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Abstract

We propose Bayesian generative models for unsupervised learning with two types of data and
an assumed dependency of one type of data on the other. We consider two algorithmic ap-
proaches, based on a correspondence model where latent variables are shared across datasets.
These models indicate the appropriate number of clusters in addition to indicating relevant
features in both types of data. We evaluate the model on artificially created data. We then
apply the method to a breast cancer dataset consisting of gene expression and microRNA
array data derived from the same patients. We assume dependence of gene expression on
microRNA expression in this study. The method ranks genes within subtypes which have
statistically significant abnormal expression and ranks associated abnormally expressing mi-
croRNA. We report a genetic signature for the basal-like subtype of breast cancer found
across a number of previous gene expression array studies. Using the two algorithmic ap-
proaches we find that this signature also arises from clustering on the microRNA expression
data and appears derivative from this data.

1 Introduction

Rapid developments in genomics and proteomics have lead to the generation of many different
types of data which has in turn stimulated the development of data fusion techniques. Thus,
for supervised learning, a number of different kernel-based methods have been proposed which
enable class assignment based on the use of disparate types of input data. Successful multiple
kernel classification methods have been proposed which use Bayesian methods [15], semi-definite
programming [19], semi-infinite linear programming [26] and column generation methods [4], for
example. In a bioinformatics context, examples have been presented where the classification test
error is demonstrably reduced through the use of multiple types of data, encoded in different
kernels, over the best single data type [14].
Though less investigated, unsupervised learning could be performed using multiple types of
data in certain contexts. In this paper we propose a Bayesian unsupervised method for the joint
modelling of two types of data which have an assumed dependency. The correspondence model
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we propose is inspired by correspondence LDA (Latent Dirichlet Allocation [5, 6]), originally
proposed for the joint modelling of images and their corresponding caption words. We propose
two algorithmic approaches which we call corrML and corrVB. In the experimental Section 3
we first evaluate performance on artificially created datasets with known labelling. This enables
objective assessment of performance using a Jaccard score. We then investigate a breast cancer
study in which microRNA and gene expression array datasets have been derived from the same
patients. We assume there is a directed dependence of gene expression, at least in part, on
microRNA expression. The resultant model is consistent with previous findings and biologically
plausible. An important aspect of the proposed model is that we can establish the appropriate
model complexity, the number of clusters in the data. In addition the model generates density
estimates for the data belonging to the two component datasets.

2 Bayesian Models and Inference

Before describing the model we first introduce some notation: let d denote the sample index
and D the corresponding number of samples. After training, the method represents samples as
a combinatorial mixture over a finite set of soft clusters, with a probabilistic measure given for
assignment of sample d to cluster k. We consider two component datasets which we will label C
and E and we will later assume dependence of E on C. We will use h and g to label the respective
features within datasets C and E respectively, with H and G denoting the corresponding number
of features. Thus, for our breast cancer example in Section 3.2, these features are the labelled
microRNA and genes respectively.

2.1 A Correspondence Model for the joint modelling of two datasets

In this section we introduce a correspondence model to capture an underlying functional inter-
action between component data sets. In line with previous models such as correspondence LDA
[5], the two data sets are assumed to share a common prior distribution and latent variables.
The correspondence model is applicable to the joint modelling of multiple datasets where there
is a directed dependence of one type of data on another. In Section 3.2 we illustrate the model
with a dataset for breast cancer, where we assume gene expression data (denoted E) is poten-
tially dependent on microRNA data (denoted C): we will make reference to this example in
our following discussion of the method to illustate the approach. Thus in this example we have
pairs of samples (Cd, Ed), i.e. both these readings are taken from the same patient, denoted
sample d. We first generate a microRNA-specific measurement Chd. A gene-specific measure-
ment Egd is then generated conditioned on the generated cluster for microRNA sample Cd. The
correspondence function is realized by a latent variable ydg ∈ [1,H] modeling the interaction
between gene expression and microRNA measurements. This probabilistic graphical model is
represented in Figure 1.
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Figure 1: A graphical representation of the generative correspondence model. Chd and Egd are
experimental observations and {α, µ, σ, µ̃, σ̃} are model parameters.

The model is described as follows:

For a given data index d for both E (G×D matrix) and C (H ×D matrix)

1. Prior distributions: θd ∼ DirK(α)

2. Choose Cd:

(a) Choose cluster for Chd: zdh ∼ Multi(θd)

(b) Sample Chd ∼ N (Chd|µ̃hzdh
, σ̃hzdh

) whereN (Chd|µ̃, σ̃2) denotes a normal distribution
with mean µ̃ and variance σ̃2.

