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ABSTRACT 

Considerable cognitive effort is required to write test cases for 

complex software and fix any defects found. As the generation of 
test cases using evolutionary computation has a long established 

track record, this paper explores whether this pedigree can be 

exploited to improve efficiencies in larger testing suites that 
typically address complex software models. A genetic algorithm 

has been designed and implemented with complex software 

models in mind, and then trialled against five real world programs 
that vary in scale and complexity. Results show that test case 

generation using an evolutionary algorithm on average can 

improve the number of coverage goals met by 75.83%. Therefore 
we conclude that even with complex models that have thousands 

of objects improvements can be made.   

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging – Testing 

tools (e.g., data generators, coverage testing). 

I.2.8 [Computing Methodologies]: Problem Solving, Control 
Methods, and Search – Heuristic methods. 

General Terms 
Algorithms, Design, Human Factors 

Keywords 
Automatic Test Generation, Evolutionary Algorithm, 

Metaheuristic Search, Unified Modelling Language, Complex 
Data Models 

1. INTRODUCTION 
Manual software testing of complex software is a cognitively 

demanding task and so can be expensive, time consuming and 
occasionally unreliable [1]. Figures released for the USA suggest 

that approximately $20 billion each year could be saved if more 

efficient and effective software testing was performed prior to 
deployment and release. [2]. The need to improve on this situation 

is significant as in addition to the loss of considerable amount of 

money, failures of complex safety-critical software systems 
potentially put human life in jeopardy. As a spectacular example 

of a complex software systems failure, the European Space 

Agency estimates losses of $500,000,000 caused by the launch 
failure of the Arianne 5 rocket in 1996; the root cause of the 

failure is thought to be inadequate testing coverage [3]. 

Evolutionary Test Generation (ETG) has attracted significant 

research interest and shows great promise in reducing the 

development costs and improving the quality (and hence the level 

on confidence) in the software under test [4]. Within the field of 

Search Based Software Engineering (SBSE) [5], many meta-

heuristic search techniques have been applied which treat the 
generation of test cases as a search problem. Meta-heuristic search 

approaches encode candidate solutions using a problem specific 
representation, and fitness functions and operations to preserve 

solution diversity. The technique is typically measured on how 

expensive, effective and scalable the algorithm is at reaching the 
test objectives [6]. A widely applied objective fitness function 

used in meta-heuristic search for test cases is branch coverage [7], 

where the goal is to arrive at a restricted number of test cases that 
achieve the maximum degree of branch coverage. However, 

generating a set of test cases for software systems of realistic 

complexity presents a challenge not only due to the size of the 
search space expanding rapidly, but furthermore, many 

researchers acknowledge solving a complex search problem 

means there is no optimal or exact solution [8]. This paper 
therefore sets out to design and implement a genetic algorithm 

that exploits models of complex software, specifically object-

oriented class models, as a basis for generating test cases. 

2. BACKGROUND 
Evolutionary Algorithms (EA) typically use a population of 

individuals, rather than one individual candidate. The algorithm 

then uses optimisation techniques inspired by the biological 
evolution processes; reproduction, mutation and selection. EAs 

consist of a number of varying techniques including: genetic 

algorithms, genetic programming and evolutionary programming. 
Genetic Algorithms (GA) are arguably the most well known form 

of EA [9]. Genetic algorithms require three components in order 

to achieve effective search: a solution representation, a measure of 
solution fitness and a mechanism for diversity preservation. A 

representation can typically take the form of real numbers, binary 

digits or floating point numbers. Examples of GAs using more 
complex data structures have attempted to address some 

challenging problems such as scalability, predictability and 

robustness [10]. 

There are many methods of generating test cases, including search 

based [8][10], model based [11][12][13][14] and specification 
based [15]. Model based test generation is very different to the 

search techniques discussed. The tests are generated from 

modelling languages including the most widely used [11], Unified 
Modelling Language (UML) [16]. The benefit of this method is 

that in many cases, designs in the form of UML have already been 

completed; consequently less additional effort is required. Data 
can be gathered from various UML diagrams including: use cases 

[14], interaction diagrams [15] or a combination of diagrams [16]. 
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Figure 1 summarises the different techniques that can be used and 

the level of testing that they are suitable for: 
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Figure 1. Techniques suitability to different stages of testing. 

Figure 1 summarises all of the previously mentioned frameworks 
by their technique and how the authors assess their suitability in 

the various stages of software testing. The figure shows that the 

only framework that is suitable for all levels is a model based 
technique proposed by Swain et al. [16]. Additionally Figure 1 

highlights that various techniques and frameworks can be adapted, 

one most appropriate to the problem. 

3. PROPOSED APPROACH 
The proposed approach uses a combination of a model and search 

based technique to generate test cases and to address the 

challenges of a complex data model. Other authors have also 
proposed combining these two techniques and their methods show 

promising results [17]. A description of how this approach is 

implemented is included in the following sections. 

