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Abstract

Non-negative matrix factorization (NMF) is useful to find basis information of

non-negative data. Currently multiplicative updates are a simple and popular way

to find the factorization. However, there is no proofs showing that such updates

converge to a stationary point of the NMF optimization problem. Stationarity is

important as it is a necessary condition of a local minimum. This paper discusses

the difficulty of proving the convergence. We propose slight modifications of ex-

isting updates and prove their convergence. Techniques invented in this paper

can be applied to prove the convergence for other bound-constrained optimization

problems.

1 Introduction

Non-negative matrix factorization (NMF) is useful to find basis information of

non-negative data (Paatero and Tapper, 1994; Lee and Seung, 1999). Given an

n × m data matrix V with Vij ≥ 0 and a pre-determined positive integer r <

min(n, m), NMF finds two non-negative matrices W ∈ Rn×r and H ∈ Rr×m so

that

V ≈ WH.

If each column of V is an object, this method approximates it by a linear com-

bination of r “basis” columns in W . NMF has been applied to many application

areas.
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The usual way to find W and H is by the following optimization problem,

which minimizes the Euclidean distance between V and WH :

min
W,H

f(W, H) ≡
1

2

n
∑

i=1

m
∑

j=1

(

Vij − (WH)ij

)2

subject to Wia ≥ 0, Hbj ≥ 0, ∀i, a, b, j. (1)

Each non-negative constraint is a “bound constraint,” as it relates to only a single

variable. We also note that

n
∑

i=1

m
∑

j=1

(

Vij − (WH)ij

)2
= ‖V − WH‖2

F ,

where ‖ · ‖F is the Frobenius norm.

One may also minimize the (generalized) Kullback-Leibler divergence between

V and WH :

min
W,H

f(W, H) =
n
∑

i=1

m
∑

j=1

(

Vij log
Vij

(WH)ij

− Vij + (WH)ij

)

subject to Wia ≥ 0, Hbj ≥ 0, ∀i, a, b, j. (2)

A commonly used approach to solve NMF optimization problems ((1)) and (2)

is a multiplicative update algorithm by Lee and Seung (2001). Though some pa-

pers (Lin, 2005) pointed out its possible slow convergence, this method is popular

due to the simplicity. Lee and Seung (2001) proved that the update causes the

function value to be non-increasing, but there is no proof yet showing that any

limit point is stationary. While optimization problems here may be non-convex

and finding a global minimum is difficult, the stationarity is still important–it is a

necessary condition of a local minimum. Therefore, existing multiplicative update

algorithms lack sound optimization properties. Gonzales and Zhang (2005) pre-

sented numerical examples where Lee and Seung’s algorithm fails to approach a

stationary point. However, due to possible numerical inaccuracy, we think either

a convergence proof or a non-convergence example is desired. This paper con-

ducts a detailed study about the convergence properties of multiplicative update

methods.

The main difficulty of proving the stationarity comes from the non-negativity

constraints. Though multiplicative updates are close to standard fixed-point
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methods, existing proofs mainly deal with unconstrained situations. Section 2

reviews Lee and Seung’s algorithm for (1) and discuss difficulties of proving the

convergence. Section 3 proposes a modified algorithm, which has the same com-

putational complexity per iteration. We prove that any limit point is stationary.

For the optimization formula (2), Sections 4-5 give two modified algorithms with

convergence proofs. Discussion and conclusions are in Section 6.

2 Multiplicative Update for (1) and Its Conver-

gence Issues

Lee and Seung (2001) proposed the following algorithm to solve (1).

Algorithm 1 Multiplicative update for solving (1)

For k = 1, 2, . . .

Hk+1
bj = Hk

bj

((W k)T V )bj

((W k)T W kHk)bj

, ∀b, j. (3)

W k+1
ia = W k

ia

(V (Hk+1)T )ia

(W kHk+1(Hk+1)T )ia

, ∀i, a. (4)

This procedure is not well-defined if denominators in (3) or (4) are zero. Lin

(2005) discusses conditions avoiding such difficulties:

Theorem 1 (Theorem 1 in Lin (2005)) If V has neither zero column nor row,

and W 1
ia > 0 and H1

bj > 0, ∀i, a, b, j, then

W k
ia > 0 and Hk

bj > 0, ∀i, a, b, j, ∀k ≥ 1.

We hope that any limit point of {W k, Hk} is stationary as any local minimum

must be a stationary point. By definition (W, H) is a stationary point of (1) if it

satisfies the Karush-Kuhn-Tucker (KKT) optimality condition (e.g., (Bertsekas,

1999)):

Wia ≥ 0, Hbj ≥ 0,

∇W f(W, H)ia ≥ 0,∇Hf(W, H)bj ≥ 0,

Wia · ∇W f(W, H)ia = 0, and Hbj · ∇Hf(W, H)bj = 0, ∀i, a, b, j,

(5)
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where

∇Wf(W, H) = (WH − V )HT and ∇Hf(W, H) = W T (WH − V ), (6)

are respectively partial derivatives to elements in W and H .

Lee and Seung (2001) proved the following properties:

1. The function value is non-increasing after every update:

f(W k, Hk+1) ≤ f(W k, Hk) and f(W k+1, Hk+1) ≤ f(W k, Hk+1).

(7)

2. If Hk
bj > 0 and ∇Hf(W k, Hk)bj 6= 0, ∀b, j, then the first inequality in (7) is

strict. Similarly, the second inequality is strict under conditions on W .

Gonzales and Zhang (2005); Lin (2005) pointed out that such properties do not

imply the convergence to a stationary point. Clearly Algorithm 1 intends to have

a fixed-point update: If Hk+1
bj = Hk

bj > 0 and ((W k)T W kHk)bj 6= 0, then

((W k)T V )bj = ((W k)T W kHk)bj implies ∇Hf(W k, Hk)bj = 0,

which is part of the KKT condition (5). A convergence proof of fix-point methods

for minimizing an unconstrained function f(x) usually involves the following steps:

1. f(xk+1) < f(xk) if ∇f(xk) 6= 0.