3. Choose Ed:

(a) Sample gene correspondence: ydg ∼ Uniform(1, . . . , H)

(b) Sample Egd ∼ N (Egd|µ, σ, z, ydg) = N (Egd|µgzdh
, σ2

gzdh
, ydg = h)

Using the notation Θ = {α, µ, σ, µ̃, σ̃}, the joint distribution for a given index d is then specified
by

p(Cd, Ed, zd, yd, θd|Θ) = p(θd|α)
∏

h

[
p(zdh|θd)N (Chd|µ̃hzdh

, σ̃hzdh
)
]

×∏
g p(ydg|H)N (Egd|µgzdh

, σ2
gzdh

, ydg = h)
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and the overall joint distribution is given by

p(C, E, z, y, θ|Θ) =
∏

d

p(Cd, Ed, zd, yd, θd|Θ) (1)

Extensions to classical Gaussian mixture models (GMM) (e.g. [28]) are possible to handle
multiple data sets in a similar fashion to the mixture model presented here. However, for a
GMM each datapoint Ed is only related to a latent variable zd: this restricts the datapoint to
an association with one cluster only. In contrast, as with Latent Process Decomposition [24] and
several other soft cluster models, in our model each data point Cd is associated with multiple
latent variables {zdh : h ∈ [1, . . . , H]}. This means there is no implicit mutual exclusion of
clusters assumption and Cd can be associated with multiple clusters. As a correspondence model
this also means the data Ed can stochastically share Cd clusters through the correspondence
latent variable ydg,h.

2.2 CorrML: a maximum likelihood approach

Having introduced the models we now focus on approximation inference and parameter esti-
mation for the correspondence model. Let the overall set of latent variables be denoted by
H = {θ, z, y} and model parameters by Θ = {α, µ, σ, µ̃, σ̃}. Then the target of model inference
is to compute the posterior distribution p(H|E, C,Θ) := p(E, C,H|Θ)/p(E, C|Θ) and to learn
the model parameters Θ. Unfortunately, this would involve computationally intensive estima-
tion of the integral in the evidence p(E, C|Θ) and thus we will use variational inference instead
[16] (we will discuss MCMC methods in the Conclusion).
The goal of variational inference is essentially to minimize the KL-divergence between the vari-
ational distribution q(θ, z, y) and posterior distribution p(E, C, θ, z, y|Θ):

arg min
Θ,q∈Q

KL
(
q(θ, z, y)‖p(E, C, θ, z, y|Θ)

)
(2)

Since this expression is not convex, we employ the mean field approach [16]. The derivations
are standard (see Jordan et al [16]) and referred to as variational EM-steps.
We will briefly describe the general methodology. For simplicity, we assume that the latent vari-
ablesH can be split into sub-variablesHi. Then we choose the hypothesis familyQ of variational
distributions q(H) to be a fully factorized family, that is, q(H) :=

∏
i q(Hi). Consequently, for

the variational E-step, we conclude that the variational distribution of latent variables is given
by [16, 5]:

q(Hi) ∝ exp
(
Eq\i

[
p(E,H|Θ)

])
(3)

where q\i represents the distribution
∏

j 6=i q(Hj). For the M-Step, we take the derivative of the
KL-divergence with respective to model parameter Θ and obtain the updates for Θ.
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We now apply the above methodology to the correspondence model and obtain the following
update equations. Let H = {z, θ, y} and assume that the family of variational distributions Q
takes the form:

q(θ, z, y) =
[ ∏

d

q(θd|γd)
][ ∏

d,h

q(zdh|Rdh)
][ ∏

d,g

q(ydg|Qdg)
]
,

where q(θd|γd) is a Dirichlet distribution, q(zdh|Rdh) and
∏

dg q(ydg|Qdg) are multinomial dis-
tributions. γ, R, Q are often called variational parameters and describe sufficient statistics of
the variational distributions q. Equation (11) tells us that the optimal q can be found via the
updates:

q(θ|γ) =
∏

d

q(θd|γd) ∝ Ez,y

[
log p(E, C, θ, z, y|Θ)

]
, (4)

q(z|R) =
∏

d,h

q(zdh|Rdh) ∝ Eθ,y

[
log p(E, C, θ, z, y|Θ)

]
, (5)

q(y|Q) =
∏

d,g

q(ydg|Qdg) ∝ Eθ,z

[
log p(E, C, θ, z, y|Θ)

]
. (6)

In summary, the estimation of the log of the joint distribution yields variational EM -type
updates for variational and model parameters, as follows:

• Variational E-step:

γdk = αk +
∑

h

Rdhk

Rdhk ∝ N (Chd|µ̃hk, σ̃hk) exp
(
Ψ(γdk)−Ψ(

∑

j

γdk) +
∑

g

Qdgh logN (Egd|µgk, σ
2
gk)

)

Qdgh ∝ exp
( ∑

k

Rdhk logN (Egd|µgk, σ
2
gk)

)
.

In the variational M-step we update the model parameters Θ. To this end, we just take
the derivatives of the KL-divergence. The updates are listed as follows:

• Variational M-step:

µ̃hk =
∑

d RdhkChd∑
d Rdhk

, σ̃2
hd =

∑
d Rdhk(Chd − µ̃hk)2∑

d Rdhk
(7)
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µgk =

∑
d,h QdghRdhkEgd∑

d,h QdghRdhk
, σ2

gk =

∑
d,h QdghRdhk(Egd − µgk)2∑

d,h QdghRdhk
(8)

For the updates for α, we use a Newton-Raphson method (see the Appendix of [6]). The
gradient is given by: ∂L

∂αi
= D

(
Ψ(

∑
k αk)−Ψ(αi)

)
+

∑
d

(
Ψ(γdi)−Ψ(

∑
k γdk)

)
, the Hessian

is Hij = D(Ψ′(
∑

k αk)− δijΨ′(αi)). Hence, we have an iterative update procedure:

αnew = αold −
(
H(αold)

)−1 ∂L(αold)
∂α

.

