
Performance Engineering and Testing

The Challenges on Mobile Platforms

Pavlo Bazilinskyy
University of St Andrews

School of Computer Science
pb52@st-andrews.ac.uk

Markus Brunner
University of St Andrews

School of Computer Science
mb246@st-andrews.ac.uk

ABSTRACT
This paper discusses the challenges which mobile devices
raised in terms of Performance Engineering and Perfomance
Testing. Possible improvements and adaptions to increase
the awareness of importance of both areas are presented.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics

Keywords
Software Optimisation, Perfomance Engineering, Performance
Testing, Software Metrics

1. INTRODUCTION
Performance is a universal quality of software that is affected
by all aspects of the code, design and means of execution.
A recent study reports that at least half of executives of IT
companies have encountered performance issues in as many
as 20% of their projects [1]. Acceptance of software products
and how successful they are depends largely on experience
that users of the system receive from using the applications
and poor performance is often linked with dissatisfaction and
frustration of clients. Ensuring high performance of software
systems is especially critical in mobile devices.

Adoption of mobile devices is the fastest technology adop-
tion curve in history. Mobile application market is expected
to reach $25 billion by year 2015 [10]. Success of applications
deployed to mobile devices depends on their responsiveness:
in case of poor performance of the application levels of rev-
enue, brand and customer loyalty decline [8]. Moreover, as
reported by IBM, 66% of mobile device users are less likely
to purchase goods or services from a company following poor
performance of the company’s mobile application [7].

Clearly, performance is crucial for software solutions tar-
geted to mobile applications market. This paper focuses
on Performance Engineering as a whole and on its practical

application during the development process - Performance
Testing. The focus of this work is on how Performance En-
gineering and Testing can be organized and optimised on
mobile platforms whose advent over the course of the recent
years entailed new challenges for software manufacturers.

2. BACKGROUND
2.1 Performance Engineering
Software Development for mobile platforms is one of the the
fastest growing fields of Software Engineering. The connec-
tion between business recognition and application success
when applied to mobile-based software is now becoming ap-
parent [17]. User requirements for software performance are
often neglected before it is too late and required changes
become costly [13]. Similarly to other fields of Software
Engineering, Performance Engineering is limited by intense
schedules, badly designed requirements, and over-optimistic
objectives [19]. However, these days it is becoming common
knowledge that all types of software have specific perfor-
mance requirements that need to be taken into consideration
on the stage of conceptualizing.

Working on undesired changes and going over budget may be
avoided by following principles of Software Performance En-
gineering or just Performance Engineering, which is focused
on software system performance and scalability [13]. The
objective of this field of Computer Science is to meet respon-
siveness goals through modeling software requirements and
variations of design. Received models are then used to mea-
sure and evaluate the expected performance. Evaluation is
done by estimating trade-offs in functions, size of hardware,
accuracy of obtained results, and resource requirements. If
the results of testing do not meet the requirements, the pro-
cess is repeated with different models [15]. This series of
actions starts on the design stage, but it also continues dur-
ing the implementation stage of the project. Performance
Engineering ensures that more accurate models of software
and its performance estimates may be developed.

Performance Engineering applied to software development
normally includes all of the following activities [19]:

Identify concerns : the qualitative evaluation of influ-
ences of performance goals.

Define and analyse requirements : by using UML or
special scenario languages outline the operational pro-
file, estimate workload, delay and throughput require-

ments, and scenarios describing what the system is ex-
pected to output.

Predict performance : by utilising scenarios, architec-
tures, design outlines estimate expected performance
by modeling the interaction of the behaviour with the
resources.

Performance Testing : check performance of the system
under normal and stress conditions. This paper focuses
on this aspect of Performance Engineering.

Maintenance and Evolution : estimate the effect of po-
tential changes and additions, such as added features,
migration to a new platform, migrating to new web
application platforms.

Total System Analysis : plan how software will behave
in the deployed system.

Further, the latest report of Eurostat indicates that most
countries in Europe have more mobile subscriptions than in-
habitants [2]. Our generation is experiencing the evolution
of the mobile platform: to succeed we need to constantly
rethink how we comprehend ways in which customers and
employees communicate with us, and universal access to
information is in great demand now [4]. However, tradi-
tional approaches that are utilised in Software Performance
Engineering may no longer be applied to the mobile plat-
form - the rate of progress in research connected to Perfor-
mance Engineering is much slower than that of evolution
of the mobile platforms. Additionally, analysing the soft-
ware performance of software created for mobile devices is
complicated because software architects usually need to find
equilibrium between the building blocks of Performance En-
gineering, performance and scalability, and other quality-
of-service attributes such as manageability, interoperability,
security, and maintainability [9]. Nevertheless, this is an im-
portant research area due to popularity of mobile devices in
today’s world.