2. From a limit point x∗, if ∇f(x∗) 6= 0, we can

update x∗ to x∗+1 such that f(x∗+1) < f(x∗). (8)

3. If we have the continuity of f(x) and limk→∞ xk+1 = x∗+1, then

f(x∗) ≤ lim
k→∞

f(xk+1) = f(x∗+1) < f(x∗) (9)

causes a contradiction.

Clearly this framework cannot be directly used here because of two difficulties:

1. Though Theorem 1 proves that W k
ia > 0 and Hk

bj > 0, it is unclear if W ∗
ia > 0

and H∗
bj > 0 or not. Hence in (8) an update from a limit point (W ∗, H∗) to

(W ∗, H∗+1) may not be well-defined.
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2. If H∗
bj = 0, we must prove ∇Hf(W ∗, H∗)bj ≥ 0. This KKT condition is due

to non-negative constraints. The above framework does not reveal how to

have this result.

Gonzales and Zhang (2005) numerically showed that Algorithm 1 may fail to

converge to a stationary point. However, Lin (2005) stated that due to possible

numerical inaccuracy, a mathematical example is desired before drawing conclu-

sions. Thus the convergence issue remains open. In the next section we will

modify Algorithm 1 so that the two difficulties are conquered. Then any limit

point is stationary.

Computational complexity is another concern as we hope that our modifica-

tions are not more time consuming. Here we analyze the cost of Algorithm 1. Lin

(2005) indicated that in (3) one should calculate W (HHT ) but not (WH)HT as

r < min(n, m). Hence the main cost is on calculating (W k)T V and V (Hk+1)T in

(3) and (4), each of which takes O(nmr) operations. Therefore, the complexity

of Algorithm 1 is

#iterations × O(nmr).

3 A Modified Multiplicative Update and Its Con-

vergence

Lee and Seung (2001) mentioned that the two update rules (3) and (4) are the

same as

Hk+1
bj = Hk

bj −
Hk

bj

((W k)T W kHk)bj

∇Hf(W k, Hk)bj , ∀b, j, (10)

W k+1
ia = W k

ia −
W k

ia

(W kHk+1(Hk+1)T )ia

∇W f(W k, Hk+1)ia, ∀i, a. (11)

The algorithm is thus a gradient descent method. For updating Hk
bj,

Hk
bj

((W k)T W kHk)bj

is referred to as the step size. The two difficulties raised in Section 2 can be

reinterpreted as

1. The denominator of the step size may be zero.
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2. If Hk
bj, numerator of the step size, is zero, and the gradient ∇Hf(W k, Hk)bj <

0, Hk+1
bj is not changed. Hence one cannot use the strategy (8) for proving

fixed-point convergence.

Therefore, we propose modifying the step size to:

H̄k
bj

((W k)T W kH̄k)bj + δ
,

where

H̄k
bj ≡

{

Hk
bj if ∇Hf(W k, Hk)bj ≥ 0,

max(Hk
bj, σ) if ∇Hf(W k, Hk)bj < 0.

(12)

Both σ and δ are pre-defined small positive numbers. Similarly we can define W̄ k
ai.

The modified algorithm is as the following:

Algorithm 2 A modified algorithm for minimizing (1)

1. Given σ > 0 and δ > 0. Initialize W 1
ia ≥ 0, H1

bj ≥ 0, ∀i, a, b, j.

2. For k = 1, 2, . . .

(a) If (W k, Hk) is stationary, stop.

(b) Else

Hk+1
bj = Hk

bj −
H̄k

bj

((W k)T W kH̄k)bj + δ
∇Hf(W k, Hk)bj, ∀b, j, (13)

W k+1
ia = W k

ia −
W̄ k

ia

(W̄ kHk+1(Hk+1)T )ia + δ
∇Wf(W k, Hk+1)ia, ∀i, a. (14)

This modified algorithm requires extra operations: To find H̄k (or W̄ k) and

add δ, each takes O(mr2) (or O(nr2)). Then (W k)T W kH̄k costs O(mr2). All are

less less than O(nmr), so the complexity per iteration remains the same.

Due to δ, the new algorithm requires only W 1
ia ≥ 0 and H1

bj ≥ 0 to make

denominators in (13) and (14) positive. This result is proved in the following

theorem:

Theorem 2 If W 1
ia ≥ 0 and H1

bj ≥ 0, ∀i, a, b, j, then

W k
ia ≥ 0 and Hk

bj ≥ 0, ∀i, a, b, j, ∀k ≥ 1. (15)
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Proof. When k = 1, (15) holds by the assumption of this theorem. Using induc-

tion, we assume results are correct at k. Then at (k + 1), we note that the step

size for updating H is non-negative:

H̄k
bj

((W k)T W kH̄k)bj + δ
≥ 0. (16)

We then consider two situations:

Case 1: If ∇Hf(W k, Hk)bj < 0, then using (16),

Hk+1
bj = Hk

bj −
H̄k

bj

((W k)T W kH̄k)bj + δ
∇Hf(W k, Hk)bj ≥ Hk

bj ≥ 0.

Case 2: If ∇W f(W k, Hk)bj ≥ 0, then according to (12),

H̄k
bj = Hk

bj . (17)

As H̄k’s components are not smaller than those of Hk, and by assumption (W k, Hk)

have non-negative elements, we have

H̄k
bj

((W k)T W kH̄k)bj + δ
≤

H̄k
bj

((W k)T W kHk)bj + δ
. (18)

Using (17) and (18),

Hk+1
bj ≥ Hk

bj −
Hk

bj

((W k)T W kHk)bj + δ
∇Hf(W k, Hk)bj

= Hk
bj

((W k)T V )bj + δ

((W k)T W kHk)bj + δ
≥ 0.