We pursue the above iterative procedure until convergence of the KL-divergence (details are
given in the Appendix A: for discussion of numerical stability issues for the variational E-
step update see Rogers et al [24] section 5.3). Since the latent variable θdk is the k-th cluster
probability of the sample d and its expectation with respective to the posterior distribution q(θd)
is γdk, we can assign data Ed and Cd to cluster k using k∗ = arg maxk γdk, for example. In Section
3, with a knowledge of the means and variances (µ, σ2) and (µ̃, σ̃2), we can use statistical scores
to perform gene-ranking and thus find abnormally expressing genes or microRNA. Following our
earlier practice [24], we can choose the appropriate number of clusters using cross-validation on
the predictive likelihood (see Appendix A for details).
We end this subsection with some comments. The above method can also handle cases where
some values Egd or Chd are missing by omitting corresponding contributions in the M -step up-
dates and corresponding parameters Qdg,k and Rdg,h. In the original correspondence model of
Blei et al [5] clustering was performed over samples. Here we are more interested in clustering
over samples and trying to find a linkage between features (e.g. microRNA and genes). Unfor-
tunately, whereas a direct linkage is calculable in the original correspondence model, p(Egd|Chd)
is not meaningfully calculable here. Thus the model proposed here gives a picture of altered
features within each cluster but does not individually link these: such a direct linkage would
require methods outside the algorithm such as correlation analysis.

2.3 CorrVB: a variational Bayes approach

In the maximum likelihhod approach above, a computationally expensive cross validation study
is required to infer appropriate number of clusters. This involves setting aside a certain percent-
age of the data and then estimating the parameters on the remaining data. A model accuracy
score is then found from the estimated likelihood on left-out data. This variational inference
approach only gives a point estimate of {µ, σ, µ̃, σ̃}. An alternative variational inference is the
variational Bayesian method which allows us to estimate the full posterior distribution in place
of point estimates. Another advantage of a variational Bayesian approach over a maximum
likelihood solution is that an inbuilt mechanism for model comparison can be performed more
easily.
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We now turn our attention to the description of variational Bayesian inference for our correspon-
dence model. To this end, we further regard Ξ = {µ, σ, µ̃, σ̃} as latent variables. Specifically, we
further assume their prior distributions as follows. Let

p(µ|m0, v0) =
∏

g,k

N (µgk|m0, v0), p(µ̃|m0, v0) =
∏

h,k

N (µ̃hk|m0, v0),

and
p(β|a0, b0) =

∏

g,k

Γ(βgk|a0, b0), p(β̃|a0, b0) =
∏

h,k

Γ(β̃hk|a0, b0)

where the Gamma distribution is defined by Γ(x|a0, b0) = xa0−1e
− x

b0 /Γ(a0)ba0
0 .

For fixed α, the variational Bayesian (ensemble learning) method (see e.g. [2]) aims to find the
approximate posterior distribution q ∈ Q to the true posterior distribution p(θ, z, y, Ξ|E, α)),
i.e.

min
q∈Q

KL
(
q(θ, z, y, Ξ)‖p(θ, z, y, Ξ|C, E, α))

)
.

Note, for any variational distribution q(θ, z, y, Ξ), that

log p(E|α) = log
∫ ∑

Z

p(C, E, θ, z, y, Ξ|α)dθdzdydΞ

= Eq

[
log p(C,E,θ,z,y,Ξ|α)

q(θ,z,y,Ξ)

]
+ KL

(
q(θ, z, y, Ξ)‖p(θ, z, y, Ξ|C, E, α))

)
.

(9)

Since p(E) is a constant, our optimization target is equivalently reduced to maximizing the
free-energy lower bound defined by

max
q
FK(q|α) := max

q
Eq

[
log

p(C, E, θ, z, y, Ξ|α)
q(θ, z, y, Ξ)

]
. (10)

If we have no restriction on variational distributions q, then the maximizer of the free energy
bound is trivially the true posterior which is already assumed intractable. Hence, we should
introduce the hypothesis family Q where the variational posterior distributions q(θ, Z, Θ) live
on. For simplicity, we assume that the overall latent variables H = {θ, z, y, µ, σ, µ̃, σ̃} can be
split into sub-variables Hi. Then we choose the hypothesis family Q of variational distributions
q(H) to be a fully factorized family, that is, q(H) :=

∏
i q(Hi). Consequently, in analogy to the

E-step in the ML inference the variational distribution of latent variables is given by [16, 2]:

q(Hi) ∝ exp
(
Eq\i

[
log p(C, E, θ, z, y, Ξ|α)

])
(11)
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where q\i represents the distribution
∏

j 6=i q(Hj). Specifically, the variational posterior distribu-
tion can be represented by their corresponding variational parameters as follows.

q(θ, z, y, Ξ) =
[ ∏

d q(θd|γd)
][ ∏

d,h q(zdh|Rdh)
][ ∏

d,g q(ydg|Qdg)
]

×
[∏

h,k q(µ̃hk|m̃hk, ṽhk)q(β̃hk|ãhk, b̃hk)
]

×
[∏

g,k q(µgk|mgk, vgk)q(βgk|agk, bhk)
]
.

