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Abstract

Non-negative matrix factorization (NMF) is useful to find basis information of
non-negative data. Currently multiplicative updates are a simple and popular way
to find the factorization. However, there is no proofs showing that such updates
converge to a stationary point of the NMF optimization problem. Stationarity is
important as it is a necessary condition of a local minimum. This paper discusses
the difficulty of proving the convergence. We propose slight modifications of ex-
isting updates and prove their convergence. Techniques invented in this paper
can be applied to prove the convergence for other bound-constrained optimization

problems.

1 Introduction

Non-negative matrix factorization (NMF) is useful to find basis information of
non-negative data (Paatero and Tapper, 1994; [Lee and Seung, [1999). Given an
n x m data matrix V' with V;; > 0 and a pre-determined positive integer r <
min(n,m), NMF finds two non-negative matrices W € R™ " and H € R™™ so
that

V~WH.

If each column of V' is an object, this method approximates it by a linear com-
bination of r “basis” columns in W. NMF has been applied to many application

areas.



The usual way to find W and H is by the following optimization problem,

which minimizes the Euclidean distance between V and W H:

min  f(W, H) ——ZZ L — (WH),)?

=1 j=1

subject to W, >0, Hy; > 0,V7,a,b, j. (1)

Each non-negative constraint is a “bound constraint,” as it relates to only a single

variable. We also note that

ZZ i — (WH)y) = |V - WHJZ,

=1 j=1

where || - || is the Frobenius norm.

One may also minimize the (generalized) Kullback-Leibler divergence between
V and WH:

min Z Z (Vm log ———"— ) - — Vi + (WH)z'J)

=1 j=1

subject to  W;, >0, Hy; > 0,Vi,a,b, j. (2)

A commonly used approach to solve NMF optimization problems (([Il)) and (&)
is a multiplicative update algorithm by [Lee and Seung (2001). Though some pa-
pers ([Linl, 2005) pointed out its possible slow convergence, this method is popular
due to the simplicity. [Lee and Seung (2001) proved that the update causes the
function value to be non-increasing, but there is no proof yet showing that any
limit point is stationary. While optimization problems here may be non-convex
and finding a global minimum is difficult, the stationarity is still important—it is a
necessary condition of a local minimum. Therefore, existing multiplicative update
algorithms lack sound optimization properties. Gonzales and Zhang (2005) pre-
sented numerical examples where [Lee and Senng’s algorithm fails to approach a
stationary point. However, due to possible numerical inaccuracy, we think either
a convergence proof or a non-convergence example is desired. This paper con-
ducts a detailed study about the convergence properties of multiplicative update
methods.

The main difficulty of proving the stationarity comes from the non-negativity

constraints. Though multiplicative updates are close to standard fixed-point



methods, existing proofs mainly deal with unconstrained situations. Section
reviews [Lee_and Seung’s algorithm for () and discuss difficulties of proving the
convergence. Section B proposes a modified algorithm, which has the same com-
putational complexity per iteration. We prove that any limit point is stationary.
For the optimization formula (f), Sections give two modified algorithms with

convergence proofs. Discussion and conclusions are in Section

2 Multiplicative Update for (1) and Its Conver-
gence Issues

Lee and Seung (2001)) proposed the following algorithm to solve ().

Algorithm 1 Multiplicative update for solving ()

For k=1,2,...
Wk)TV)b'
karl — Hk (( ) 3
bj by ((Wk)TWka)b] ) Vba J (3>
w1 gk (VEHM)) :
VVia+ o W/ia(WkaH(HkH)T)m’ Vi, a. (4)

This procedure is not well-defined if denominators in (B)) or (@) are zero. [Lin

(2001) discusses conditions avoiding such difficulties:

Theorem 1 (Theorem 1 in [Lin (2008)) IfV has neither zero column nor row,

and W2 >0 and ng > 0,V1,a,b,j, then
Wi >0 and Hy; > 0,Vi,a,b,j,Vk > 1.

We hope that any limit point of {W*, H*} is stationary as any local minimum
must be a stationary point. By definition (W, H) is a stationary point of ([II) if it
satisfies the Karush-Kuhn-Tucker (KKT) optimality condition (e.g., (Bertsekas,
1999)):

I/I/vl'a 2 07 Hb] Z 07
Vw fW,H)iq >0,V f(W,H), >0, (5)
Wia - Vw f(W, H)iq =0, and Hy; - Vg f(W, H)y; =0,Vi,a,b, j,
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where
VwfW,H) = (WH —-V)H" and Vy f(W,H) =W (WH -V),  (6)

are respectively partial derivatives to elements in W and H.

Lee and Seung (2001) proved the following properties:

1. The function value is non-increasing after every update:

FOVE M) < FOWRHY) and fWR ) < fOVE HE),
(7)

2. If H,fj > 0 and Vg f(WFk H)y; # 0,Vb, j, then the first inequality in (@) is

strict. Similarly, the second inequality is strict under conditions on W.