The proof of W k+1
ia ≥ 0 is similar. 2

Next we show that from Hk to Hk+1 all components not satisfying KKT con-

ditions are changed and the function value is decreased. In contrast, elements

satisfying KKT conditions remain the same. When W k is fixed, the function

f(W k, H) is the sum of m functions, each of which relates to only one column of

H . It is hence sufficient to consider any column h and discuss the function

f̄(h) ≡
1

2
‖v − Wh‖2, (19)

where v and W = W k are considered as constants.
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Lee and Seung (2001) then consider an auxiliary function

A(h,hk) ≡ f̄(hk) + (h− hk)T∇f̄(hk) +
1

2
(h− hk)T D(h− hk), (20)

where D is a diagonal matrix with

Dbb ≡
(W TWhk)b

hk
b

, ∀b = 1, . . . , r. (21)

They proved that

f̄(h) ≤ A(h,hk) ≤ A(hk,hk) = f(hk). (22)

Minimizing A(h,hk) leads to the update rule (3). In addition, if f̄(hk)b 6= 0,

then hk+1
b 6= hk

b . From (21), this auxiliary function is not well-defined if hk
b = 0.

Now we hope that if hk
b = 0 and ∇f̄(hk)b < 0 (i.e., another situation violating

the KKT condition), then A(h,hk) is well-defined and hk
b can be changed as well.

Therefore, we define a new auxiliary function on non-KKT indices:

Ā(h,hk) ≡ f̄(hk) + (h− hk)T
I ∇f̄(hk)I +

1

2
(h− hk)T

I D̄II(h − hk)I , (23)

where

I ≡ {b | hk
b > 0,∇f̄(hk)b 6= 0 or hk

b = 0,∇f̄(hk)b < 0} (24)

= {b | h̄k
b > 0,∇f̄(hk)b 6= 0},

and

D̄bb ≡

{

((W k)T W k
h̄)b+δ

h̄k
b

if b ∈ I,

0 if b /∈ I.
(25)

Our new auxiliary function looks like a straightforward extension of the original

one, but this modification is not trivial. While we define Ā(h,hk) so that indices

satisfying hk
b = 0 and ∇f̄(hk)b < 0 are taken care of, simultaneously we also need

that Ā(h,hk) leads to the non-increasing property (22). This result is shown in

the following theorem:

Theorem 3 Let σ and δ be given in Algorithm 2 and hk be any column of Hk.

Let I and D̄ be defined as in (24) and (25), respectively. Let I ′ ≡ {1, . . . , r}\I.

Then

arg min
hI

Ā(h,hk) = hk
I − D̄−1

II ∇f̄(hk)I . (26)
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Moreover, hk+1 defined by (13) satisfies

hk+1
I = arg min

hI

Ā(h,hk) and hk+1
I′ = hk

I′, (27)

and

f̄(hk+1) ≤ Ā(hk+1,hk) ≤ Ā(hk,hk) = f(hk). (28)

We further have that the following three properties are equivalent:

1. Inequalities in (28) are strict.

2. ∇f̄(hk)I 6= 0.

3. hk+1 6= hk.

Proof. As D̄II is positive definite, Ā(h,hk) is a strictly convex function of hI ,

and has a unique minimum satisfying

D̄II(h − hk)I + ∇f̄(hk)I = 0. (29)

Thus, (26) follows. This result and the update rule (13) then imply (27).

Now f̄(h) is a quadratic function, so

f̄(h) = f̄(hk) + (h − hk)T∇f̄(hk) +
1

2
(h− hk)T (W T W )(h− hk).

For any h with hI′ = hk
I′,

Ā(h,hk) − f̄(h) =
1

2
(h− hk)T

I (D̄ − W T W )II(h− hk)I . (30)

We use a technical Lemma 1 in Appendix A to show that (D̄−W T W )II is positive

definite. Then (30) is non-negative. With (27), the result (28) follows.

Next we prove the three equivalent conditions on the strict decrease of the

function value. Clearly (26) and (27) imply that ∇f̄(hk)I 6= 0 if and only if

hk+1
I 6= hk

I . Using (30) and

Ā(hk+1,hk) − Ā(hk,hk) = −
1

2
(hk+1 − hk)T

I D̄II(h
k+1 − hk)I , (31)

(28) is strict if and only if hk+1 6= hk. 2

Theorem 3 immediately implies that the function value is non-increasing:
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Theorem 4 If Algorithm 2 generates an infinite sequence {W k, Hk}, then

f(W k+1, Hk+1) ≤ f(W k, Hk+1) ≤ f(W k, Hk), ∀k. (32)

Moreover, one of the two inequalities is strict.

At this stage one may think that we will use (9) to finish the convergence

proof. Instead we first show that Hk and Hk+1 converge to the same point. With

this property, the convergence proof is easier than using (9).

Theorem 5 Assume {W k, Hk}, k ∈ K is a convergent sub-sequence and

lim
k∈K,k→∞

(W k, Hk) = (W ∗, H∗). (33)

Then

lim
k∈K,k→∞

Hk+1 = H∗.

Proof.

Theorem 4 and (33) imply that {f(W k, Hk)} is a bounded decreasing sequence,

which converges to f(W ∗, H∗). Thus

lim
k∈K,k→∞

f(W k, Hk+1) − f(W k, Hk) = 0.

Since f(W k, Hk+1) − f(W k, Hk) is the sum of the difference at each column, we

have

lim
k∈K,k→∞

f̄(hk+1) − f̄(hk) = 0, (34)

where hk is any column of Hk. If this theorem is wrong, there is a component b

in a column hk, a value ǫ > 0, and an infinite subset K̂ of K such that

|hk+1
b − h∗

b | ≥ ǫ, ∀k ∈ K̂.

Using (33), there is an infinite subset K̄ ⊂ K̂ such that

|hk
b − h∗

b | ≤ ǫ/2, ∀k ∈ K̄.