Since the Gamma distribution is the conjugate prior of the Normal distribution, the variational
posterior distribution on the latent variables µ and β are respectively Normal distribution and
Gamma distribution and likewise for µ̃ and β̃. The detailed updates are listed on Appendix B.
We can also update the parameter α together with the latent variables H which is known as
Maximum a Posteriori (MAP) of type II. This inference method can be regarded as a regular-
ization formulation of ML since there is prior distributions on Ξ instead of their point estimates
in ML approach. Specifically, MAP of type II is an EM algorithm by maximizing the lower (free
energy) bound of the log likelihood log p(E|α) with respect to both the latent variables and α:

max
q,α

FK(q|α) := max
q,α

Eq

[
log

p(C, E, θ, z, y, Ξ|α)
q(θ, z, y, Ξ)

]
. (12)

As in the EM updates for ML solution, the updates for the latent variables H is called E-step. In
the M-step, for fixed variational posterior distribution q, we can use Newton-Raphson method
to update it by

αnew = arg max
α
F(q|α).

where, similar to the ML method, the updates for α can be solved by the Newton-Raphson

method αnew = αold −
(
H(αold)

)−1 ∂F(q|αold)
∂α .

3 Experiments

In this section we will numerically validate the proposed model. First we demonstrate that
these models perform as expected on artificially generated data, where the cluster structure and
sample labels are known. In addition, in Section 3.1, we consider an expression array dataset
for S. Cerevisiae which illustrates a biological context in which correspondence models would
be relevant. We compare against three other clustering methods. We then consider the breast
cancer example referred to earlier where gene expression array data is assumed dependent on
microRNA data. The results for CorrVB validate the results for CorrML and the results are
consistent with previous studies.
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3.1 Comparison with other clustering methods

To validate performance we first generated artificial datasets. Data for C was randomly gen-
erated to give three distinct clusters (consisting of 10 samples per cluster with 10 features per
sample). Then the data in E was generated per sample in C, so that it had blocks of fea-
tures positively correlated to features in C. The number of features in E was varied between
N = 2, . . . , 10 times the size of dataset C. Thus each vector in C had from 2 to 10 replicate
features in E with each such feature perturbed by a small Gaussian random deviate addition to
the corresponding feature value in C. Since the sample labels of our artificially generated data
were known, we were able to use the Jacard score to compare our clusterings with the correct
labels and thereby validate our results. The Jaccard score J is used to compare clusterings,
or to compare a clustering with the correct labels. If we let n11 denote the number of point
pairs correctly placed together in the clustering, n01 the number of incorrectly identified pairs
and n10 the number of missed pairs, then J = n11/(n11 + n01 + n10), where 0 ≤ J ≤ 1, with 1
indicating perfectly correct clustering. In Figure 2 we present a bar plot of the Jaccard scores.
Apart from the proposed correspondence model, we also amalgamated C and E and performed
spectral clustering and k-means clustering on the amalgamated dataset. We also evaluated a
novel joint mixture model (JMM), outlined in Appendix C, on this amalgamated dataset. To
create this amalgamated dataset, both datasets were normalised to zero mean, unit variance and
combined into a single column vector per sample. The corresponding Jaccard scores are given
in Figure 2. All of the models perform better for a small N , with the correspondence model
(corrML) consistently outperforming the rest. As N increases, the difference in Jaccard scores
diminishes considerably as it is hard for any of the models to pick up the correct clustering.
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Figure 2: Average Jaccard scores on the 3 cluster artifical dataset (left) and associated confidence
measures (right). CORR is the CorrML algorithm and JMM a joint mixture model outlined in
Appendix C.
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We use the joint mixture model as comparator because, like the correspondence model, a nor-
malised γdk values (normalised over k), can represent the confidence in the assignment of sample
d to cluster k. In Figure 2 we show bar plots of for these confidence measures for both corrML
and JMM. The values for the correspondence model are consistently higher for the correspon-
dence model.
As a second example, we used microarray expression data for S. cerevisiae from a series of
experiments run by Middendorf et al [22]. These authors identified a strong regulating factor,
USV1, which was believed to influence up to 305 other genes in the dataset. In this second
example, the C data now consists of only one gene, USV1, while E comprises the 305 regulated
genes. Though an extreme example, since C only has one value per sample, this is a context
where the application of a correspondence model makes sense since the significance of C is
maintained by this model, but would be lost if we amalgamated the datasets, for example.
The samples were derived from three groups of experiments. The first group corresponded to a
set of 7 heat shock experiments over various time intervals from 0 to 60 minutes. The second
group corresponded to a set of 5 nitrogen depletion experiments over various time intervals
from 12 hours to 5 days and the third group was a set of stationary phase experiments that
were used as a time-zero reference. A PCA plot suggested these were reasonably well defined
groupings. We ran the correspondence and joint mixture models and they correctly classified all
of these groups (J = 1, based on the highest predictive log-likelihood solution after 30 random
initialisations). We also used k-means clustering and spectral clustering on the amalgamated
dataset. Both k-means clustering and spectral clustering can give different results depending on
the start point, hence we investigated performance over 100 restarts. k-means clustering gave
J = 1 with 62 restarts from the 100 with an overall average Jaccard score of 0.81. Spectral
clustering correctly classified (J = 1) 81 from 100 restarts with an average Jaccard score of
0.90. These results are not that surprising since C is considerably smaller than E in size so the
significance of C is lost when the two datasets are amalgamated together.

