
Improving Testing of Complex Software Models through

Evolutionary Test Generation

ABSTRACT

Considerable cognitive effort is required to write test cases for

complex software and fix any defects found. As the generation of
test cases using evolutionary computation has a long established

track record, this paper explores whether this pedigree can be

exploited to improve efficiencies in larger testing suites that
typically address complex software models. A genetic algorithm

has been designed and implemented with complex software

models in mind, and then trialled against five real world programs
that vary in scale and complexity. Results show that test case

generation using an evolutionary algorithm on average can

improve the number of coverage goals met by 75.83%. Therefore
we conclude that even with complex models that have thousands

of objects improvements can be made.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging – Testing

tools (e.g., data generators, coverage testing).

I.2.8 [Computing Methodologies]: Problem Solving, Control
Methods, and Search – Heuristic methods.

General Terms
Algorithms, Design, Human Factors

Keywords
Automatic Test Generation, Evolutionary Algorithm,

Metaheuristic Search, Unified Modelling Language, Complex
Data Models

1. INTRODUCTION
Manual software testing of complex software is a cognitively

demanding task and so can be expensive, time consuming and
occasionally unreliable [1]. Figures released for the USA suggest

that approximately $20 billion each year could be saved if more

efficient and effective software testing was performed prior to
deployment and release. [2]. The need to improve on this situation

is significant as in addition to the loss of considerable amount of

money, failures of complex safety-critical software systems
potentially put human life in jeopardy. As a spectacular example

of a complex software systems failure, the European Space

Agency estimates losses of $500,000,000 caused by the launch
failure of the Arianne 5 rocket in 1996; the root cause of the

failure is thought to be inadequate testing coverage [3].

Evolutionary Test Generation (ETG) has attracted significant

research interest and shows great promise in reducing the

development costs and improving the quality (and hence the level

on confidence) in the software under test [4]. Within the field of

Search Based Software Engineering (SBSE) [5], many meta-

heuristic search techniques have been applied which treat the
generation of test cases as a search problem. Meta-heuristic search

approaches encode candidate solutions using a problem specific
representation, and fitness functions and operations to preserve

solution diversity. The technique is typically measured on how

expensive, effective and scalable the algorithm is at reaching the
test objectives [6]. A widely applied objective fitness function

used in meta-heuristic search for test cases is branch coverage [7],

where the goal is to arrive at a restricted number of test cases that
achieve the maximum degree of branch coverage. However,

generating a set of test cases for software systems of realistic

complexity presents a challenge not only due to the size of the
search space expanding rapidly, but furthermore, many

researchers acknowledge solving a complex search problem

means there is no optimal or exact solution [8]. This paper
therefore sets out to design and implement a genetic algorithm

that exploits models of complex software, specifically object-

oriented class models, as a basis for generating test cases.

2. BACKGROUND
Evolutionary Algorithms (EA) typically use a population of

individuals, rather than one individual candidate. The algorithm

then uses optimisation techniques inspired by the biological
evolution processes; reproduction, mutation and selection. EAs

consist of a number of varying techniques including: genetic

algorithms, genetic programming and evolutionary programming.
Genetic Algorithms (GA) are arguably the most well known form

of EA [9]. Genetic algorithms require three components in order

to achieve effective search: a solution representation, a measure of
solution fitness and a mechanism for diversity preservation. A

representation can typically take the form of real numbers, binary

digits or floating point numbers. Examples of GAs using more
complex data structures have attempted to address some

challenging problems such as scalability, predictability and

robustness [10].

There are many methods of generating test cases, including search

based [8][10], model based [11][12][13][14] and specification
based [15]. Model based test generation is very different to the

search techniques discussed. The tests are generated from

modelling languages including the most widely used [11], Unified
Modelling Language (UML) [16]. The benefit of this method is

that in many cases, designs in the form of UML have already been

completed; consequently less additional effort is required. Data
can be gathered from various UML diagrams including: use cases

[14], interaction diagrams [15] or a combination of diagrams [16].

Michaela Newell
Department of Computer Science and Creative Technologies

University of the West of England
Bristol BS16 1QY United Kingdom

michaela2.newell@live.uwe.ac.uk

Figure 1 summarises the different techniques that can be used and

the level of testing that they are suitable for:

 Unit

Testing

Integration

Testing

Functional

Testing

Search Based

Technique

 McMinn [8]

Harman [10]

McMinn [8]

Harman [10]

Model Based

Technique

Prasanna et al.

[11]

Nebut et al.

[12]

Swain et al.

[14]

Prasanna et al.