Combining the above two inequalities we have

|hk+1
b − hk

b | ≥ ǫ/2, ∀k ∈ K̄. (35)
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We claim that ∀k ∈ K̄, h̄k
b > 0. Otherwise, h̄k

b = 0 implies hk+1
b = hk

b in (12),

which violates (35). Using (28) and (31),

f̄(hk+1) − f̄(hk) ≤ −
(hk+1

b − hk
b )

2D̄bb

2
≤ −

(hk+1
b − hk

b )
2δ

2h̄k
b

≤ −
(hk+1

b − hk
b )

2δ

2 max(hk
b , δ)

≤ 0.

With (34), taking the limit of the above inequality we have

lim
k∈

¯K,k→∞

hk+1
b − hk

b = 0,

a contradiction to (35). 2

Now we are ready to prove that at any limit point (W ∗, H∗), the matrix H∗

satisfies KKT optimality conditions:

Theorem 6 Assume {W k, Hk}, k ∈ K is a convergent sequence and

lim
k∈K,k→∞

(W k, Hk) = (W ∗, H∗).

We have that

if H∗
bj > 0, then ∇Hf(W ∗, H∗)bj = 0, (36)

and

if H∗
bj = 0, then ∇Hf(W ∗, H∗)bj ≥ 0. (37)

Proof.

By the definition (12),

H̄k
bj = max(Hk

bj , σ) or Hk
bj ,

so the sequence {H̄k
bj}k∈K may have two convergent points H∗

bj or σ. Since the

number of (b, j) is finite, there is an infinite set K̄ ⊂ K such that

H̃∗ ≡ lim
k∈

¯K,k→∞

H̄k exists. (38)

From Theorem 5,

lim
k∈

¯K,k→∞

Hk
bj − Hk+1

bj =
H̃∗

bj

((W ∗)T W ∗H̃∗)bj + δ
∇Hf(W ∗, H∗)bj = 0. (39)

Note that H̃∗
bj ≥ H∗

bj . Hence if H∗
bj > 0, (39) immediately implies (36).
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Next we prove (37). If it is wrong, there is (b, j) such that

H∗
bj = 0 and ∇Hf(W ∗, H∗)bj < 0.

For all k ∈ K̄ large enough, ∇Hf(W k, Hk)bj < 0 and hence

lim
k∈

¯K,k→∞

H̄k
bj = H̃∗

bj = σ.

Therefore,
H̃∗

bj

((W ∗)T W ∗H̃∗)bj + δ
∇Hf(W ∗, H∗)bj > 0,

an inequality contradicting (39). 2

The main convergence statement is in the following theorem:

Theorem 7 Any limit point of the sequence {W k, Hk} generated by Algorithm 2

is a stationary point of (1).

Proof.

Theorem 6 implies the optimality condition on H∗. Using Theorem 5

lim
k∈K,k→∞

(W k, Hk+1) = (W ∗, H∗).

We can then use the same proof in Theorem 6 to have the optimality condition

on W ∗. 2

Earlier work such as (Hoyer, 2002; Piper et al., 2004) adds penalty terms to

increase the sparsity of W and H :

1

2

n
∑

i=1

m
∑

j=1

(

Vij − (WH)ij

)2
+ δ

∑

i,a

Wia + δ
∑

b,j

Hbj. (40)

Then the update rule (3) becomes

Hk+1
bj = Hk

bj −
Hk

bj

((W k)T W kHk)bj + δ
(((W k)T W kHk)bj + δ − ((W k)TV )bj)

= Hk
bj

((W k)T V )bj

((W k)T W kHk)bj + δ
.

For this formulation, the penalty parameter δ can be directly used in Algorithm

2. The update rule is the same as (13), but ∇Hf(W k, Hk)bj involves an additional

term δ.
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4 Minimizing the Divergence: A Modified Al-

gorithm

We switch to another NMF optimization problem (2), which minimizes the diver-

gence. Lee and Seung (2001) proposed the following update rules:

Algorithm 3 Multiplicative update: minimizing the divergence

For k = 1, 2, . . .

Hk+1
bj = Hk

bj

∑n

s=1 W k
sbVsj/(W kHk)sj

eT W k
:,b

∀b, j. (41)

W k+1
ia = W k

ia

∑m

s=1 VisH
k+1
as /(W kHk+1)is

Hk+1
a,: e

∀i, a. (42)

For matrices W and H , we denote W:,b as the bth column, and Ha,: as the ath

row, respectively. In (41) and (42), e is the vector of ones, so eT W:,b is the sum

of W ’s bth column.

Similar to the update rules for (1), (41) and (42) can be rewritten as

Hk+1
bj = Hk

bj −
Hk

bj

eT W k
:,b

∇Hf(W k, Hk)bj , (43)

W k+1
ia = W k

ia −
W k

ia

Hk+1
a,: e

∇W f(W k, Hk+1)ia,

where

∇W f(W, H)ia = Ha,:e −
m
∑

s=1

VisHas

(WH)is

and ∇Hf(W, H)bj = eT W:,b −
n
∑

s=1

WsbVsj

(WH)sj

.

(44)

The update rule (41) involves two O(nmr) operations:

W kHk and

n
∑

s=1

W k
sbVsj

(W kHk)sj

, ∀b, j.

Thus each iteration takes four O(nmr) operations, twice of that in minimizing

the Euclidean distance.

Before further discussion, we redefine the objective function in (2) as

f(W, H) = −
∑

ij:Vij>0

Vij log(WH)ij +
∑

ij

(WH)ij.
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Thus f(W, H) is well-defined if and only if (WH)ij > 0, ∀Vij > 0.

We may try the same strategy in Section 3 to modify the step size in (43) to

H̄k
bj

eT W k
:,b + δ

, (45)

where H̄k
bj can be defined similarly to (12). However, two new difficulties occur:

1. In addition to eT W:,b in the denominator of the step size, (WH)sj = 0 in

the calculation of ∇Hf(W, H) may also cause a zero denominator.

2. For the convergence proof, similar to Section 3, we discuss a function of a

column h:

f̄(h) ≡ −
∑

i:vi>0

vi log(Wh)i +
n
∑

i=1

(Wh)i, (46)

where v and W are constants. This function is different from (19) in Section

3. We need new strategies (e.g, different auxiliary functions) to have the

non-increasing property (22).