3.2 Evaluation on a real-life dataset: breast cancer

For the two examples given above we have argued that there are instances where joint modelling
of the data is more appropriate than clustering on an amalgamated dataset. We now extend
the discussion to a real-life example in cancer biology to illustrate the extra biological insights
provided by the correspondence model. We will show that the results which emerge are consistent
with previous findings. In addition, we have not commented so far on model complexity: how
many clusters are present in the data. We will show that the estimated log-likelihood on hold-out
data provides a principled approach to finding the correct model complexity.
We applied our models to a dataset consisting of two types of data derived from the same
patients. The first data set, C, consisted of microRNA expression data from 78 primary human
breast tumors using a bead-based array to identify 133 microRNA found in normal and breast
tumors [7]. The second set of data, E, comprised gene expression data for the same 78 patients.
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In both cases, the data was normalized to zero mean and unit variance.
The first goal was to determine the optimal number of clusters. To do so, we first performed a
cross validation study on the predictive log likelihood using CorrML (see Appendix A). We held
out 8 datapoints as test data and the remaining 70 datapoints were used to construct the model:
performance was averaged over 10 random partitionings of the data into training and test data.
The log-likelihood on the hold-out data was calculated using the model obtained from training
data. Figure 3 (left) shows the corresponding log-likelihood curve for the correspondence mode.
A 5 cluster model appears optimal: if more than 5 clusters are used overfitting occurs and the
log-likelihood falls. To confirm this result we then used the variational Bayes method of section
2.3. In this approach, we do not need hold-out data to estimate a log-likelihood. Instead, a
free energy expression is used. In 3 (right) we give the corresponding curve for the free energy
which likewise gives a peak at 5 clusters indicating that there are at least 5 principal subtypes
of breast cancer.
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Figure 3: Log Likelihood versus number of clusters for maximum likelihood (left) and variational
Bayes correspondence models (right).

As remarked in section 2.2 we can assign sample d to cluster k using k∗ = arg maxk γdk. Based on
available survival data, we can therefore derive Kaplan Meier plots for the 5 indicated subtypes.
These are given in Figure 4.
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Figure 4: Kaplan Meier plots for correspondence (CorrML) and joint mixture models (amalga-
mated data).

We can also derive density estimates, quantifying the distribution of gene expression data values
within subtypes. Using the correspondence model and the mean µgk and standard deviation
σgk of a gene g within cluster k, we present the density distributions for some genes in Figure
5. FOXA1 and FOXC1 have very distinctive distributions for the subtype labelled Cl5: while
FOXA1 underexpresses, FOXC1 is overexpresses this subtype. ERBB2 and GRB7 overexpress
in subtype Cl3: there is a well documented ERBB2+ subtype of breast cancer [27].
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Figure 5: Density distribution plots for four genes using CorrML. Gene expression values are
given at the base of each plot. A sample d is assigned to the cluster k depending on the largest
value of the confidence measure, γdk. The Gaussian distributions are derived from (µgk, σgk) in
equations 8.

Abnormally expressed genes can be identified using a Fisher score |µg1k − µg2k|/
√

σ2
g1k + σ2

g2k),
for example. However, this score tends to overlook genes with large spreads such as FOXC1
in Cl5 of Figure 5. Thus, we used a rank-based Mann-Whitney score instead to find genes
abnormally expressing within one subtype relative to the other subtypes. In Table 1 we list the
20 top-ranked genes by significance for the 5 subtypes resolved by the correspondence model.
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Cl 1 Cl 2 Cl 5 Cl 4 Cl 3
UBE2C COL11A1 GATA3 CTGF GSDML
CDC20 TIMP3 FOXC1 RARRES1 ORMDL3
POSTN AEBP1 STARD10 C1S ERBB2
CYBRD1 COL10A1 MLPH PRKACB STARD3

OGN PLAU TOB1 FBLN2 FGFR4
ADH1B MFAP5 AGR2 TNC ESR1
ADH1A COL12A1 FBP1 ACTA2 PERLD1
CYP4X1 MMP11 GPR160 CR598488 CTXN1
COL10A1 FN1 C10orf116 COL6A1 DQ582071
TIMP3 SULF1 BCAS1 SPON1 GRB7
TK1 COL8A1 DEGS2 ASS1 RAP1GAP

SH3BGRL POSTN XBP1 FLNA C1S
SUSD3 NBL1 CRYAB PKIB U79293
MIA DCN EEF1A2 SBEM PRSS8
CPA3 OGN SLC39A6 abParts C17orf37

PPP1R3C GJB2 KRT19 FLJ42258 MFAP2
SFRP1 THBS2 GALNT6 CRISPLD2 TFF1
ATP1B1 ACTA2 FOXA1 BAMBI CA12
SLC40A1 TBC1D9 GABRP SYT13 TBC1D9

CILP LOXL2 NPNT IGHA2 CAPS

Table 1: Top ranked genes by the Mann Whitney score for each subtype in Figure 4 using
CorrML. Some genes are presented in boldface because they are commented in the text or
feature in Table 2.