[11]

Tonella and

Potrich. [13]

Swain et al.

[14]

Swain et al.

[14]

Specification

Based Technique

 Liu and

Nakajima [15]

Figure 1. Techniques suitability to different stages of testing.

Figure 1 summarises all of the previously mentioned frameworks
by their technique and how the authors assess their suitability in

the various stages of software testing. The figure shows that the

only framework that is suitable for all levels is a model based
technique proposed by Swain et al. [16]. Additionally Figure 1

highlights that various techniques and frameworks can be adapted,

one most appropriate to the problem.

3. PROPOSED APPROACH
The proposed approach uses a combination of a model and search

based technique to generate test cases and to address the

challenges of a complex data model. Other authors have also
proposed combining these two techniques and their methods show

promising results [17]. A description of how this approach is

implemented is included in the following sections.

3.1 Problem Encoding
A prerequisite of the system is that the user must input a UML
Class Diagram. As the tool is an initial prototype only one

structure of UML is currently supported. The structure supported

is the automatically generated structure of StarUML [18]. An
example of the structure can be seen from Figure 2.

<XPD:OBJ name="OwnedElements[0]" type="UMLClass"

guid="95FFK+ln1kOVRD4GJYRJhQAA">

<XPD:ATTR name="Name" type="string">Class1</XPD:ATTR>

<XPD:REF name="Namespace">YMt6yt/Y90qiBdvoCPhIcwAA</XPD:REF>

<XPD:ATTR name="#Views" type="integer">4</XPD:ATTR>

<XPD:REF name="Views[0]">0tQXfFFEhkaabBimWRCnpAAA</XPD:REF>

<XPD:REF name="Views[1]">Phczm+38hEqdvBhZpBDf3AAA</XPD:REF>

<XPD:REF name="Views[2]">s/+vlwh5EEC9dhihI0tb5gAA</XPD:REF>

<XPD:REF name="Views[3]">zYgdJGmGL0uBTrgKDz2F3wAA</XPD:REF>

<XPD:ATTR name="#Operations" type="integer">2</XPD:ATTR>

<XPD:OBJ name="Operations[0]" type="UMLOperation"

guid="zOXxGE8kH0CZy0upBp5RnAAA">

<XPD:ATTR name="Name" type="string">method1</XPD:ATTR>

<XPD:REF name="Owner">95FFK+ln1kOVRD4GJYRJhQAA</XPD:REF>

</XPD:OBJ>

<XPD:OBJ name="Attributes[0]" type="UMLAttribute"

guid="hPKc2Pm4k0arRtSG5BMetgAA">

<XPD:ATTR name="Name" type="string">var1</XPD:ATTR>

<XPD:ATTR name="Visibility"

type="UMLVisibilityKind">vkPrivate</XPD:ATTR>

<XPD:REF name="Owner">95FFK+ln1kOVRD4GJYRJhQAA</XPD:REF>

</XPD:OBJ>

</XPD:OBJ>

Figure 2. StarUML structure: class, attribute and operation.

However, not all models in the case study are as simple as the one

that can be seen in Figure 2. One of the models used to validate
how the program manages complexity can be seen in Figure 3.

Figure 3. Class diagram for md5deep and hashdeep.

Figure 3 illustrates a diagram used to check the frameworks ability

to handle model complexity, with 18 classes and hundreds of
attributes and operations. The framework begins by parsing the

UML to gain information. In order to identify relevant

information within the UML, the required information must first
be identified by its XML tag. The tag ‘<XPD:OBJ>' will

differentiate between the type of object (Class, Variable or

Method). Inside the objects the parsing looks for the tag
‘<XPD:ATTR>’, which will identify information relating to the

object such as the object name.

3.2 Solution Representation
The tool splits by each object narrowing the search space. There is

then a separate method that gets specific information from the
object. For example, the method can be called to return all method

names. Both of these methods are generic to allow for future

expansion to obtain more information from the UML.

There are four methods that request information from the generic
methods. These four methods are split into types of objects. The

logic of these methods is: for each class diagram check for all

classes and for each class check for all variables and methods.
Currently these four classes return the object names and in the

structure specified, add them to a vector. This initial structure

includes all the objects and is used later in the fitness function.
The benefit of obtaining this information from a design diagram

as opposed to the program’s code is that we are assuming the

design diagrams are correct and we cannot assume this for the
program. An example of an initial vector can be seen in Figure 4.

Figure 4. Example of an initial vector.

Figure 4 shows a genotype representation, Figure 5 the

phenotype.

Figure 5. Example of an individual.