To address the first issue, we design the algorithm so that it has the following

property:

If Vis > 0, then (W kHk)is > 0 ∀k and (W ∗H∗)is > 0, (47)

where (W ∗, H∗) is any limit point of the sequence {W k, Hk}. Elements with

Vij = 0 are not a concern as they do not affect the function value calculation.

Moreover, the gradient calculation should then be

∇W f(W, H)ia = Ha,:e−
∑

s:Vis>0

VisHas

(WH)is

and ∇Hf(W, H)bj = eT W:,b−
∑

s:Vsj>0

WsbVsj

(WH)sj

.

(48)

The second issue is difficult. As f̄(h) is not a quadratic function any more,

calculating the difference between f̄(hk) and f̄(hk+1) is complicated. Earlier in

(24) we simultaneously take care of the following two KKT-violating sets:

{b | hk
b > 0,∇f̄(hk)b 6= 0} ∪ {b | hk

b = 0,∇f̄(hk)b < 0}

= {b | hk
b > 0,∇f̄(hk)b 6= 0} ∪ {b | hk

b ≤ σ,∇f̄(hk)b < 0}. (49)
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For elements in the second set of (49), we used h̄k
b to calculate the step size. The

purpose is to avoid h∗
b = 0 and ∇f̄(h∗)b < 0 at a limit point h∗. Now we single

this step out and have two stages:

1. For any element in the second set of (49), we modify it to h̄k
b and ensure the

strict decrease property

f̄(h̄k) < f̄(hk). (50)

2. We then update h̄k to hk+1 by the original formula. Of course we also need

f̄(hk+1) < f̄(h̄k). (51)

Combining (50) and (51) we have f̄(hk+1) < f̄(hk).

To have (50), for Hk we define

Bj ≡ {b | Hk
bj ≤ σ,∇Hf(W k, Hk)bj < 0}, j = 1, . . . , m. (52)

The index k in Bj is omitted for simplification. We then define

H̄k
bj ≡

{

Hk
bj −

∇Hf(W k,Hk)bj

Mk if b ∈ Bj ,

Hk
bj otherwise,

(53)

where Mk is a large value defined as

Mk ≡ 1 + max
j:Bj 6=∅

(
∑

b∈Bj
−∇Hf(W k, Hk)bje

T W k
:,b

)2

∑

b∈Bj

∇Hf(W k, Hk)2
bj · min

i:Vij>0
(W kHk)ij

. (54)

If (W kHk)ij > 0, ∀Vij > 0, then Mk is well-defined. This is related to (47)

discussed earlier. The constant 1 in (54) avoids zero denominator in (53). The

update rule (53) takes the negative gradient direction, so a sufficiently small step

guarantee the strict decrease of the function value. The real difficulty of defining

Mk is that we must have that as k → ∞, Mk does not approach ∞. This property

is needed in the convergence proof.

For W k, we can define similar sets Ai and a large value Nk to have W̄ k. Our

new algorithm is then as the following:
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Algorithm 4 Minimizing the divergence: a modified algorithm

1. Given σ > 0 and δ > 0. Initialize W 1
ia > 0, H1

bj > 0, ∀i, a, b, j.

2. For k = 1, 2, . . .

(a) Update Hk to H̄k by (53).

(b)

Hk+1
bj = H̄k

bj −
H̄k

bj

eT W k
:,b + δ

∇Hf(W k, H̄k)bj , ∀b, j. (55)

(c) Update W k to W̄ k.

(d)

W k+1
ia = W̄ k

ia −
W̄ k

ia

Hk+1
a,: e + δ

∇Wf(W̄ k, Hk+1)ia, ∀i, a. (56)

This new algorithm doubles the cost per iteration as from Hk to Hk+1 it

calculates the gradient twice: ∇Hf(W k, Hk) in (53) and ∇Hf(W k, H̄k) in (55).

However, rarely at a limit point

H∗
bj = 0 and ∇Hf(W ∗, H∗)bj = 0

both occur, a situation referred to as “degenerate” in optimization. Thus if σ is

chosen to be small, in final iterations all Bj are empty sets. Thus H̄k = Hk and

the cost per iteration is the same as that of the original algorithm.

We then prove the convergence of Algorithm 4. The following theorem indi-

cates that all iterations are strictly positive:

Theorem 8 If W 1
ia > 0 and H1

bj > 0, ∀i, a, b, j, then

W k
ia > 0 and Hk

bj > 0, ∀i, a, b, j, ∀k ≥ 1. (57)

The proof is omitted due to the similarity to Theorem 2. The next two theorems

prove the decreasing properties (50) and (51):

Theorem 9 Let h be the jth column of H and v be the jth column of V , respec-

tively. Assume f̄(h) is well-defined. Let

B be any non-empty subset of {b | ∇f̄(h)b < 0}. (58)
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If h is updated to h̄ by

h̄b ≡

{

hb −
∇f̄(h)b

M
if b ∈ B,

hb otherwise,
(59)

where

M >

max
i:vi>0

∑

b∈B

−Wib∇f̄(h)b

min
i:vi>0

(Wh)i

·

∑

b∈B

−∇f̄(h)be
T W:,b

∑

b∈B

∇f̄(h)2
b

, (60)

then f̄(h̄) is well-defined and

f̄(h̄) < f̄(h).

Proof.

The assumption that f̄(h) is well-defined means that (Wh)i > 0 if vi > 0.

With (W h̄)i ≥ (Wh)i, f̄(h̄) is well-defined.

Using the inequality log x ≤ x − 1, ∀x > 0,

f̄(h̄) − f̄(h)

=
∑

i:vi>0

vi log
(Wh)i

(W h̄)i

+

n
∑

i=1

(W h̄− Wh)i

≤ −
∑

i:vi>0

vi

(W h̄− Wh)i

(W h̄)i

+

n
∑

i=1

(W h̄− Wh)i. (61)

We denote ∇f̄(h)b as the difference between two terms:

∇f̄(h)b = ∆b − Γb, where ∆b ≡ eT W:,b and Γb ≡
∑

i:vi>0

Wibvi

(Wh)i

. (62)

We next claim that

(W h̄)i > (Wh)i. (63)

If this claim is wrong,

Wib = 0, ∀b ∈ B, ∀i

implies ∇f̄(h)b = 0, b ∈ B. As B is nonempty from (58), there is a contradiction.

