13]. The
objective of this field of Computer Science is to meet respon-
siveness goals through modeling software requirements and
variations of design. Received models are then used to mea-
sure and evaluate the expected performance. Evaluation is
done by estimating trade-offs in functions, size of hardware,
accuracy of obtained results, and resource requirements. If
the results of testing do not meet the requirements, the pro-
cess is repeated with different models [15]. This series of
actions starts on the design stage, but it also continues dur-
ing the implementation stage of the project. Performance
Engineering ensures that more accurate models of software
and its performance estimates may be developed.

Performance Engineering applied to software development
normally includes all of the following activities [19]:

Identify concerns : the qualitative evaluation of influ-
ences of performance goals.

Define and analyse requirements : by using UML or
special scenario languages outline the operational pro-
file, estimate workload, delay and throughput require-



ments, and scenarios describing what the system is ex-
pected to output.

Predict performance : by utilising scenarios, architec-
tures, design outlines estimate expected performance
by modeling the interaction of the behaviour with the
resources.

Performance Testing : check performance of the system
under normal and stress conditions. This paper focuses
on this aspect of Performance Engineering.

Maintenance and Evolution : estimate the effect of po-
tential changes and additions, such as added features,
migration to a new platform, migrating to new web
application platforms.

Total System Analysis : plan how software will behave
in the deployed system.

Further, the latest report of Eurostat indicates that most
countries in Europe have more mobile subscriptions than in-
habitants [2]. Our generation is experiencing the evolution
of the mobile platform: to succeed we need to constantly
rethink how we comprehend ways in which customers and
employees communicate with us, and universal access to
information is in great demand now [4]. However, tradi-
tional approaches that are utilised in Software Performance
Engineering may no longer be applied to the mobile plat-
form - the rate of progress in research connected to Perfor-
mance Engineering is much slower than that of evolution
of the mobile platforms. Additionally, analysing the soft-
ware performance of software created for mobile devices is
complicated because software architects usually need to find
equilibrium between the building blocks of Performance En-
gineering, performance and scalability, and other quality-
of-service attributes such as manageability, interoperability,
security, and maintainability [9]. Nevertheless, this is an im-
portant research area due to popularity of mobile devices in
today’s world.

2.2 Performance Testing
As mobile devices are characterised by limited performance
capabilities (e.g. memory, battery life, computing power,
etc.), Software Optimisation and Performance Engineering
are two crucial elements in the software development pro-
cess. The performance progress of mobile platforms in the
recent years was imposing, resulting in even more power-
ful devices. However, energy is the limiting factor which
sets the border for further progression. Application devel-
opers must understand the trade-offs between performance
and battery life in order to optimise resource utilisation [16].
This fact emphasises the importance of Performance Test-
ing on mobile platforms. The practice shows that a ma-
jority of application developers and software houses which
are deploying the applications put only limited focus on this
aspect. Owners of an early version of Apple’s iPhone will
probably already have faced the challenge of installing and
using a new application for their 2-4 year old phone. This
very short life cycle derogates the users’ experience and takes
the wind out of the sails of the mobile platforms’ advance.

Weyuker et. al claimed that reasons for the lack of Per-
formance Testing in order to produce resource-efficient soft-

ware can often be attributed to ”the lack of performance esti-
mates, the failure to have proposed plans for data collection,
or the lack of a performance budget” [18]. Furthermore his
experience showed that a lack of sufficient planning for per-
formance issues is another precursor for bad software. Even
though these findings were determined already 13 years ago,
we can project them onto nowadays’ mobile app develop-
ment. One of the reasons for a lack of Performance Testing
on mobile platforms is the fact that applications can be de-
veloped by third-parties which do not have to fulfill certain
quality requirements and standards.

Amongst the countless magnificent app-concept that were
developed by third-party developers (e.g. groups of stu-
dents, programmers, freelancers, start-ups, etc.), there are
very few project teams which have taken Performance Test-
ing into serious consideration. Applications which perma-
nently strain the resource pool of a mobile device have a
bad influence on the device’s energy consumption and are
subsequently shortening the battery life. A solution could
be to restrict developers with imposing stricter developing
guidelines or quality standards on them. However, this ap-
proach would lead to a decline of diversity in terms of widely
available and easy accessible SDKs (Software Development
Kits). Considering that many apps were developed in home
offices or dorm rooms, this would lead to a loss of creativity
and dynamics in the developer community.

3. RELATED WORK
Literature on Performance Engineering in mobile devices is
limited. We think it may be explained by the fact that this
area of research is still seen as a cutting-edge field of soft-
ware engineering and measuring performance of projects de-
veloped for mobile platforms is currently a developing area
of research. There are virtually no literature sources that
address the issue of applying performance engineering to
mobile development projects. However, ideas on how to ap-
proach the issue could for example be received from Harman
an Smith’s work, who review the key ingredients required for
successful Software Optimisation and describe the benefits
that are likely to acrue from growing work in the field, while
considering problems and challenges for future work. [5]

In regards of Performance Testing, research has been con-
ducted on the generation of frameworks and performance
metrics. However, there is very few literature which deals
with delivering these concepts into practice.