2.2 Performance Testing
As mobile devices are characterised by limited performance
capabilities (e.g. memory, battery life, computing power,
etc.), Software Optimisation and Performance Engineering
are two crucial elements in the software development pro-
cess. The performance progress of mobile platforms in the
recent years was imposing, resulting in even more power-
ful devices. However, energy is the limiting factor which
sets the border for further progression. Application devel-
opers must understand the trade-offs between performance
and battery life in order to optimise resource utilisation [16].
This fact emphasises the importance of Performance Test-
ing on mobile platforms. The practice shows that a ma-
jority of application developers and software houses which
are deploying the applications put only limited focus on this
aspect. Owners of an early version of Apple’s iPhone will
probably already have faced the challenge of installing and
using a new application for their 2-4 year old phone. This
very short life cycle derogates the users’ experience and takes
the wind out of the sails of the mobile platforms’ advance.

Weyuker et. al claimed that reasons for the lack of Per-
formance Testing in order to produce resource-efficient soft-

ware can often be attributed to ”the lack of performance esti-
mates, the failure to have proposed plans for data collection,
or the lack of a performance budget” [18]. Furthermore his
experience showed that a lack of sufficient planning for per-
formance issues is another precursor for bad software. Even
though these findings were determined already 13 years ago,
we can project them onto nowadays’ mobile app develop-
ment. One of the reasons for a lack of Performance Testing
on mobile platforms is the fact that applications can be de-
veloped by third-parties which do not have to fulfill certain
quality requirements and standards.

Amongst the countless magnificent app-concept that were
developed by third-party developers (e.g. groups of stu-
dents, programmers, freelancers, start-ups, etc.), there are
very few project teams which have taken Performance Test-
ing into serious consideration. Applications which perma-
nently strain the resource pool of a mobile device have a
bad influence on the device’s energy consumption and are
subsequently shortening the battery life. A solution could
be to restrict developers with imposing stricter developing
guidelines or quality standards on them. However, this ap-
proach would lead to a decline of diversity in terms of widely
available and easy accessible SDKs (Software Development
Kits). Considering that many apps were developed in home
offices or dorm rooms, this would lead to a loss of creativity
and dynamics in the developer community.

3. RELATED WORK
Literature on Performance Engineering in mobile devices is
limited. We think it may be explained by the fact that this
area of research is still seen as a cutting-edge field of soft-
ware engineering and measuring performance of projects de-
veloped for mobile platforms is currently a developing area
of research. There are virtually no literature sources that
address the issue of applying performance engineering to
mobile development projects. However, ideas on how to ap-
proach the issue could for example be received from Harman
an Smith’s work, who review the key ingredients required for
successful Software Optimisation and describe the benefits
that are likely to acrue from growing work in the field, while
considering problems and challenges for future work. [5]

In regards of Performance Testing, research has been con-
ducted on the generation of frameworks and performance
metrics. However, there is very few literature which deals
with delivering these concepts into practice.

4. METHOD
Similarly to the situation with published research papers
that touch the issue of maintaining Performance Engineer-
ing in mobile devices, a pool of methods that are available for
addressing the issue is also limited. After finishing our litera-
ture review and realising that the scientific community is not
fully aware of the problems of Performance Engineering and
Testing with mobile software we decided to focus our writing
on outlining existing problems. Additionally, our main con-
cern about methods used to implement performance analysis
of the process of engineering mobile applications is that they
are mostly created using agile development techniques. Per-
formance Engineering is overly complicated when they are
used. Results obtained from analysis of performance may be
improved by setting multiple objectives. We propose using

Search Based Software Engineering (SBSE) for investigating
what objectives may be defined for a project that deals with
mobile devices.

5. IMPROVING THE PERFORMANCE ON
MOBILE DEVICES

5.1 Performance Engineering
The work of Smith and Williams points out that Software
Performance Testing should be started early in the software
development process: as early as at the stage of concep-
tualising the system [13]. This approach works best with
systems that have safety as the main attribute. However,
due to limited access to resources mobile software compa-
nies tend to focus on the commercial side of their projects
and neglect Performance Engineering until problems with
their published on the market applications start to arise.
One may argue that Performance Engineering should be in-
tegrated into mobile software development process, rather
than it being a mere addition to the process [14].