3.1 Problem Encoding 
A prerequisite of the system is that the user must input a UML 
Class Diagram. As the tool is an initial prototype only one 

structure of UML is currently supported. The structure supported 

is the automatically generated structure of StarUML [18]. An 
example of the structure can be seen from Figure 2. 

<XPD:OBJ name="OwnedElements[0]" type="UMLClass" 

guid="95FFK+ln1kOVRD4GJYRJhQAA"> 

<XPD:ATTR name="Name" type="string">Class1</XPD:ATTR> 

<XPD:REF name="Namespace">YMt6yt/Y90qiBdvoCPhIcwAA</XPD:REF> 

<XPD:ATTR name="#Views" type="integer">4</XPD:ATTR> 

<XPD:REF name="Views[0]">0tQXfFFEhkaabBimWRCnpAAA</XPD:REF> 

<XPD:REF name="Views[1]">Phczm+38hEqdvBhZpBDf3AAA</XPD:REF> 

<XPD:REF name="Views[2]">s/+vlwh5EEC9dhihI0tb5gAA</XPD:REF> 

<XPD:REF name="Views[3]">zYgdJGmGL0uBTrgKDz2F3wAA</XPD:REF> 

<XPD:ATTR name="#Operations" type="integer">2</XPD:ATTR> 

<XPD:OBJ name="Operations[0]" type="UMLOperation" 

guid="zOXxGE8kH0CZy0upBp5RnAAA"> 

<XPD:ATTR name="Name" type="string">method1</XPD:ATTR> 

<XPD:REF name="Owner">95FFK+ln1kOVRD4GJYRJhQAA</XPD:REF> 

</XPD:OBJ> 

<XPD:OBJ name="Attributes[0]" type="UMLAttribute" 

guid="hPKc2Pm4k0arRtSG5BMetgAA"> 

<XPD:ATTR name="Name" type="string">var1</XPD:ATTR> 

<XPD:ATTR name="Visibility" 

type="UMLVisibilityKind">vkPrivate</XPD:ATTR> 

<XPD:REF name="Owner">95FFK+ln1kOVRD4GJYRJhQAA</XPD:REF> 

</XPD:OBJ> 

</XPD:OBJ> 

Figure 2. StarUML structure: class, attribute and operation. 

However, not all models in the case study are as simple as the one 

that can be seen in Figure 2. One of the models used to validate 
how the program manages complexity can be seen in Figure 3. 

 
Figure 3. Class diagram for md5deep and hashdeep. 

Figure 3 illustrates a diagram used to check the frameworks ability 

to handle model complexity, with 18 classes and hundreds of 
attributes and operations. The framework begins by parsing the 

UML to gain information. In order to identify relevant 

information within the UML, the required information must first 
be identified by its XML tag. The tag ‘<XPD:OBJ>' will 

differentiate between the type of object (Class, Variable or 

Method). Inside the objects the parsing looks for the tag 
‘<XPD:ATTR>’, which will identify information relating to the 

object such as the object name.  

3.2 Solution Representation 
The tool splits by each object narrowing the search space. There is 

then a separate method that gets specific information from the 
object. For example, the method can be called to return all method 

names. Both of these methods are generic to allow for future 

expansion to obtain more information from the UML.  

There are four methods that request information from the generic 
methods. These four methods are split into types of objects. The 

logic of these methods is: for each class diagram check for all 

classes and for each class check for all variables and methods. 
Currently these four classes return the object names and in the 

structure specified, add them to a vector. This initial structure 

includes all the objects and is used later in the fitness function. 
The benefit of obtaining this information from a design diagram 

as opposed to the program’s code is that we are assuming the 

design diagrams are correct and we cannot assume this for the 
program. An example of an initial vector can be seen in Figure 4. 

 
Figure 4. Example of an initial vector. 

Figure 4 shows a genotype representation, Figure 5 the 

phenotype. 

 
Figure 5. Example of an individual. 

3.3 Diversity Preservation 
The standard selection schemes include: tournament, ranking and 

proportional truncation selection [19]. This framework uses three 
techniques: tournament selection, one point crossover and single 

point mutation. The tournaments run by pairing each individual in 

the population together at random. The winner of the tournament 
is determined using a fitness proportional selection, as opposed to 

the absolute fitness value that is determined at the end of each 

generation. The winner of each tournament is selected for 
crossover. One point crossover is where one point is selected at 



random in the individual and all the data beyond that point is 

swapped between the two parents, resulting in offspring. 

3.4 Fitness Operation 
The fitness function assesses the population for coverage goals. 
Each individual in the population is assessed for its’ coverage. A 

higher coverage can be achieved by including the testing of each 

object. The individual’s assessments are then used for diversity 
preservation. Once complete, the population’s fitness is assessed. 