Gonzales and Zhang (2007); [Lin (2005) pointed out that such properties do not

imply the convergence to a stationary point. Clearly Algorithm [l intends to have

a fixed-point update: If H{ffl = Hy; > 0 and (W*)"W*H*),; # 0, then
(WEV)y; = (WHTWEHF),;  implies Vg f(W", H")y; =0,

which is part of the KKT condition (H). A convergence proof of fix-point methods

for minimizing an unconstrained function f(x) usually involves the following steps:
L f(xMh) < f(xP) if Vf(xP) #£ 0.
2. From a limit point x*, if V f(x*) # 0, we can

update x* to x**! such that f(x*t!) < f(x*). (8)

3. If we have the continuity of f(x) and limy .., x*™ = x**! then

f(x) < lim fM) = f(x) < f(x7) (9)

T k—oo
causes a contradiction.

Clearly this framework cannot be directly used here because of two difficulties:

1. Though Theorem [ proves that W} > 0 and H, {f] > 0, it is unclear if W;; > 0
and H;y; > 0 or not. Hence in (f) an update from a limit point (W*, H*) to
(W*, H**1) may not be well-defined.
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2. If Hy; =0, we must prove Vg f(W*, H*)y; > 0. This KKT condition is due
to non-negative constraints. The above framework does not reveal how to

have this result.

Gonzales and Zhang (2005) numerically showed that Algorithm [ may fail to
converge to a stationary point. However, [Lid (2004) stated that due to possible
numerical inaccuracy, a mathematical example is desired before drawing conclu-
sions. Thus the convergence issue remains open. In the next section we will
modify Algorithm [ so that the two difficulties are conquered. Then any limit
point is stationary.

Computational complexity is another concern as we hope that our modifica-
tions are not more time consuming. Here we analyze the cost of Algorithm [Il |Lin
(2007) indicated that in (B]) one should calculate W (HHT) but not (WH)HT as
r < min(n, m). Hence the main cost is on calculating (W*)TV and V(H**)T in
@) and @), each of which takes O(nmr) operations. Therefore, the complexity
of Algorithm [ is

#iterations x O(nmr).

3 A Modified Multiplicative Update and Its Con-
vergence

Lee and Seung (2001) mentioned that the two update rules ([B) and ) are the

same as

k

H
k k b k k ;
Hbfl = Hy, — ((”/'k)TMj'ka)bj Vaf(WF H )y, Vb, j, (10)

Wk-i—l _ Wk_ VVZ]Z
ia - ia (W’“H’““(H’““)T)

~Vu f(W*5 H" Y, Viya.  (11)

The algorithm is thus a gradient descent method. For updating H, fj,
Hy;
(WF)TWHEHE),,;

is referred to as the step size. The two difficulties raised in Section Bl can be

reinterpreted as

1. The denominator of the step size may be zero.
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2. If Hf,

numerator of the step size, is zero, and the gradient Vy f(W* H*),; <
0, H{ffl is not changed. Hence one cannot use the strategy (§) for proving

fixed-point convergence.
Therefore, we propose modifying the step size to:
H;
(VT )+ 8

where

_ HF. if K H), >

max(Hyj;, o) if Vi f(W* H*),; <O0.
Both o and § are pre-defined small positive numbers. Similarly we can define WX.

The modified algorithm is as the following:

Algorithm 2 A modified algorithm for minimizing ([I)

1. Given o > 0 and ¢ > 0. Initialize W, > 0, Hy; > 0,Vi,a,b, j.
2. Fork=1,2,...

(a) If (W* H*) is stationary, stop.

(b) Else
7k
HEY = g — 1, Vuf(WF H*)y, Vb, j (13)
b T T (WRTWRERY,, + 6 N e T
Wk
k+1 k ia k k+1 .
VVm - VVia - (WkaJrl(HkJrl)T)m +5va(W aH )im VZ,CL. (14)

This modified algorithm requires extra operations: To find H* (or W*) and
add §, each takes O(mr?) (or O(nr?)). Then (W*F)TW*H® costs O(mr?). All are
less less than O(nmr), so the complexity per iteration remains the same.

Due to d, the new algorithm requires only Wy, > 0 and Hj; > 0 to make
denominators in ([[3) and (Id]) positive. This result is proved in the following

theorem:
Theorem 2 If W, > 0 and Hy; > 0,Vi,a,b,j, then

Wi >0 and Hy; > 0,Vi,a,b,j,Vk > 1. (15)



Proof. When k£ = 1, ([H) holds by the assumption of this theorem. Using induc-
tion, we assume results are correct at k. Then at (k + 1), we note that the step

size for updating H is non-negative:

A,
= > 0. (16)
(WFITWHEHF); + 6
We then consider two situations:
Case 1: If Vg f(W* H¥),; <0, then using (IH),
HF.
HiF = HE b Vi f(WE HY)y > HE > 0.