Next we need to determine if the genes listed in Table 1 are consistent with previous findings and
if they are biologically relevant. Previously we investigated a number of microarray datasets for
breast cancer and the results in Table 1 are consistent with these previous findings. In Carrivick
et al [9] we investigated four microarray datasets using a Bayesian variational method [24]. This
analysis indicated 4 or 5 principal subtypes of breast cancer. It clearly showed a recognised
ERBB2+, ESR1- subtype of breast cancer typified by elevated expression of ERBB2 and GRB7
[27]. A second subtype has a clear connection with the basaloid subtype of breast cancer [27].
Using a variational Bayes method [1, 3] we investigated 7 datasets for primary breast carcinoma
([27, 29, 31] and a composite dataset of 614 samples [13, 23, 30, 33] which all used the Affymetrix
U133A chip (see [8] for full details). This gave the genetic signature of the basaloid subtype in
Table 2 which has a good match to the signature under CL5 in Table 1 above.
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Sorlie et al [27] West et al [31] Van t’ Veer et al [29] Composite
TFF3 CRIP1 VGLL1 FOXA1
XBP1 XBP1 AGR2 AGR2
FOXA1 FOXA1 TFF3 XBP1
GATA3 CEBPD ESR1 MLPH
B3GNT5 HSPA8 CA12 FLJ20174
GALNT10 GATA3 DSC2 CA12
FBP1 RARA NAT1 GATA3
DSC2 CRYAB EST AK127020
FOXC1 GATA3 CDH3 CA12
FOXC1 FBP1 FOXC1 CA12
FLT1 KRT18 SCUBE2 GATA3
FOXC1 MSN AR AR
GATA3 TCEAL1 Corf7 TFF3
SLC11A3 SCNN1A SLC7A2 ABAT
SLC11A3 NSEP1 GABRP FBP1
MGC27171 CDH3 EST DSC2
NAT1 BF XPB1 GATA3
MRPS14 TFF3 BCMP11 CA12
LOC51313 Hu. clone 23948 VAV3 TFF1
MGC10710 FSCN1 EST GABRP

Table 2: The top-ranked genes distinguishing the basaloid subtype of breast cancer. The com-
posite dataset of 614 samples is taken from [13, 23, 30, 33], which all use the Affymetrix U133A
chip. Repeat gene names in a column derive from multiple probes for that gene.

Furthermore, the genes in Table 1 under CL5 appear biologically significant. The X box-binding
protein, XBP1, is believed to be regulated by FOXA1 [10]. The biological importance of FOXA1
is also apparent from some recent results reported in the literature: a substantial number of
estrogen response elements (EREs) have associated binding sites for FOXA1 [10, 18]. Similarly
GATA3 has associated co-expression with XPBP1 and ESR1 [17]. We also note that these
genes has been previously identified and discussed by other authors [11, 12]. A very similar
story emerges if we use the variational Bayes approach outlined in section 2.3. We likewise find
a cluster with genes FOXC1, AGR2, FOXA1, GATA3, TFF1, MLPH, XBP1, GABRP ranked
in the top 20. Thus the genes highlighted by the method appear to be consistent with previous
studies, consistent between the two correspondence algorithms and biologically significant. The
advantage of our proposed correspondence models is that we now have additional information
about the role of microRNA within given subtypes. In Table 3 we give the top ranked abnormally
expressing microRNA within each subtypes as identified by the correspondence model.
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Cl1 Cl2 Cl3 Cl4 Cl5
miR-505 0.38 miR-137 0.26 miR-152 1.13 miR-30b 0.66 miR-199a 0.62
miR-181c 0.37 miR-133a 0.19 miR-342 0.99 miR-15b 0.63 miR-99a 0.57
miR-142-5p 0.36 miR-9 0.19 miR-29a 0.98 miR-15a 0.60 miR-199b 0.555
miR-185 0.31 miR-9 0.18 miR-331 0.96 miR-30c 0.57 miR-199a 0.547
miR-203 0.31 miR-18a 0.08 miR-214 0.95 miR-195 0.55 miR-214 0.474
miR-200a 0.30 miR-128b 0.07 miR-199b 0.94 miR-16 0.49 miR-100 0.471
miR-183 0.29 miR-138 0.06 miR-126 0.90 miR-21 0.49 miR-130a 0.453
miR-509 0.29 miR-211 0.03 miR-145 0.89 miR-20a 0.45 miR-382 0.429
miR-107 0.29 miR-335 0.03 miR-24 0.89 miR-30a-3p 0.45 miR-125b 0.42
miR-93 0.29 miR-429 0.02 miR-27a 0.88 miR-210 0.44 let-7b 0.40

Table 3: Top ranked microRNA by Mann Whitney score using CorrML.