Additionally, mobile development projects tend to have short
time dedicated to the actual development phase. Agile de-
velopment is commonly used with mobile development to
produce multiple releases that incorporate small changes.
Problems with performance in projects often deployed to
multiple mobile platforms are difficult to notice. There-
fore, Performance Engineering may be an important asset
to projects created in this way. The problem of measuring
performance of the final mobile software product received
through following rapid development is defined by Barber
[3]. One may find it hard to add Performance Engineer-
ing into the agenda outlined for the project that is created
using agile development. This issue may be addressed by
defining precise, quantitative performance objectives as ex-
plained by Smith and Williams [14]. They help to explic-
itly outline what is expected from the system and once the
milestone is reached, quantitatively determine whether the
software meets that objective. Developers may also wish to
define more than one objective. During the modeling process
yielded by the model results should be compared to what is
expected from a particular objective. It helps to realise if
the project faces a risk of not meeting the objective. If that
is a case, appropriate actions should be taken. As soon as
results of performance tests can be obtained, one is able to
see whether or not created software meets the objective.

The objectives for the project may be obtained by using
SBSE. Its main objectives could be defined as: 1. Choose
the representation of the problem. 2. Define the fitness func-
tion [5]. The fitness function determines the best solution
by using the search algorithm of choice that can differentiate
between solutions and quantify achieved progress [6]. SBSE
is a relatively young field of science and its revolutionary
capabilities may be used to optimise Performance Engineer-
ing so that it could be adapted to development of mobile
devices.

5.2 Performance Testing
The motivation for Performance Testing is often not exis-
tent amongst developers, since the users’ experience in re-
gard to performance plays just a minor role in early stages
of the software development process. The outcomes of a

missing Performance Testing component stay latent as long
as the produced applications are deployed to a set of ho-
mogeneous devices as there is no difference in performance
between them. We have seen this phenomenon during the
desktop era, when computers became more and more capa-
ble in terms of data processing and memory. The applica-
tion and hardware lifecycles were aligned to each other - as
hardware got old, applications got old and were replaced by
newer versions.

The contemporary computing environment is in contrast
characterised by a variety of different platforms and tech-
nologies which differ in terms of performance, mobility, en-
ergy efficiency, form factor, etc. Just a few years ago people
used a single desktop computer or laptop in their homes and
replaced this device when they thought that the time had
come to move on to a better product. This situation has
radically changed - these days people use a mix of laptops,
mobile phones, desktop computers and tablets for different
tasks. These devices feature different characteristics as they
are designed to serve different purposes.

These diversified characteristics result in semi-latent perfor-
mance issues which are highly influencing the users’ experi-
ence. Semi-latent therefore, because many applications do
not consider specific technological capabilities of the target
platforms. A data-intensive video application for a mobile
phone might run smoothly on the latest hardware but could
cause problems on an older version of it. The cause of this
problem is enrooted in the evolution of the programming lan-
guages and their frameworks which were developed towards
a higher level of abstraction in order to be able to ignore the
underlying hardware. This development might have made
the lives of the developers easier but has its downsides in re-
gard to scalability and resource-efficiency. Schmidt claimed
that today’s programming concepts provide abstractions of
the solution space (i.e. the hardware itself) rather than ab-
stractions of the problem space in terms of application do-
mains (e.g. health care, insurance, biology, etc) [12].

There are two stages which have to be fulfilled in order
to integrate Performance Testing into the development pro-
cess. Firstly, software requirements (i.e. metrics) have to be
clearly defined. These metrics are the ground on which Per-
formance Testing can be build upon. The ”body of research
and practice in developing metrics for traditional software”
is rich; however, there has been little research on how these
metrics can be related to mobile applications [11]. Once
these metrics have been established, it comes to the imple-
mentation stage, where the performance of applications has
to be evaluated and tested against the defined metrics.

There is a substantial problem which can be detected when it
comes to Performance Testing. Firstly, developers test their
software on modeled pre-deployment environments, which
are just another form of abstraction of the production en-
vironment. Moreover, performance is usually tested after
the development process rather than being continuously as-
sessed during it. Improvements on that can be achieved
by tightening the coupling between Software Development
and Performance Testing. According to Thompson, Model-
driven Development (MDE) is a promising solution to this
problem [16]. The concept of MDE is to develop and test

software in early stages of the design process to identify
key characteristics, such as power consumption, memory re-
quirements, etc.