((WHTWEH +9

Case 2: If Vi f(W* H*),; > 0, then according to (I2),
HY, = Hy,. (17)

As H*’s components are not smaller than those of H*, and by assumption (W*, H*)

have non-negative elements, we have
[Tk 7k
(VT ) +3 ~ (V- + 5
Using (@) and (IX),

(18)

HF.
k+1 k b k prk
Hijr = Hbj o ((Wk)ka][{k)bj +5va(W H )bj
T ,

(VTR +5 =
The proof of W} > 0 is similar. O

Next we show that from H* to H**! all components not satisfying KKT con-
ditions are changed and the function value is decreased. In contrast, elements
satisfying KKT conditions remain the same. When WP is fixed, the function
J(Wk_ H) is the sum of m functions, each of which relates to only one column of

H. 1t is hence sufficient to consider any column h and discuss the function

f(h) = Slv —Wh|?, (19)

N | —

where v and W = WF are considered as constants.



Lee_and Seung (2001)) then consider an auxiliary function
_ - 1
A(h,b%) = f(b*) + (h— ")V f(h*) + S(h — ") D(h —h"),  (20)

where D is a diagonal matrix with

T Wk
D%:(Wrih)ﬂVh:L”wn (21)
hy
They proved that
f(h) < A(h,h") < A(W",h") = f(b"). (22)

Minimizing A(h, h*) leads to the update rule ). In addition, if f(h*), # 0,
then hyt' # hf. From (2I), this auxiliary function is not well-defined if hf = 0.
Now we hope that if hf = 0 and V f(h*), < 0 (i.e., another situation violating
the KKT condition), then A(h,h*) is well-defined and h} can be changed as well.

Therefore, we define a new auxiliary function on non-KKT indices:
Alh, ) = F(04) 4+ (h— BTV F(h), + L (h— 097 Dps(h— )y, (23)
where
I = {b|hf>0,Vf(h*),#0orh =0, Vf(h*), <0} (24)
= {b| by >0,V f(h*), # 0},
and

K (25)
0 ifbel.

Our new auxiliary function looks like a straightforward extension of the original

- (VR WERE g T
DbbE

one, but this modification is not trivial. While we define A(h, h*) so that indices
satisfying hf = 0 and V f(h*), < 0 are taken care of, simultaneously we also need
that A(h,h*) leads to the non-increasing property (). This result is shown in

the following theorem:

Theorem 3 Let o and § be given in Algorithm @ and h* be any column of H*.
Let I and D be defined as in B4) and E3), respectively. Let I' = {1,...,7}\I.
Then

Mygdmmﬂ:w—D;vmmL (26)
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Moreover, h*™! defined by () satisfies
hf ! = arg nllllln A(h,h*) and b4 = hk, (27)

and

F(*) < A(L™ h") < A(h*,h") = f(b"). (28)
We further have that the following three properties are equivalent:
1. Inequalities in (Z8) are strict.
2. Vf(h*); #£0.
3. h*+1 =L hk,

Proof. As Dj; is positive definite, A(h, h*) is a strictly convex function of hy,

and has a unique minimum satisfying
Dii(h —h*); + Vf(h"); = 0. (29)

Thus, (26)) follows. This result and the update rule (3) then imply 7).

Now f(h) is a quadratic function, so
F(h) = F(0) + (h 147 F(B) + 2 (h— b5 (07T (h — )
For any h with hy = h?,
Al ) — () = 3 (h— 07 (D — W)y — )y (30)

We use a technical Lemma[llin Appendix [Alto show that (D —WTW);; is positive
definite. Then (B0) is non-negative. With (27), the result ([28) follows.

Next we prove the three equivalent conditions on the strict decrease of the
function value. Clearly [£8) and (1) imply that Vf(h*); # 0 if and only if
h%*t o£ hk. Using @) and

— < 1 D
A(h* h*) — A(h* ") = _Q(hkﬂ —h")7 Dy (W' —h"),, (31)

[E]) is strict if and only if h*™! £ h*. O

Theorem B immediately implies that the function value is non-increasing;:
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Theorem 4 If Algorithm[@ generates an infinite sequence {W¥*, H*}, then
FOWERL HEY) < f(WF, BN < (WP, HY), VE (32)
Moreover, one of the two inequalities is strict.

At this stage one may think that we will use ([@) to finish the convergence
proof. Instead we first show that H* and H**! converge to the same point. With

this property, the convergence proof is easier than using (d).

Theorem 5 Assume {W* H*} k € K is a convergent sub-sequence and

lim (W* H*) = (W~ H*). (33)
kEIC,kHoo
Then
lim H' = H*,
k‘EIC,k—)OO
Proof.