4. METHOD
Similarly to the situation with published research papers
that touch the issue of maintaining Performance Engineer-
ing in mobile devices, a pool of methods that are available for
addressing the issue is also limited. After finishing our litera-
ture review and realising that the scientific community is not
fully aware of the problems of Performance Engineering and
Testing with mobile software we decided to focus our writing
on outlining existing problems. Additionally, our main con-
cern about methods used to implement performance analysis
of the process of engineering mobile applications is that they
are mostly created using agile development techniques. Per-
formance Engineering is overly complicated when they are
used. Results obtained from analysis of performance may be
improved by setting multiple objectives. We propose using



Search Based Software Engineering (SBSE) for investigating
what objectives may be defined for a project that deals with
mobile devices.

5. IMPROVING THE PERFORMANCE ON
MOBILE DEVICES

5.1 Performance Engineering
The work of Smith and Williams points out that Software
Performance Testing should be started early in the software
development process: as early as at the stage of concep-
tualising the system [13]. This approach works best with
systems that have safety as the main attribute. However,
due to limited access to resources mobile software compa-
nies tend to focus on the commercial side of their projects
and neglect Performance Engineering until problems with
their published on the market applications start to arise.
One may argue that Performance Engineering should be in-
tegrated into mobile software development process, rather
than it being a mere addition to the process [14].

Additionally, mobile development projects tend to have short
time dedicated to the actual development phase. Agile de-
velopment is commonly used with mobile development to
produce multiple releases that incorporate small changes.
Problems with performance in projects often deployed to
multiple mobile platforms are difficult to notice. There-
fore, Performance Engineering may be an important asset
to projects created in this way. The problem of measuring
performance of the final mobile software product received
through following rapid development is defined by Barber
[3]. One may find it hard to add Performance Engineer-
ing into the agenda outlined for the project that is created
using agile development. This issue may be addressed by
defining precise, quantitative performance objectives as ex-
plained by Smith and Williams [14]. They help to explic-
itly outline what is expected from the system and once the
milestone is reached, quantitatively determine whether the
software meets that objective. Developers may also wish to
define more than one objective. During the modeling process
yielded by the model results should be compared to what is
expected from a particular objective. It helps to realise if
the project faces a risk of not meeting the objective. If that
is a case, appropriate actions should be taken. As soon as
results of performance tests can be obtained, one is able to
see whether or not created software meets the objective.

The objectives for the project may be obtained by using
SBSE. Its main objectives could be defined as: 1. Choose
the representation of the problem. 2. Define the fitness func-
tion [5]. The fitness function determines the best solution
by using the search algorithm of choice that can differentiate
between solutions and quantify achieved progress [6]. SBSE
is a relatively young field of science and its revolutionary
capabilities may be used to optimise Performance Engineer-
ing so that it could be adapted to development of mobile
devices.

5.2 Performance Testing
The motivation for Performance Testing is often not exis-
tent amongst developers, since the users’ experience in re-
gard to performance plays just a minor role in early stages
of the software development process. The outcomes of a

missing Performance Testing component stay latent as long
as the produced applications are deployed to a set of ho-
mogeneous devices as there is no difference in performance
between them. We have seen this phenomenon during the
desktop era, when computers became more and more capa-
ble in terms of data processing and memory. The applica-
tion and hardware lifecycles were aligned to each other - as
hardware got old, applications got old and were replaced by
newer versions.

The contemporary computing environment is in contrast
characterised by a variety of different platforms and tech-
nologies which differ in terms of performance, mobility, en-
ergy efficiency, form factor, etc. Just a few years ago people
used a single desktop computer or laptop in their homes and
replaced this device when they thought that the time had
come to move on to a better product. This situation has
radically changed - these days people use a mix of laptops,
mobile phones, desktop computers and tablets for different
tasks. These devices feature different characteristics as they
are designed to serve different purposes.

These diversified characteristics result in semi-latent perfor-
mance issues which are highly influencing the users’ experi-
ence. Semi-latent therefore, because many applications do
not consider specific technological capabilities of the target
platforms. A data-intensive video application for a mobile
phone might run smoothly on the latest hardware but could
cause problems on an older version of it. The cause of this
problem is enrooted in the evolution of the programming lan-
guages and their frameworks which were developed towards
a higher level of abstraction in order to be able to ignore the
underlying hardware. This development might have made
the lives of the developers easier but has its downsides in re-
gard to scalability and resource-efficiency. Schmidt claimed
that today’s programming concepts provide abstractions of
the solution space (i.e. the hardware itself) rather than ab-
stractions of the problem space in terms of application do-
mains (e.g. health care, insurance, biology, etc) [12].

There are two stages which have to be fulfilled in order
to integrate Performance Testing into the development pro-
cess. Firstly, software requirements (i.e. metrics) have to be
clearly defined. These metrics are the ground on which Per-
formance Testing can be build upon. The ”body of research
and practice in developing metrics for traditional software”
is rich; however, there has been little research on how these
metrics can be related to mobile applications [11]. Once
these metrics have been established, it comes to the imple-
mentation stage, where the performance of applications has
to be evaluated and tested against the defined metrics.