3.3 Diversity Preservation
The standard selection schemes include: tournament, ranking and

proportional truncation selection [19]. This framework uses three
techniques: tournament selection, one point crossover and single

point mutation. The tournaments run by pairing each individual in

the population together at random. The winner of the tournament
is determined using a fitness proportional selection, as opposed to

the absolute fitness value that is determined at the end of each

generation. The winner of each tournament is selected for
crossover. One point crossover is where one point is selected at

random in the individual and all the data beyond that point is

swapped between the two parents, resulting in offspring.

3.4 Fitness Operation
The fitness function assesses the population for coverage goals.
Each individual in the population is assessed for its’ coverage. A

higher coverage can be achieved by including the testing of each

object. The individual’s assessments are then used for diversity
preservation. Once complete, the population’s fitness is assessed.

The population can increase its fitness score by increasing the

number of objects that will be tested. The score is awarded by
giving one point if an individual contains an element that exists in

the initial vector.

3.5 Genetic Algorithm
The general scheme in psuedocode [20] can be seen in Figure 6.

 Figure 6. Scheme of an evolutionary algorithm in psuedocode.

4. EXPERIMENTAL METHODOLOGY
Each test will be structured in the same way in order to guarantee

the fairness of a comparison. Each test will have a main variable,

the program. The test vehicles are five real world programs. Each
program varies in the number of objects and the complexity of the

model.

The algorithm parameters are: 20 runs for each program, similar

to the works of Forrest et al. [21]. The number of generations will

be 100, similar to the works of Arcuri et al. [22]. The population
size will be 40 similar to sizes in previous literature [21][22].

100% of individuals are paired together in a tournament selection

which is a common practise in GA’s [20]. The crossover rate is
75% which is considered to be ideal [23]. The mutation rate is 5%

as this typically shows the best performance [23].

5. RESULTS
The fitness curve for Program 2 is shown in Figure 7.

Figure 7. Mean fitness score for 20 runs of Program 2 over 100

generations on a logarithmic scale.

As it can be seen in Figure 7, the fitness score peaks before the

20th generation, which is why every further run used 20

generations, instead of 100. The highest standard deviation point
is 17, which is observed at the 7th and 9th generations. As it can be

seen, the later generations have a lower standard deviation this is

expected as at the beginning the diversity between individuals is
larger due to the size of the exploration space is larger. As the

candidate solution begins to form the search space decreases,

lowering the deviation.

In order to test the results by model complexity and the
frameworks ability to scale, Figure 8 shows the total number of

objects for each program used in testing. The number of objects

directly influences the complexity of the model.

Figure 8. The total number of objects per program.

All of the programs chosen were open source, written in either
Java or C++. Source code, test cases and design diagrams were

freely available. However, the source code is not used by the

framework. The design diagrams are used in the test generation
which is then compared to the manual test cases to assess

improvement. Figure 9 shows the fitness curve relative to the total

number of possible objects listed in Figure 8.

Figure 9. Fitness scores relative to the total number of objects.

Figure 9 shows that every program has a similar fitness curve. The
small decreases in the fitness curve are due to the program using a

generational model, as opposed to steady state. Figure 9 also
shows that the scalability affects the curve. Program 3 has the

highest number of objects and the lowest relative fitness score.

Program 4 has the second lowest number of objects and the
highest fitness score. This indicates that the programs complexity

affects the fitness score. The percentage improvement when

comparing automatically generated test cases to manual test

development shows that there is a larger room for improvement
when the programs complexity is greater. For example, Program 3

achieved a percentage improvement of 95% whilst; Program 1

achieved an improvement of 77%. This could arguably be due to
the difficulty of developing tests cases manually for larger

programs.

6. CONCLUSION
Results show that significant improvement can be made when
using automatic test generation as opposed to manual

development. The improvement can be made on software that

already exists and is used in the public domain. The complexity
affects the final fitness and based on the limited testing, complex

programs with more objects, score slightly lower fitness scores. In

order to achieve a reasonable relative score (50% or higher) the
program size has to be around 1000 objects or lower. However,

using the final code base, the average improvement of the

programs used was 75.83%. This is strong evidence to suggest
that the proposed approach addresses the challenges of a complex

model.

Limitations include: the user must have an accurate class diagram

written in StarUML. However if desired the ‘UMLParser’ can be

modified to accept various structures chosen by the UML tools.
Another limitation is that class diagrams do not typically contain

information such as boundary conditions and run time

information. The class diagram is currently used as a pre
validation to make sure all the objects in design are included.