Theorem lland (B3) imply that { f(W*, H*)} is a bounded decreasing sequence,
which converges to f(W*, H*). Thus

lim  f(W* H*Y — f(WF HY) = 0.
kE’C,kHoo

Since f(W* H*1) — f(W* H*) is the sum of the difference at each column, we
have

lm  F(0) = F(h) =0, (34)
kEIC,kHoo

where h* is any column of H*. If this theorem is wrong, there is a component b

in a column h*, a value ¢ > 0, and an infinite subset K of K such that
|hE — hy| > e, VE € K.
Using (B3), there is an infinite subset K C K such that
|hf — hi| < €/2,Vk € K.
Combining the above two inequalities we have
byt — hy| > €/2,Vk € K. (35)

10



We claim that Vk € K, hf > 0. Otherwise, hf = 0 implies hy*! = A} in (),
which violates (BH). Using (28) and (Z1I),

_ B hk+1 . hk)zD (hk-i-l _ hk>25 (hk-i-l . hk>25
hF+t1) — F(h* <_( b b bb % T % <\ b
I )= /(%) < 2 - 2hy —  2max(hf,0)

<0.

With (B4)), taking the limit of the above inequality we have

lim Ayt —hp =0,
kE’C,k—wo

a contradiction to (BH). O

Now we are ready to prove that at any limit point (W*, H*), the matrix H*
satisfies KK'T optimality conditions:

Theorem 6 Assume {W* H*} k € K is a convergent sequence and

lim (W* H* = (W* H*).

kE’C,k‘—wo
We have that
if Hy; > 0, then Vg f(W*, H*),; =0, (36)
and
Proof.

By the definition (I2),

ko k k
Hy; = max(Hy;, o) or Hy;,

so the sequence {H{fj}kelc may have two convergent points Hy; or o. Since the

number of (b, j) is finite, there is an infinite set X C K such that

H*= lim H" exists. (38)
kE’C,kHoo
From Theorem [,
lim HY — HE = ﬁng Vuf(W* H*),; = 0. (39)
. j bj (WTW*H*),,; + 6 J

Note that ]jI,f] > Hy;. Hence if Hy; > 0, (B9) immediately implies (EB6).

11



Next we prove ([Bd). If it is wrong, there is (b, j) such that
HZ}- =0 and VHf(W*,H*)bj < 0.
For all k € K large enough, Vg f(W* H*),; < 0 and hence
lim Hf = H =o.
kE’C,k—wo g K

Therefore,

Hb*j
- \V/ W* H")y; >0,
(WHTW*H*)y; + 0 1/ Jo

an inequality contradicting (B9). O

The main convergence statement is in the following theorem:

Theorem 7 Any limit point of the sequence {W*, H*} generated by Algorithm @
is a stationary point of ().

Proof.
Theorem @ implies the optimality condition on H*. Using Theorem
lim (W* B = (W HY).
k‘EIC,k—)OO
We can then use the same proof in Theorem B to have the optimality condition

on W*. O

Earlier work such as (Hoyer, 2002; [Piper et all, 2004) adds penalty terms to
increase the sparsity of W and H:

%izm:(vij—(WH)z‘j)2+5ZmG+5ZHbJ" (40)

i=1 j=1 ia b,j

Then the update rule ([Bl) becomes

k+1 ko Hlf} ENTyi7k 17k . ENT ,
Hbj Hby ((Wk)TWka)bj +5((<W ) W*H )bJ +9 ((W ) V)by)
g VTV,

(WRTWEHF)y; + 6
For this formulation, the penalty parameter d can be directly used in Algorithm
Bl The update rule is the same as ([3), but Vg f(W*, H*); involves an additional

term 4.
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4 Minimizing the Divergence: A Modified Al-
gorithm

We switch to another NMF optimization problem (B2), which minimizes the diver-

gence. [Lee and Seung (2001) proposed the following update rules:

Algorithm 3 Multiplicative update: minimizing the divergence
For k=1,2,...

b Doam WV /(WHHY)

HEY = HE, R 9 b, j. (41)
)
m VisHk;—i—l Wka;—l—l is
VVZ‘]ZJrl VVZIZ Zs:l ;—;k+1<e ) VZ, a. (42)

For matrices W and H, we denote W.; as the bth column, and H, . as the ath
row, respectively. In (HIl) and [#Z), e is the vector of ones, so €’ W, is the sum
of W’s bth column.

Similar to the update rules for (), (@) and ([@Z) can be rewritten as

H,
HEY = HE ﬁv,{f(wk, H*),5, (43)
)
k+1 k Wi, ko prk+1
VVia = VVia - Hk+1GVWf(W 7H )ia;
where
- V;sHas - st‘/s'
Vw (W, H)ia = Hy€ — and Vi f(W, H)y; = eTVV:,b - .
Sk ey e
(44)
The update rule () involves two O(nmr) operations:
~ WLV,
W H* d b, )

Thus each iteration takes four O(nmr) operations, twice of that in minimizing
the Euclidean distance.