The population can increase its fitness score by increasing the 

number of objects that will be tested. The score is awarded by 
giving one point if an individual contains an element that exists in 

the initial vector. 

3.5 Genetic Algorithm 
The general scheme in psuedocode [20] can be seen in Figure 6. 

 
 Figure 6. Scheme of an evolutionary algorithm in psuedocode. 

4. EXPERIMENTAL METHODOLOGY 
Each test will be structured in the same way in order to guarantee 

the fairness of a comparison. Each test will have a main variable, 

the program. The test vehicles are five real world programs. Each 
program varies in the number of objects and the complexity of the 

model.  

The algorithm parameters are: 20 runs for each program, similar 

to the works of Forrest et al. [21]. The number of generations will 

be 100, similar to the works of Arcuri et al. [22]. The population 
size will be 40 similar to sizes in previous literature [21][22]. 

100% of individuals are paired together in a tournament selection 

which is a common practise in GA’s [20]. The crossover rate is 
75% which is considered to be ideal [23]. The mutation rate is 5% 

as this typically shows the best performance [23]. 

5. RESULTS 
The fitness curve for Program 2 is shown in Figure 7. 

 
Figure 7. Mean fitness score for 20 runs of Program 2 over 100 

generations on a logarithmic scale. 

As it can be seen in Figure 7, the fitness score peaks before the 

20th generation, which is why every further run used 20 

generations, instead of 100. The highest standard deviation point 
is 17, which is observed at the 7th and 9th generations. As it can be 

seen, the later generations have a lower standard deviation this is 

expected as at the beginning the diversity between individuals is 
larger due to the size of the exploration space is larger. As the 

candidate solution begins to form the search space decreases, 

lowering the deviation. 

In order to test the results by model complexity and the 
frameworks ability to scale, Figure 8 shows the total number of 

objects for each program used in testing. The number of objects 

directly influences the complexity of the model. 

 
Figure 8. The total number of objects per program. 

All of the programs chosen were open source, written in either 
Java or C++. Source code, test cases and design diagrams were 

freely available. However, the source code is not used by the 

framework. The design diagrams are used in the test generation 
which is then compared to the manual test cases to assess 

improvement. Figure 9 shows the fitness curve relative to the total 

number of possible objects listed in Figure 8. 

 
Figure 9. Fitness scores relative to the total number of objects. 

Figure 9 shows that every program has a similar fitness curve. The 
small decreases in the fitness curve are due to the program using a 

generational model, as opposed to steady state. Figure 9 also 
shows that the scalability affects the curve. Program 3 has the 

highest number of objects and the lowest relative fitness score. 

Program 4 has the second lowest number of objects and the 
highest fitness score. This indicates that the programs complexity 



affects the fitness score. The percentage improvement when 

comparing automatically generated test cases to manual test 

development shows that there is a larger room for improvement 
when the programs complexity is greater. For example, Program 3 

achieved a percentage improvement of 95% whilst; Program 1 

achieved an improvement of 77%. This could arguably be due to 
the difficulty of developing tests cases manually for larger 

programs. 

6. CONCLUSION 
Results show that significant improvement can be made when 
using automatic test generation as opposed to manual 

development. The improvement can be made on software that 

already exists and is used in the public domain. The complexity 
affects the final fitness and based on the limited testing, complex 

programs with more objects, score slightly lower fitness scores. In 

order to achieve a reasonable relative score (50% or higher) the 
program size has to be around 1000 objects or lower. However, 

using the final code base, the average improvement of the 

programs used was 75.83%. This is strong evidence to suggest 
that the proposed approach addresses the challenges of a complex 

model. 

Limitations include: the user must have an accurate class diagram 

written in StarUML. However if desired the ‘UMLParser’ can be 

modified to accept various structures chosen by the UML tools. 
Another limitation is that class diagrams do not typically contain 

information such as boundary conditions and run time 

information. The class diagram is currently used as a pre 
validation to make sure all the objects in design are included. 

Future work would include obtaining information such as run 
time information from a sequence diagram or other suitable 

method. Currently boundary conditions are taken from the user 

via a GUI, in order to achieve complete automation; this to could 
be taken from a UML diagram or alternative method. Lastly a 

multi-objective fitness function would be preferable. After 

viewing the test cases generated, whilst they make a significant 
improvement in terms of object coverage, it would be beneficial to 

improve test cases based on variables such as: length of test, 

diversity in test set, execution time et cetera.  

The challenges of a complex model have been addressed. Each of 

the five programs tested against, were variant in complexity. The 
improvement in efficiency appears not to be based on the size of 

the program and/or testing suite but on the quality of the current 

tests. Reinforcing that irrespective of the problem model 
complexity, automatic test case generation can be an improvement 

on manual test development. 
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