The challenges of Performance Testing are researched and
theoretical concepts have been developed. Although there is
still much space for improvements and more research, since
these concepts have to be delivered to the mobile application
developers. Integrated Development Environments (IDEs)
still lack of support for Performance Testing, but with fur-
ther advance of mobile devices, developers will not be able to
avoid the adoption of Performance Testing, at least if they
want to succeed in the competition. Not only the integration
of Performance Testing frameworks and tools in IDEs has to
be improved, but the importance of Performance Engineer-
ing and Testing has to be propagated in the whole field of
Software Engineering.

6. CONCLUSION
We briefly touched a problem of Performance Engineering
and Performance Testing in projects that deal with applica-
tions intended for mobile devices.

Software used in mobile devices is normally created using
agile development techniques and it is difficult to use con-
ventional means of assessing and improving performance due
to the nature of frequent updates submitted by the team
working on the project. We suggest improving performance
of mobile applications by outlining multiple precise, quanti-
tative performance objectives. Results received during the
modeling process are then compared to what a particular ob-
jective requires. This process can indicate that the project
is not likely to meet the objective. If that is true, appro-
priate actions can be taken. Objectives defined for projects
may be created using Search Based Software Engineering
techniques.

We assessed that Performance Testing is not consistently
integrated in the software development cycle yet. To em-
phasise the importance of this concept, further research has
to be conducted with the aim to deliver sound and pro-
found justifications why performance metrics are an impor-
tant issue to consider. In a worst-case scenario, the end
user would have to pay the price for a lacking consideration
of Performance Testing in form of bad-performing or even
non-working applications.

7. REFERENCES
[1] Applied performance management survey. Technical

report, Compuware, 2006.

[2] Eurostat. statistical office of european union, 2013.

[3] S. Barber. Tester pi: Performance investigator, 2006.

[4] M. Brandwin. Mobile application performance
engineering: A lifecycle approach to achieving
confidence in application performance. 2011.

[5] M. Harman. The current state and future of search
based software engineering. In 2007 Future of Software
Engineering, pages 342–357. IEEE Computer Society,
2007.

[6] M. Harman, P. McMinn, J. T. de Souza, and S. Yoo.
Search based software engineering: Techniques,
taxonomy, tutorial, pages 1–59. Empirical Software

Engineering and Verification. Springer, 2012.

[7] IBM. 10 Million UK Consumers Using Mobile
Commerce but 83% Have Experienced Problems.
Technical report, Tealeaf, 2011.

[8] E. Lucas. Real devices and real networks: Ensuring
mobile performance, 8/14 2012.

[9] Microsoft Corporation. Fundamentals of engineering
for performance, 2013.

[10] S. Perez. Mobile app market: $25 billion by 2015, 1/18
2011.

[11] C. Ryan and P. Rossi. Software, Performance and
Resource Utilisation Metrics for Context-Aware
Mobile Applications. 11th IEEE International
Software Metrics Symposium (METRICS’05),
(Metrics):12–12, 2005.

[12] D. Schmidt. Model-driven engineering.
Computer-IEEE Computer Society, 39(2):25–31, 2006.

[13] C. U. Smith and L. G. Williams. Performance
solutions: a practical guide to creating responsive,
scalable software. Addison Wesley Publishing
Company Incorporated, 2001. 2001022849.

[14] C. U. Smith and L. G. Williams. Best practices for
software performance engineering. In
CMG-CONFERENCE-, volume 1, pages 83–92.
Computer Measurement Group; 1997, 2003.

[15] C. Stary. Performance parameters and context of use.
In Performance Engineering, State of the Art and
Current Trends, pages 119–130, London, UK, UK,
2001. Springer-Verlag.

[16] C. Thompson, J. White, B. Dougherty, and D. C.
Schmidt. Optimizing Mobile Application Performance
with Model-Driven Engineering. pages 36–46, 2009.

[17] G. van der Heiden and P. Redshaw. Banking industry
lessons learned in outsourcing testing services.
Technical report, Gartner, 2012.

[18] E. Weyuker and F. Vokolos. Experience with
performance testing of software systems: issues, an
approach, and case study. IEEE Transactions on
Software Engineering, 26(12):1147–1156, 2000.

[19] M. Woodside, G. Franks, and D. C. Petriu. The future
of software performance engineering. In 2007 Future of
Software Engineering, FOSE ’07, pages 171–187,
Washington, DC, USA, 2007. IEEE Computer Society.