Before further discussion, we redefine the objective function in (&) as

FOV,H) == " Vijlog(WH)y; + Y (WH)s;.

15:Vi;>0 i
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Thus f(W, H) is well-defined if and only if (W H);; > 0,VV;; > 0.
We may try the same strategy in Section Bl to modify the step size in ([3)) to

(45)
where H fj can be defined similarly to ([Z). However, two new difficulties occur:

1. In addition to e’ ., in the denominator of the step size, (WH)s; = 0 in

the calculation of Vg f(W, H) may also cause a zero denominator.

2. For the convergence proof, similar to Section B, we discuss a function of a

column h:

fh) == wlog(Wh); + > (Wh), (46)

1:0;>0 =1
where v and W are constants. This function is different from ([[J) in Section
B We need new strategies (e.g, different auxiliary functions) to have the

non-increasing property (22).

To address the first issue, we design the algorithm so that it has the following
property:

If Vi, > 0, then (W*H");; >0 Vk and (W*H*);, > 0, (47)

where (W*, H*) is any limit point of the sequence {W* H*}. Elements with
Vi; = 0 are not a concern as they do not affect the function value calculation.

Moreover, the gradient calculation should then be

‘/;SHQS WS ‘/s
wa(VV, H)ia = Ha,:e_ Z (WH) and VHf(VV, H)bj = eTVV:,b— Z (W;I)]
5:Vis>0 ts 5:Vs;>0 83

(48)

The second issue is difficult. As f(h) is not a quadratic function any more,
calculating the difference between f(h*) and f(h**!) is complicated. Earlier in
&) we simultaneously take care of the following two KKT-violating sets:

{b|nf>0,Vfh"), £0}U{b|nrf =0, Vfh"), <0}
= {b1hy >0, V() #0}U{b| by <o, VF(hY), <0} (49)
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For elements in the second set of [{@d), we used hf to calculate the step size. The
purpose is to avoid hj = 0 and Vf(h*), < 0 at a limit point h*. Now we single

this step out and have two stages:

1. For any element in the second set of (@), we modify it to hf and ensure the

strict decrease property

f(b*) < f("). (50)
2. We then update h* to h**! by the original formula. Of course we also need

F(*1) < f(b"). (51)

Combining (B) and (&) we have f(h**!) < f(h*).
To have (B), for H* we define

By ={b| Hy, <o,V f(W" H"),; <0},j=1,...,m. (52)

The index k in B; is omitted for simplification. We then define
_ VafW* H*),

_ HE YA )b if B.
HZI,EE{ bj MF ifbe 7 (53)

H {f] otherwise,

where M¥ is a large value defined as

K (Soes, —Vaf(WE H*),eTWHE)”
M" =1+ max g . _ .
#8740 > Vuf(WE HY)y; - min (WEHE);

bEB; bt Vij

(54)

If (WEHF);; > 0,VV;; > 0, then M* is well-defined. This is related to (1)
discussed earlier. The constant 1 in (B4]) avoids zero denominator in (B3). The
update rule (B3] takes the negative gradient direction, so a sufficiently small step
guarantee the strict decrease of the function value. The real difficulty of defining
MP¥ is that we must have that as kK — oo, M* does not approach co. This property
is needed in the convergence proof.

For W*, we can define similar sets A; and a large value N* to have W*. Our

new algorithm is then as the following:

15



Algorithm 4 Minimizing the divergence: a modified algorithm

1. Given o0 >0 and ¢ > 0. Initialize W, > 0, Hy; > 0,Vi,a,b, j.
2. Fork=1,2,...

(a) Update H* to H* by ([&3).

(b)

_ HF. _ .
Hy™ = Hiy = =5Vl (W5 )0, 9, . (55)
b
(c) Update Wk to W*.
@ -
_ W _
Wit = Wi - mvwf(wka H" )50, Vi, a. (56)

This new algorithm doubles the cost per iteration as from H* to H*! it
calculates the gradient twice: Vp f(W*, H") in ([B3) and Vg f(W*, H*) in (B3).

However, rarely at a limit point
Hy; =0 and Vg f(W*, H)y; =0

both occur, a situation referred to as “degenerate” in optimization. Thus if o is
chosen to be small, in final iterations all B; are empty sets. Thus H* = H* and
the cost per iteration is the same as that of the original algorithm.

We then prove the convergence of Algorithm Bl The following theorem indi-

cates that all iterations are strictly positive:
Theorem 8 If Wy, > 0 and Hy; > 0,Vi,a,b, j, then
Wi >0 and Hy; > 0,Vi,a,b,j,Vk > 1. (57)

The proof is omitted due to the similarity to Theorem Pl The next two theorems

prove the decreasing properties (B) and (BII):

Theorem 9 Let h be the jth column of H and v be the jth column of V', respec-
tively. Assume f(h) is well-defined. Let

B be any non-empty subset of {b| Vf(h), < 0}. (58)
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If h is updated to h by

Vf(h .
e = hy — YL@k szeB,
hy otherwise,

where _ _
max Y, —WyVf(h), > —Vf(h),e" W,
M ©vi>04,ep _bEB _
min (1Vh); > Vimg
1:0;>0 beB

then f(h) is well-defined and
f(h) < f(h).