From (63),
∑n

i=1(W h̄ − Wh)i > 0, so we can compare the two terms in (61)
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by the following formula:

∑

i:vi>0

vi

(W h̄− Wh)i

(W h̄)i

/

n
∑

i=1

(W h̄− Wh)i

=
∑

i:vi>0

vi

(W h̄− Wh)i

(Wh)i
(W h̄)i

(Wh)i

/

n
∑

i=1

(W h̄− Wh)i (64)

≥

∑

i:vi>0

vi
(W h̄−Wh)i

(Wh)i

n
∑

i=1

(W h̄− Wh)i

·
1

max
i:vi>0

(W h̄)i

(Wh)i

=

∑

i:vi>0

vi

∑

b∈B

Wib(h̄b−hb)
(Wh)i

n
∑

i=1

∑

b∈B

Wib(h̄b − hb)
·

1

1 + max
i:vi>0

(W h̄−Wh)i

(Wh)i

=

∑

b∈B

(h̄b − hb)Γb

∑

b∈B

(h̄b − hb)∆b

·
1

1 + max
i:vi>0

(W h̄−Wh)i

(Wh)i

. (65)

To have that (61) is less than zero, it suffices to prove that (65) is greater than 1.

This is equivalent to

max
i:vi>0

(W h̄− Wh)i

(Wh)i

<

∑

b∈B(h̄b − hb)Γb
∑

b∈B(h̄b − hb)∆b

− 1. (66)

We further simplify the right-hand-side of (66) to

∑

b∈B(h̄b − hb)(Γb − ∆b)
∑

b∈B(h̄b − hb)∆b

=

∑

b∈B ∇f̄(h)2
b

∑

b∈B −∇f̄ (h)b∆b

. (67)

Using the definition of M in (60),

max
i:vi>0

(W h̄− Wh)i

(Wh)i

≤
max
i:vi>0

(W h̄− Wh)i

min
i:vi>0

(Wh)i

=
1

M
·

max
i:vi>0

∑

b∈B

−Wib∇f̄(h)b

min
i:vi>0

(Wh)i

< (67).

Thus (65) is greater than one and the proof is complete. 2
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Clearly our setting in (53) and (54) satisfies conditions of Theorem 9. From

(60), we use
∑

b∈B

−∇f̄(h)be
T W:,b ≥ max

i:vi>0

∑

b∈B

−W k
ib∇f̄(h)b

so that Mk in (54) has a simpler form. The next theorem discusses the change of

function values from h̄k to hk+1:

Theorem 10 Let h be the jth column of H and v be the jth column of V , re-

spectively. Assume f̄(h) is well-defined. If h is updated to hn by

hn
b = hb −

hb

eT W:,b + δ
∇f̄(h)b,

then f̄(hn) is well-defined and

f̄(hn) ≤ f̄(h). (68)

Moreover, if ∇f̄(h) 6= 0, then the above inequality is strict.

Proof.

The proof that f̄(hn) is well-defined is straightforward, so we directly prove

(68). Using (61),

f̄(hn) − f̄(h)

≤
∑

i:vi>0

vi

(Wh− Whn)i

(Whn)i

+
n
∑

i=1

(Whn − Wh)i

=
r
∑

b=1

(hn
b − hb)

(

eT W:,b −
∑

i:vi>0

Wibvi

(Whn)i

)

=

r
∑

b=1

(hn
b − hb)∆b −

∑

i

vi +

r
∑

b=1

hb

∑

i:vi>0

Wibvi

(Whn)i

= −
r
∑

b=1

hb

∆b + δ
(∆b − Γb)∆b −

∑

i

vi +

r
∑

b=1

hb

∑

i:vi>0

Wibvi

(Whn)i

= −
r
∑

b=1

hb∆
2
b

∆b + δ
+

r
∑

b=1

hbΓb −
r
∑

b=1

δhbΓb

∆b + δ
−
∑

i

vi +
r
∑

b=1

hb

∑

i:vi>0

Wibvi

(Whn)i

.(69)

We have
r
∑

b=1

hbΓb =

r
∑

b=1

hb

∑

i:vi>0

Wibvi

(Wh)i

=
∑

i

vi,
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and

r
∑

b=1

hb

∑

i:vi>0

Wibvi
∑r

a=1 Wiaha
Γa+δ
∆a+δ

=
∑

i:vi>0

vi
∑r

a=1
Wiaha

(Wh)i

Γa+δ
∆a+δ

≤
∑

i:vi>0

vi

r
∑

a=1

Wiaha

(Wh)i

∆a + δ

Γa + δ
(70)

=
r
∑

a=1

ha

∆a + δ

Γa + δ
Γa,

where (70) is from Jensen’s inequality. Therefore,

(69) ≤
r
∑

b=1

hb

(

−∆2
b − δΓb

∆b + δ
+

∆b + δ

Γb + δ
Γb

)

= −
r
∑

b=1

hb

δ(∆b − Γb)
2

(∆b + δ)(Γb + δ)
≤ 0. (71)

Hence (68) holds. If ∇f̄(h)b = ∆b − Γb 6= 0 for some b, then clearly (71) becomes

a strict inequality. 2

What Lee and Seung proved is the case when δ = 0 and eT W:,b > 0. Their

proof does not extend to the case of δ > 0, so we have a very different derivation

here.

From the above two theorems the non-increasing property of function values

follows:

Theorem 11 If Algorithm 4 generates an infinite sequence {W k, Hk}, then

f(W k+1, Hk+1) ≤ f(W̄ k, Hk+1) ≤ f(W k, Hk+1) ≤ f(W k, H̄k) ≤ f(W k, Hk), ∀k.