Future work would include obtaining information such as run
time information from a sequence diagram or other suitable

method. Currently boundary conditions are taken from the user

via a GUI, in order to achieve complete automation; this to could
be taken from a UML diagram or alternative method. Lastly a

multi-objective fitness function would be preferable. After

viewing the test cases generated, whilst they make a significant
improvement in terms of object coverage, it would be beneficial to

improve test cases based on variables such as: length of test,

diversity in test set, execution time et cetera.

The challenges of a complex model have been addressed. Each of

the five programs tested against, were variant in complexity. The
improvement in efficiency appears not to be based on the size of

the program and/or testing suite but on the quality of the current

tests. Reinforcing that irrespective of the problem model
complexity, automatic test case generation can be an improvement

on manual test development.

7. ACKNOWLEDGMENTS
Thanks to Dr Chris Simons for his continued support.

8. REFERENCES
[1] Katanić, N., Nenadić, T., Dečić, S., Skorin-Kapov, L. 2010.

Automated generation of TTCN-3 test scripts for SIP-based

calls. MIPRO, 33rd International Convention.

[2] Tassay, G. 2002. The Economic Impacts of Inadequate

Infrastructure for Software Testing. Final Report.

[3] Kosindrdecha, N. and Daengdej, J. 2010. A Test Case

Generation Process and Technique. Journal of Software
Engineering. 265-287.

[4] Clark, J., Mander, K., Mcdermid, J., Tracey, N. 2002. A

Search Based Automation Test-Data Generation Framework

for Safety-Critical Systems. 1-41.

[5] Harman, M. 2010. Why the Virtual Nature of Software

Makes it Ideal for Search Based Optimization.

[6] Shaukat, A., Lionel C. B., Hadi, H., Rajwinder K. 2010. A

Systematic Review of the Application and Empirical

Investigation of Search-Based Test Case Generation. IEEE

Transactions on Software Engineering. 742-762.

[7] Fraser, G., Arcuri, A. 2011. Whole Test Suite

Generation. Software Engineering, IEEE Transactions.

[8] Pavlov, Y., Fraser, G. 2012. Semi-automatic Search-

Based Test Generation. IEEE Fifth International Conference
on Software Testing, Verification and Validation.

[9] McMinn, P. 2004. Search-based Software Test Data

Generation: A Survey. 105-156.

[10] Harman, M. 2007. The Current State and Future of Search

Based Software Engineering. Future of Software

Engineering, 2007. 342-357.

[11] Prasanna, M., Sivanandam, S., Sundarrajan, R., Venkatesan,
R. 2005. A survey on Automatic Test Case Generation.

Academic Open Internet Journal.

[12] Nebut, C., Fleurey, F., Le Traon, Y., Jezequel, J. 2006.
Automatic test generation: a use case driven

approach. IEEE Software Engineering. 140-155.

[13] Tonella, P., Potrich, A. 2003. Reverse Engineering of the

Interaction Diagrams from C++ Code. IEEE International

Conference on Software Maintenance, 159-168.

[14] Swain, A. K., Mohapatra, D. P., Mall, R. 2010. Test Case

Generation Based on Use case and Sequence Diagram. Int.

J. of Software Engineering. 21-52.

[15] Liu, S., Nakajima, S. 2010. A Decompositional Approach to

Automatic Test Case Generation Based on Formal

Specifications. Fourth International Conference on Secure

Software Integration and Reliability Improvement. 147-155.

[16] Object Management Group. 2013. http://www.uml.org/ [2
June, 2013].

[17] Neto, A., de Freitas Rodrigues, R., Travassos, G. 2011.

Porantim-Opt: Optimizing the Combined Selection of Model-

Based Testing Techniques. ICSTW. 174-183.

[18] StarUML. 2005. http://staruml.sourceforge.net/en/ [26

January, 2012].

[19] Legg, S., Hutter, M., Kumar, A. 2004. Tournament versus

fitness uniform selection. 2144-2151.

[20] Eiben, A.E., Smith, J.E. 2003. Introduction to Evolutionary

Computing. 2nd edn.

[21] Forrest, S., Nguyen, T., Le Goues, C., Weimer, W. 2009. A

Genetic Programming Approach to Automated Software

Repair. 947-954.

[22] Arcuri. A., Yao, X. 2007. Coevolving Programs and Unit

Tests from their Specification.

[23] Andrade, V.A., Errico, L., Aquino, A.L.L., Assis, L.P.,

Barbosa, C.H.N.R. 2008. Analysis of Selection and

Crossover Methods used by Genetic Algorithm-based

Heuristic to solve the LSP Allocation.