Proof.

(59)

(60)

The assumption that f(h) is well-defined means that (Wh); > 0 if v; > 0.

With (Wh); > (Wh);, f(h) is well-defined.
Using the inequality logx < x — 1,Vx > 0,

f(h) — f(h)
Z v; log Egﬂil + Z(Wl_l — Wh);
< - Z U(VV?VV;}:;VII) + i(Wh — Wh);.

We denote V f(h), as the difference between two terms:

Vf(h), = Ay — Ty, where Ay =e’W., and [, = Z Wipv;
1:v; >0

We next claim that

(Wh); > (Wh),.

If this claim is wrong,
Wy =0,Vb e B, Vi

(Wh);

(61)

(62)

(63)

implies Vf(h), = 0,b € B. As B is nonempty from (B8], there is a contradiction.
From (63), Y. ,(Wh — Wh); > 0, so we can compare the two terms in (&)
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by the following formula:

(Wh — Wh);
2;0 Z—(Wh) Z (Wh — Wh);
= 3 (Wh — Wh Z (Wh — Wh); (64)

v —_—
1:0;>0 (Wh)i( ) i=1

(Wh—Wh);
X vt

> 1:0;>0 ' ]

= n WB B Wh ‘ max (I/Vh)Z
;( )Z i:v; >0 (Wh)z
D Wiy ()

_wvy;>0  beEB (Wh); . 1
iZW(ﬁ—h) 1+maXW(hW_7lT)/-h)i
i=1beB LT b 1:0; >0 i
Z (Bb - hb)rb

_ beB _ ' 1 ] (65)
S (7o — ho)Ap 1+ max VE-Wh)
beB 1:0; >0 (Wh);

To have that (1)) is less than zero, it suffices to prove that (B0)) is greater than 1.
This is equivalent to
(Wh—Wh); Y5l — hy)Ty

max < = — L 66
>0 (Wh); Y e (hy — he) Ay (96)

We further simplify the right-hand-side of (&) to

Dpen(h —m)(Ty—Ay) 3o p V()]
> pen(hy = hu) Ay Shen —VI()A,

Using the definition of M in (€0),

(67)

 (Wh—Wh),
2:v; >0 (Wh)z
max (Wh — Wh);
i:0;>0

min (Wh);

i:v; >0

max Y. —WuVf(h),

1 >0y cp

T M min (Wh); < &D.

:v; >0

IN

Thus (EX) is greater than one and the proof is complete. O
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Clearly our setting in (B3)) and (B4 satisfies conditions of Theorem @ From

@), we use
Z —Vf( be W b = > max Z f(h)b

Bv; >
beB
so that M* in (B4]) has a simpler form. The next theorem discusses the change of

function values from h* to h**1:

Theorem 10 Let h be the jth column of H and v be the jth column of V', re-
spectively. Assume f(h) is well-defined. If h is updated to h™ by

n __ hb r
hy = hy — mvf(h)b,
then f(h™) is well-defined and
f(u") < f(h). (68)

Moreover, if V f(h) # 0, then the above inequality is strict.

Proof.
The proof that f(h") is well-defined is straightforward, so we directly prove

€F). Using (ED),

f(0") — f(h)

- S (W > (V%:;)

_ ; " hy) Ay — ZUZJFZI%HWO Wl”lz)

_ _bZ:Abi ~Ty)A, - Zvl—i—Zhbww WZII;?:)

_ _§§:ﬁ5+i ,, b_zi’;fg-; Z+zh,,wz>o -(69)

We have

Zhbrb Zhb Z vaz ZZ%

zv>0
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and

Zhb Z ST 1M/Zb?;; Toto

i:0;>0 AN +6

UZ
- Z ZT Wigha Ta+6

2:0;>0 a=1 (Wh); Aqs+6

5 UZZ Wmh A +5 (70)

zvz>0 a=1
A, + 06
= ho—=———<T4,
Z T+

where ([Z00) is from Jensen’s inequality. Therefore,
A —0Ty  Ay+0
) < > h b0 r
= Z b( Ay+d  T,40 b)

—T)?
Zhb Ab+5 )Ly +06) 0 (1)

IN

Hence (BR) holds. If Vf(h), = A, — T, # 0 for some b, then clearly ([Z]) becomes

a strict inequality. O

What [Lee and Seung proved is the case when § = 0 and eTVV;,b > (0. Their
proof does not extend to the case of § > 0, so we have a very different derivation
here.