(72)

Moreover, one of the above inequalities is strict.

We omit the proof as it is similar to Theorem 4. In Section 3 we then have

Theorems 5 and 6 to finish the convergence proof. However, here we follow the

standard fixed-point proof of using (9). In Section 3 the auxiliary function gives

useful information about hk+1 − hk, so we prove Theorem 5 first. Here such

information is however not that obvious.
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Theorem 12 Assume

lim
k∈K,k→∞

(W k, Hk) = (W ∗, H∗). (73)

Then

1.

(W ∗H∗)ij > 0 if Vij > 0. (74)

2. We have

if H∗
bj = 0, then ∇Hf(W ∗, H∗)bj ≥ 0, (75)

and

if H∗
bj > 0, then ∇Hf(W ∗, H∗)bj = 0. (76)

3.

lim
k∈K,k→∞

Hk+1 = H∗. (77)

Proof.

To prove (74) we assume that it is wrong. Then

f(W k, Hk) = −
∑

ij: Vij>0
(W ∗H∗)ij=0

Vij log(W kHk)ij−
∑

ij: Vij>0
(W ∗H∗)ij>0

Vij log(W kHk)ij+
∑

ij

(W kHk)ij

goes to ∞ as k ∈ K, k → ∞. This result contradicts Theorem 11.

Next we prove (75). As the number of possible Bj, j = 1, . . . , m is finite, there

are B∗
j , j = 1, . . . , m used at infinitely many iterations of K. We use K̄ ⊆ K to

denote these iterations. Therefore,

∇Hf(W k, Hk)bj < 0, ∀b ∈ B∗
j , ∀k ∈ K̄ implies ∇Hf(W ∗, H∗)bj ≤ 0, ∀b ∈ B∗

j .

(78)

We further define a subset of B∗
j :

B̄∗
j ≡ {b | b ∈ B∗

j ,∇Hf(W ∗, H∗)bj < 0} ⊆ {b | ∇Hf(W ∗, H∗)bj < 0}. (79)
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If ∪jB̄
∗
j 6= ∅, then using (74) the following limit exists and is denoted as M∗:

M∗

≡ lim
k∈

¯K,k→∞

Mk

= 1 + max
j:B∗

j
6=∅

(

∑

b∈B∗

j
−∇Hf(W ∗, H∗)bje

T W ∗
:,b

)2

∑

b∈B∗

j

∇Hf(W ∗, H∗)2
bj · min

i:Vij>0
(W ∗H∗)ij

= 1 + max
j:B∗

j 6=∅

(

∑

b∈B̄∗

j
−∇Hf(W ∗, H∗)bje

T W ∗
:,b

)2

∑

b∈B̄∗

j

∇Hf(W ∗, H∗)2
bj · min

i:Vij>0
(W ∗H∗)ij

. (80)

Using B̄∗
j and (80) respectively as B and M in Theorem 9, (79) implies (58) and

we can define H̄∗ according to (59). If the result (75) is wrong, then ∪jB̄
∗
j 6= ∅, so

H̄∗ 6= H∗ and f(W ∗, H̄∗) < f(W ∗, H∗). (81)

We then claim that

lim
k∈

¯K,k→∞

H̄k = H̄∗. (82)

This property is proved by considering the following three situations:

1. b ∈ B̄∗
j .

(78) and (53) imply

H̄k
bj = Hk

bj −
∇Hf(W k, Hk)bj

Mk
, ∀k ∈ K̄, (83)

Moreover, (79) and (53) imply

H̄∗
bj = H∗

bj −
∇Hf(W ∗, H∗)bj

M∗
.

Using (80), (73) and taking the limit of (83) we have (82).

2. b ∈ B∗
j \B̄

∗
j .

We have

H̄k
bj = Hk

bj −
∇Hf(W k, Hk)bj

Mk
, ∀k ∈ K̄ and H̄∗

bj = H∗
bj .

Moreover, ∇Hf(W ∗, H∗)bj = 0. Taking the limit and using (73) leads to

(82).
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3. b /∈ B∗
j .

Then

H̄k
bj = Hk

bj ∀k ∈ K̄ and H̄∗
bj = H∗

bj.

Thus (82) also follows.

Using (82),

lim
k∈

¯K,k→∞

f(W k, H̄k) = f(W ∗, H̄∗).

This and (81) then contradicts Theorem 11. Thus (75) holds.

The proof for (76) is easier and similar. We omit it here.

Using (75), (76), and (82), we have

lim
k∈

¯K,k→∞

H̄k
bj = H̄∗

bj = H∗
bj.

Taking the limit of (55), and using (75)-(76), then (77) follows.

Note that δ in the denominator of the step size plays a role. Without it

lim
k∈K,k→∞

eT W k
:,b = eT W ∗

:,b

may cause a zero denominator in taking the limit of (55). 2

Now are have all required properties. The main convergence theorem follows

from a similar proof for Theorem 7.

Theorem 13 Any limit point of the sequence {W k, Hk} generated by Algorithm

4 is a stationary point of (2).

5 Minimizing the Divergence: Update One Row

at A Time

Due to the difficulty of handling the following two modifications together:

H → H̄ and eT W:,b → eT W:,b + δ,

Section 4 considers a two-stage algorithm and proof. This section proposes a differ-

ent approach: two modifications are implemented together, but at each iteration
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only one row of H is updated. Thus for any column h and the corresponding func-

tion f̄(h), only one element is updated per iteration. We will show that proving

the decreasing property is easier.