We also used the Mann-Whitney score to rank microRNA expressions. In Table 3 we give
the mean values, µ̃hk, for the 10 top-ranked microRNA expressions using the CorrML model
clusters. As with this Table, a plot of all microRNA expression values, averaged per cluster,
indicates substantial differences between the microRNA expression profiles between subtypes.
The most aggressive subtype (Cl3 in Figure 4) appears to be linked with extensive abnormally
high expression of microRNA, followed by Cl4 and Cl5 which have small subsets of microRNAs
with abnormally high expression.
We also used the Mann-Whitney score to rank microRNA expressions. In Table 3 we give the
mean values, µ̃hk, for the 10 top-ranked microRNA expressions using the CorrML model clusters.
As with this Table, a plot of all microRNA expression values, averaged per cluster, indicates
substantial differences between the microRNA expression profiles between subtypes. The most
aggressive subtype (Cl3 in Figure 4) appears to be linked with extensive abnormally high ex-
pression of microRNA, followed by Cl4 and Cl5 which have small subsets of microRNAs with
abnormally high expression. A number of highlighted microRNA appear relevant thus, miR-10b
indirectly activates the pro-metastatic gene RHOC by suppressing HOXD10 thus leading to
tumor invasion and metastasis [21], miR-214 can induce cell death resistance through targeting
the PTEN/Akt pathway [32], miR-21 is oncogenic [25] and let-7 is listed as tumour-suppressive
[20].

4 Conclusion

In this paper we have introduced a correspondence model for unsupervised learning with mul-
tiple types of data. Using a predictive likelihood estimate or a free energy term we can find the
appropriate number of clusters in the data. The proposed methods can handle missing values.
In Sections 3.1 we argued that cluster analysis on an amalgamated dataset gave inferior perfor-
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mance compared to the proposed models. In Section 3.2 we gave an extended discussion of an
application to breast cancer biology: the results for the correspondence model appeared consis-
tent with previous findings and biologically plausible. Furthermore, by incorporating microRNA
expression data in addition to gene expression data, the model may give possible new insights
into dysregulation of microRNA expression associated with individual breast cancer subtypes.
The methods proposed here can be extended in various ways. Firstly, we have presented them
for two types of data which are of the same type: continuous valued data (e.g. gene expression
data) which can be approximately modelled using a Gaussian. However, we could equally well
use discrete data and a multinomial or Poisson distribution to model one or both types of data.
We could, of course, also use a variety of MCMC methods. MCMC proved too computationally
intensive for determining the model complexity with the large expression array datasets here.
However, for smaller datasets, MCMC could be usefully deployed.

Acknowledgements: we thank Andrew Teschendorff (University of Cambridge) for assistance
with sourcing and interpreting the breast cancer data of section 3.2. We also thank Simon
Rogers, Mark Girolami and Luke Carrivick for discussions.
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Appendices

A Lower Bound and Predictive Likelihood for CorrML

In this appendix we outline the computation of the KL-divergence and predictive likelihood for
the first correspondence model, CorrML.

Lower bound (negative KL-divergence):

The lower bound for the log likelihood (denoted L) equals the negative KL-divergence:

L =
∫ ∑

z,y

q(z, y, θ) log
p(C, E, z, y, θ|Θ)

q(z, y, θ)
dθ = −KL

(
q(θ, z, y)‖p(θ, z, y|E, C,Θ)

)
.

Estimation of the log joint distribution gives:

L = D
[
log Γ(

∑
k αk)−

∑
k log Γ(αk)

]
−∑

d

[
log Γ(

∑
k γdk)−

∑
k log Γ(γdk)

]

+
∑

d,k

[(
αk − γdk +

∑
h Rdhk

)(
ψ(γdk)− ψ(

∑
j γdj)

)]

+
∑

d,h,k

[
Rdhk

(
logN (chd|µ̃hk, σ̃

2
hk)− log Rdhk

)]

+
∑

d,g,h Qdgh

[(∑
k Rdhk logN (egd|µgk, σ

2
gk)

)− log Qdgh

]
.

Predictive likelihood:

First, marginalizing the joint probability given by equation (1) with respective to z gives

p(C, E, y|Θ) =
∏

d

∫

θd

∑
z

p(Cd, Ed, zd, yd, θd|Θ)dθd

=
∏

d

∫

θd

∏

h

[ ∑

k

θdkN (Chd|µ̃hk, σ̃
2
hk)

∏
g

( 1
H
N (Egd|µgk, σ

2
gk)

)ydg,h
]
dθ.

However, further marginalizing with respect to y will lead to very intensive computation since the
dimension of expression gene g is usually large. Hence, we are forced to consider approximation
of the test likelihood. To this end, we replace the untractable term

∏
g

(
1
HN (Egd|µgk, σ

2
gk)

)ydg,h

by its average ∏
g

( 1
H
N (Egd|µgk, σ

2
gk)

)

Consequently, we have the following approximation to the likelihood
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p(C, E|Θ) ≈
∏

d

∫

θd

∏

h

[ ∑

k

θdkN (Chd|µ̃hk, σ̃
2
hk)

∏
g

( 1
H
N (Egd|µgk, σ

2
gk)

)]
dθ

The integral with respect to θ can be further approximated by a sampling method described in
Blei and Jordan [5].

B Updates for CorrVB

We now list the updates equations for the variational Bayesian inference for the correspondence
model.