From the above two theorems the non-increasing property of function values

follows:

Theorem 11 If Algorithm [ generates an infinite sequence {W*, H*}  then

FOVRE M) < FOF B < FOVF HIEY) < FOVE ) < OV, HY), 9k
(72)

Moreover, one of the above inequalities is strict.

We omit the proof as it is similar to Theorem ll In Section B we then have
Theorems Bl and @ to finish the convergence proof. However, here we follow the
standard fixed-point proof of using ([@). In Section Bl the auxiliary function gives
useful information about h**! — h* so we prove Theorem [ first. Here such

information is however not that obvious.
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Theorem 12 Assume

lim (W* H*) = (W* H*). (73)
kEIC,kHoo
Then
1.
2. We have
if Hy; =0, then Vy f(W*, H")y; >0, (75)
and
if Hl;k] > 0, then VHf(W*, H*)bj =0. (76)
3.
lim H*™ = H*. (77)
k‘EIC,k—)OO
Proof.

To prove ([ we assume that it is wrong. Then

FOVEHY) == 3" Vilog(WFHN) = > Vilog(WFH")+) (WFHY),
ij: Vi; >0 ij: Vi;>0 i
(W ) =0 (W H >0

goes to oo as k € K, k — oo. This result contradicts Theorem [l
Next we prove (IZd). As the number of possible B;,j = 1,...,m is finite, there
are BY,j = 1,...,m used at infinitely many iterations of K. We use K C K to

denote these iterations. Therefore,

Vuf(WF H*),; < 0,¥b € B, Vk € K implies Vi f(W*, H*),; < 0,Vb € B;.
(78)
We further define a subset of B}*:

Br={b|be B, Vuf(W" H)y <0} C{b| Vi f(W* H), <0} (79)
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If U;B; # 0, then using () the following limit exists and is denoted as M*:

M*
= lim M*
k‘EIC,k—)OO
2
(Soes; —Vuf W, H)e W)
= 1+ max .

iB;#0 >0 NV f(W= H*); - min (W*H*);;
2
1 (Shes: —Vuf(W*, H)e W)
= 1+ max ! . )
iBi#0 Y NV f(W= H*)j, - "I\£~11I>10(W*H*)ij

be B tVij

(80)

Using B} and (B0) respectively as B and M in Theorem B, ([[3) implies (BY) and
we can define H* according to (BJ). If the result () is wrong, then U; BY # 0, so

H* # H* and f(W*,ﬁ*) < f(W* H"). (81)
We then claim that
lim H*=H* (82)
kE’C,k—>OO

This property is proved by considering the following three situations:
1. be B;.
([3) and &) imply

= VHf(WkaHk>
Hg;. = H,ﬁg -

e “ vk e K, (83)

Moreover, ([[A) and (B3)) imply

Vi f(W?, H )y
M~ '

Using (B0), (Z3) and taking the limit of [&3) we have (82).

2. be Bi\B;.

[7* __ *

We have

Vi f(WE HY)
Mk}

Moreover, Vg f(W*, H*),; = 0. Taking the limit and using (Z3) leads to

&2).

Al = HY, — “VkeK and = H;;.
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3. b¢ B
Then
oY, =Hy; Yke K and  Hy = Hy,.
Thus (B2) also follows.

Using (B2),
lim  f(W* H* = f(W* H").
k‘EIC,k—)OO

This and (&) then contradicts Theorem [[Il Thus (Z3) holds.

The proof for ([Z0) is easier and similar. We omit it here.

Using ([[A), (@), and ([82), we have

. Tk _ frx *
lim  Hy; = Hy; = Hy;.
kEIC,k—wo

Taking the limit of (BI), and using ([A)-([Z0), then ([Zd) follows.
Note that ¢ in the denominator of the step size plays a role. Without it

lim e Wh =e"W}
kE’C,kHoo

may cause a zero denominator in taking the limit of (B3). O

Now are have all required properties. The main convergence theorem follows

from a similar proof for Theorem [0
Theorem 13 Any limit point of the sequence {W* H*} generated by Algorithm

is a stationary point of ().

5 Minimizing the Divergence: Update One Row
at A Time

Due to the difficulty of handling the following two modifications together:

H—H and e’ W., — "W, + 6,

Section ll considers a two-stage algorithm and proof. This section proposes a differ-

ent approach: two modifications are implemented together, but at each iteration
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only one row of H is updated. Thus for any column h and the corresponding func-
tion f(h), only one element is updated per iteration. We will show that proving
the decreasing property is easier.

Given o > 0, we define H as the following:

qo— min ( min (Wh)i,a> if Hy; <o and Vg f(W,H),; <0,
bj =

Wi, >0,V >0 Wip

(84)
Hy, otherwise.