Given σ > 0, we define H̄ as the following:

H̄bj ≡







min

(

min
i:Wib>0,Vib>0

(Wh)i

Wib
, σ

)

if Hbj ≤ σ and ∇Hf(W, H)bj < 0,

Hbj otherwise.
(84)

A new algorithm is as follows:

Algorithm 5 Minimizing the divergence: updating one row (column) at a time

1. Given σ > 0 and δ > 0. Initialize W 1
ia > 0, H1

bj > 0, ∀i, a, b, j,

2. For k = 1, 2, . . .

(a) Hk,0 = Hk

(b) For t = 1, . . . , r

Hk,t is the same as Hk,t−1 except the tth row is updated by

Hk,t
tj = Hk,t−1

tj −
H̄k,t−1

tj

eT W k
:,b + δ

∇Hf(W k, Hk,t−1)tj , ∀j. (85)

(c) Hk+1 = Hk,r and W k,0 = W k.

(d) For t = 1, . . . , r

W k,t is the same as W k,t−1 except the tth column is updated by

W k,t
it = W k,t−1

it −
W̄ k,t−1

it

Hk+1
a,: e + δ

∇W f(W k,t−1, Hk+1)it, ∀i. (86)

(e) W k+1 = W k,r.

The time complexity per iteration is the same as that of Algorithm 3. From

Hk,t−1 to Hk,t, the operations
∑n

s=1 W k
stVsj, ∀j in calculating ∇Hf(W k, Hk,t−1)tj

takes O(nm) operations. Thus from 1 to r the total is O(nmr), the same as

that in (41). Maintaining W kHk,t can be time consuming, but we can take the

following trick:

W kHk,t = W kHk,t−1 + W k
:,t(H

k,t − Hk,t−1)t,:. (87)
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The second term is a rank-one update involving the tth column of W k and the

change of the tth row of H . Then (87) takes O(nm) operations. From t = 1, . . . , r,

the total is O(nmr), again the same as that in Algorithm 3. Practically as oper-

ations are not matrix-based, this algorithm may be less efficient than Algorithms

3 and 4 when finely tuned numerical linear algebra subroutines are used.

We then prove the convergence of Algorithm 5. All details are similar to those

in Section 4 except the decreasing property. We prove only this key result in the

following theorem:

Theorem 14 Let h be the jth column of H and v be the jth column of V . Assume

f̄(h) is well-defined. From h we update its bth component by

hn
b = hb −

h̄b

eT W:,b + δ
∇f̄(h)b (88)

and have all other elements remain the same. Then f̄(hn) is well-defined and

f̄(hn) ≤ f̄(h). (89)

Moreover, if

hb = 0,∇f̄(h)b < 0 or hb > 0,∇f̄(h)b 6= 0,

then

f̄(hn) < f̄(h).

Proof.

From (84), we have

(Whn)i = (Wh)i −
Wibh̄b

eT W:,b + δ
∇f̄(h)b ≥ (Wh)i,

so f̄(hn) is well-defined.

Using (61),

f̄(hn) − f̄(h)

≤
∑

i:vi>0

vi

(Wh− Whn)i

(Whn)i

+

n
∑

i=1

(Whn − Wh)i

= (hn
b − hb)

(

eT W:,b −
∑

i:vi>0

Wibvi

(Whn)i

)

.
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If hn
b − hb = 0, then of course (89) holds.

If hn
b − hb > 0, then from (88), −∇f̄ (h)b > 0. We consider two cases:

Case 1: eT W:,b = 0. Then the non-negativity of
∑

i:vi>0
Wibvi

(Whn)i
implies (89).

Case 2: eT W:,b > 0. Using the definition of h̄b in (84),

∑

i:vi>0

Wibvi

(Whn)i

eT W:,b

=

∑

i:vi>0

Wibvi

(Wh)i+
−Wibh̄b

eT W:,b+δ
∇f̄(h)b

eT W:.b

>

∑

i:vi>0

Wibvi

(Wh)i+(Wh)i
−∇f̄(h)b
eT W:,b

eT W:,b

=

∑

i:vi>0

Wibvi

(Wh)i

eT W:,b

·
1

1 − ∇f̄(h)b

eT W:,b

= 1. (90)

For the case of hn
b − hb < 0, we then have −∇f̄(h)b < 0. It is impossible that

eT W:,b = 0 as otherwise ∇f̄(h)b ≤ 0 causes a contradiction. Then the remaining

proof is similar to deriving (90). 2

6 Discussion and Conclusions

Though we have proved that any limit point is stationary, it is unclear yet if the

sequence {W k, Hk} has at least one limit point. Showing the existence of limit

points is an interesting future issue.

Though this paper may have only theoretical values, it has two main contri-

butions:

1. Under minor modifications, Lee and Seung’s multiplicative update algorithms

converge to stationary points.

2. Though bound constraints introduce difficulties in proving the convergence,

we invent a technique to control the step size. For multiplicative update

algorithms to solve other bound-constrained problems, we can apply the

same approach to prove the convergence.
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A A Technical Lemma

Lemma 1 Given δ > 0, an r × r symmetric positive semi-definite matrix A with

Aab ≥ 0, ∀a, b, and a vector x with xb ≥ 0, ∀b. Let I be any index set such that

xb > 0 if b ∈ I, (91)

and define a diagonal matrix matrix D̄ with

D̄bb ≡

{

(Ax)b+δ

xb
if b ∈ I,

0 if b /∈ I.
(92)

Then (D̄ − A)II is symmetric positive definite.

Proof.

For any vector v with vI 6= 0,

vT
I (D̄ − A)IIvI

=
∑

a∈I

v2
a

δ

xa

+
∑

a∈I

v2
a

(Ax)a

xa

−
∑

a,b∈I

vavbAab (93)

>
∑

a∈I

v2
a

∑

b∈I Aabxb

xa

−
∑

a,b∈I

vavbAab (94)

=
1

2

∑

a,b∈I

v2
a

Aabxb

xa

+
1

2

∑

a,b∈I

v2
b

Abaxa

xb

−
∑

a,b∈I

vavbAab (95)

=
1

2

∑

a,b

Aab

(√

xb

xa

va −

√

xa

xb

vb

)2

≥ 0. (96)

The condition (91) ensures (93) to be well-defined. From (93) to (94) we use the

property Aab ≥ 0 and xb ≥ 0, ∀b = 1, . . . , r. From (95) to (96) the symmetry of

A is used. 2
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