• For θ, we have that q(θ|γ) ∝ exp
(
Eq(z,y,Ξ)

[
log p(C, E, θ, z, y, Ξ|α)

])
which yields that

γdk = αk +
∑

h

Rdhk (13)

• For z, we have that q(z|R) =
∏

d,h q(zdh|Rdh) ∝ exp
(
Eq(θ,y,Ξ)

[
log p(C, E, θ, z, y, Ξ|α)

])
.

Consequently

Rdh,k ∝ exp
[
ψ(dk)− ψ (

∑
k γdk) + 1

2 (ψ (ahk) + log bhk)− 1
2

(
(Cdh −mhk)

2 + 1
vhk

)
ahkbhk

+1
2

∑
g Qdghψ(agk) + log bgk − agkbgk

(
(Edg −mgk)

2 + 1
vgk

)]

(14)
with the normalization

∑
k Rdh,k = 1 for any d, h.

• For the latent variable y, from the equation

q(y|Q) =
∏

d,g

q(ydg|Qdg) ∝ exp
(
Eq(θ,z,y,Ξ)

[
log p(C, E, θ, z, y, Ξ|α)

])

we know that

Qdg,h ∝ exp

[
log φgh +

1
2

∑

k

Rdhk

(
ψ(agk) + log bgk −

agkbgk

vgk

(
(Edg −mgk)

2
))]

(15)

with the normalization
∑

h Qdg,h = 1 for any d, g.

• For the latent variables µ̃ and β̃, we have that

q(µ̃|m̃, ṽ) =
∏

h,k

N (µ̃hk|m̃hk, ṽhk) ∝ exp
(
E

q(θ,z,y,µ,β,β̃
)
[
log p(C, E, θ, z, y, Ξ|α)

])
,

21



and and

q(β̃|ã, b̃) =
∏

h,k

Γ(β̃hk|ãhk, b̃hk) ∝ exp
(
Eq(θ,z,y,µ,β,µ̃)

[
log p(C,E, θ, z, y, Ξ|α)

])
.

Consequently,

m̃hk =
m0v0 + (

∑
d CdhRdhk) ãhk b̃hk

ṽhk
, ṽhk = v0 + ãhk b̃hk

∑

d

Rdhk (16)

ãhk = a0 +
1
2

∑

d

Rdhk, b̃−1
hk =

1
b0

+
1
2

∑

d

Rdhk

[
(Cdh − m̃hk)

2 +
1

ṽhk

]
(17)

• For µ and β we have that

q(µ|m, v) =
∏

g,k

N (µgk|mgk, vgk) ∝ exp
(
E

q(θ,z,y,β,µ̃,β̃)

[
log p(C, E, θ, z, y, Ξ|α)

])
,

and

q(β|a, b) =
∏

g,k

Γ(βgk|agk, bgk) ∝ exp
(
E

q(θ,z,y,µ,µ̃,β̃)

[
log p(C, E, θ, z, y, Ξ|α)

])
,

Consequently,

mgk =
m0v0 +

(∑
d,h Qdg,hRdh,k

)
ahkbhk

vgk
, vgk = v0 + agkbgk

∑

d,h

Qdg,hRdh,k (18)

and

agk = a0 +
1
2

∑

d,h

Qdg,hRdh,k, b−1
gk =

1
b0

+
1
2

∑

d,h

Qdg,hRdh,k

[
(Edg −mgk)

2 +
1

vgk

]
(19)

In MAP of type II, we also update the Dirichlet parameter by the following equation

α̂ = arg max


D


ln Γ

(∑

k

αk

)
−

∑

k

ln Γ(αk) +
∑

d,k

(αk − 1)

(
ψ(γdk)− ψ(

∑

k

γdk)

)




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C A Joint Mixture Model

For the joint mixture model (JMM) mentioned in Section 3.1, the functional relationship between
the different data sets is modelled via a jointly clustering Dirichlet distribution. Samples in the
different data sets are generated separately. This model is described as follows:

For a fixed data index d for both E (G×D matrix) and C (H ×D matrix)

1. Prior distributions: θd ∼ DirK(α)

2. Generate Cd:

(a) Choose process for Chd: z̃dh ∼ Multi(θd)

(b) Sample Chd ∼ N (Chd|µ̃hz̃dh
, σ̃hz̃dh

) whereN (Chd|µ̃, σ̃2) denotes a normal distribution
with mean µ̃ and variance σ̃2.

3. Generate Ed:

(a) Choose process for Egd: zdg ∼ Multi(θd)

(b) Sample Egd ∼ N (Egd|µ, σ, z) = N (Egd|µgzdg
, σ̃2

gzdg
)

Using the notation Θ = {α, µ, σ, µ̃, σ̃}, the joint distribution for a given data index d is given
by:

p(Cd, Ed, z̃d, zd, yd, θd|Θ) = p(θd|α)
∏

h

[
p(z̃dh|θd)N (Chd|µ̃hzdh

, σ̃2
hzdh

)
]

×∏
g p(zdg|θd)N (Egd|µgzdg

, σ̃2
gzdg

)

The overall joint distribution is then given by:

p(C, E, z̃, z, y, θ|Θ) =
∏

d

p(Cd, Ed, z̃d, zd, yd, θd|Θ) (20)
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