A new algorithm is as follows:

Algorithm 5 Minimizing the divergence: updating one row (column) at a time

1. Given ¢ > 0 and ¢ > 0. Initialize W, > 0, ng > 0,Ve,a,b, g,
2. Fork=1,2,...
(a) H*O = H*
(b) Fort=1,...,r
H*? is the same as H"'~! except the tth row is updated by
Fk,t—1
kit _ prkt—1 tj koprkt—1 -
Hj; =H; ~ — WWVHJ[(W , HY 7 0)45, 95 (85)
(c) H*' = HF™ and WkO = Wk,
(d) Fort=1,...,r
Wkt is the same as W51 except the tth column is updated by

- W]c,t—l
Wit = Wit — s Vw FWEL H D vie (36)

(e) WkJrl — Wk,r.

The time complexity per iteration is the same as that of Algorithm B. From
H*=1 to H*', the operations Y o WEV,; Vj in calculating Vy f(W*, H*1),;
takes O(nm) operations. Thus from 1 to r the total is O(nmr), the same as
that in {Il). Maintaining W*H*! can be time consuming, but we can take the

following trick:
WEHR = WEHR L WE(HS — HR, (87)
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The second term is a rank-one update involving the tth column of W* and the
change of the tth row of H. Then (81) takes O(nm) operations. Fromt =1,...,r,
the total is O(nmr), again the same as that in Algorithm Bl Practically as oper-
ations are not matrix-based, this algorithm may be less efficient than Algorithms
and @l when finely tuned numerical linear algebra subroutines are used.

We then prove the convergence of Algorithm Bl All details are similar to those
in Section @l except the decreasing property. We prove only this key result in the

following theorem:

Theorem 14 Let h be the jth column of H and v be the jth column of V. Assume
f(h) is well-defined. From h we update its bth component by

Iy -

h? = hb - mvf(h)b (88)

and have all other elements remain the same. Then f(h") is well-defined and

f(b") < f(h). (89)
Moreover, if
hy =0,V f(h), <0 or hy >0,V f(h), #0,

then
f(0™) < f(h).

Proof.
From (84]), we have

Wiyhy Vf(h), > (Wh),,

(Wh"); = (Wh), — TW.y 40 >

so f(h") is well-defined.
Using (B1)),

f(b") = f(h)
(Wh—Wh");

< > > (Wh" — Wh),

S 2 ey, 2l )i
1:0;>0 =1

— n __ T”r . 2 : ”zb %

= (=) (e o P (Wh")z> .
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If hy — hy = 0, then of course (B9) holds.

If h* — hy > 0, then from (BX), —V f(h), > 0. We consider two cases:
Case 1: €W, = 0. Then the non-negativity of 37, (EVV’}’;ZZ)Z implies (89).
Case 2: e’ W.;, > 0. Using the definition of hy, in (&),

Wipvi
) (Whn);
1:0;>0
e’W.,
>
— W, h =
1:0;>0 (Wh)i"’eTW:bb_ﬁévf(h)b
eTW_b
Wipvi
1:0; >0 (Wh)i—’—(Wh)ieTiM;;b
e’ W
Z Wipvi
Wh);
>0 ( )i —1 (90)

elW., 1— qu(h)b
’ e’ W.,

For the case of h! — hy < 0, we then have —V f(h), < 0. It is impossible that
e’ W., = 0 as otherwise V f(h), < 0 causes a contradiction. Then the remaining

proof is similar to deriving ([@). O

6 Discussion and Conclusions

Though we have proved that any limit point is stationary, it is unclear yet if the
sequence {W* H*} has at least one limit point. Showing the existence of limit
points is an interesting future issue.

Though this paper may have only theoretical values, it has two main contri-

butions:

1. Under minor modifications, ILee_and Seung’s multiplicative update algorithms

converge to stationary points.

2. Though bound constraints introduce difficulties in proving the convergence,
we invent a technique to control the step size. For multiplicative update
algorithms to solve other bound-constrained problems, we can apply the

same approach to prove the convergence.
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A A Technical Lemma

Lemma 1 Given § > 0, an r X r symmetric positive semi-definite matrixz A with

Aw > 0,Va, b, and a vector x with x, > 0,Vb. Let I be any index set such that

xp > 0ifbel,

and define a diagonal matriz matriz D with

_ (Ax)p+4 ifbel,
Dy, = o .
0 ifbé¢ 1.

Then (D — A)p; is symmetric positive definite.

Proof.

For any vector v with v; # 0,
V?(D — A)[[V[

= Z’UZ; —+ Z ’UZ (/;.X)a — Z ’UanAab

acl acl a,bel
22 per AabTh
> vy = — VaUpAgp
Lq
acl a,bel

1 9 ATy 1 2 Apaq
= = v + = v — VaUpAg

1 T T 2
= - Aab ( —bUa - _a/Ub) 2 O
2 — \/ T, \/ Ty

(91)

(93)

(94)

(95)

(96)

The condition (@) ensures (B3)) to be well-defined. From (@3) to (@4) we use the
property Ag > 0 and x, > 0, Vo = 1,...,r. From ([@3) to (@) the symmetry of

A is used. O
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