There is a substantial problem which can be detected when it
comes to Performance Testing. Firstly, developers test their
software on modeled pre-deployment environments, which
are just another form of abstraction of the production en-
vironment. Moreover, performance is usually tested after
the development process rather than being continuously as-
sessed during it. Improvements on that can be achieved
by tightening the coupling between Software Development
and Performance Testing. According to Thompson, Model-
driven Development (MDE) is a promising solution to this
problem [16]. The concept of MDE is to develop and test



software in early stages of the design process to identify
key characteristics, such as power consumption, memory re-
quirements, etc.

The challenges of Performance Testing are researched and
theoretical concepts have been developed. Although there is
still much space for improvements and more research, since
these concepts have to be delivered to the mobile application
developers. Integrated Development Environments (IDEs)
still lack of support for Performance Testing, but with fur-
ther advance of mobile devices, developers will not be able to
avoid the adoption of Performance Testing, at least if they
want to succeed in the competition. Not only the integration
of Performance Testing frameworks and tools in IDEs has to
be improved, but the importance of Performance Engineer-
ing and Testing has to be propagated in the whole field of
Software Engineering.

6. CONCLUSION
We briefly touched a problem of Performance Engineering
and Performance Testing in projects that deal with applica-
tions intended for mobile devices.

Software used in mobile devices is normally created using
agile development techniques and it is difficult to use con-
ventional means of assessing and improving performance due
to the nature of frequent updates submitted by the team
working on the project. We suggest improving performance
of mobile applications by outlining multiple precise, quanti-
tative performance objectives. Results received during the
modeling process are then compared to what a particular ob-
jective requires. This process can indicate that the project
is not likely to meet the objective. If that is true, appro-
priate actions can be taken. Objectives defined for projects
may be created using Search Based Software Engineering
techniques.

We assessed that Performance Testing is not consistently
integrated in the software development cycle yet. To em-
phasise the importance of this concept, further research has
to be conducted with the aim to deliver sound and pro-
found justifications why performance metrics are an impor-
tant issue to consider. In a worst-case scenario, the end
user would have to pay the price for a lacking consideration
of Performance Testing in form of bad-performing or even
non-working applications.

7. REFERENCES
[1] Applied performance management survey. Technical

report, Compuware, 2006.

[2] Eurostat. statistical office of european union, 2013.

[3] S. Barber. Tester pi: Performance investigator, 2006.

[4] M. Brandwin. Mobile application performance
engineering: A lifecycle approach to achieving
confidence in application performance. 2011.

[5] M. Harman. The current state and future of search
based software engineering. In 2007 Future of Software
Engineering, pages 342–357. IEEE Computer Society,
2007.

[6] M. Harman, P. McMinn, J. T. de Souza, and S. Yoo.
Search based software engineering: Techniques,
taxonomy, tutorial, pages 1–59. Empirical Software

Engineering and Verification. Springer, 2012.

[7] IBM. 10 Million UK Consumers Using Mobile
Commerce but 83% Have Experienced Problems.
Technical report, Tealeaf, 2011.

[8] E. Lucas. Real devices and real networks: Ensuring
mobile performance, 8/14 2012.

[9] Microsoft Corporation. Fundamentals of engineering
for performance, 2013.

[10] S. Perez. Mobile app market: $25 billion by 2015, 1/18
2011.

[11] C. Ryan and P. Rossi. Software, Performance and
Resource Utilisation Metrics for Context-Aware
Mobile Applications. 11th IEEE International
Software Metrics Symposium (METRICS’05),
(Metrics):12–12, 2005.

[12] D. Schmidt. Model-driven engineering.
Computer-IEEE Computer Society, 39(2):25–31, 2006.

[13] C. U. Smith and L. G. Williams. Performance
solutions: a practical guide to creating responsive,
scalable software. Addison Wesley Publishing
Company Incorporated, 2001. 2001022849.

[14] C. U. Smith and L. G. Williams. Best practices for
software performance engineering. In
CMG-CONFERENCE-, volume 1, pages 83–92.
Computer Measurement Group; 1997, 2003.

[15] C. Stary. Performance parameters and context of use.
In Performance Engineering, State of the Art and
Current Trends, pages 119–130, London, UK, UK,
2001. Springer-Verlag.

[16] C. Thompson, J. White, B. Dougherty, and D. C.
Schmidt. Optimizing Mobile Application Performance
with Model-Driven Engineering. pages 36–46, 2009.

[17] G. van der Heiden and P. Redshaw. Banking industry
lessons learned in outsourcing testing services.
Technical report, Gartner, 2012.

[18] E. Weyuker and F. Vokolos. Experience with
performance testing of software systems: issues, an
approach, and case study. IEEE Transactions on
Software Engineering, 26(12):1147–1156, 2000.

[19] M. Woodside, G. Franks, and D. C. Petriu. The future
of software performance engineering. In 2007 Future of
Software Engineering, FOSE ’07, pages 171–187,
Washington, DC, USA, 2007. IEEE Computer Society.


