2004-2009 BT Chair of Information Security* Yvo Desmedt

Reliable and Private Communic

- What is it? Sender and a receiver do not share keys. over a network provided that the number of nodes (or that the network has enough connectivity.
- Potential applications: Prevent Denial of Service, bac being the subject of a death-switch.
- Results achieved on:

- 1. Ethernet like networks: solved a 13 year open problem (by Franklin-Wright) 2. Point-to-point networks: generalised Kurosawa-Suzuki Eurocrypt 2008 result 3. Almost Secure Message Transmission (slightly relaxed security): more efficient protocols
- 4. The directed graph case: introduced the problem, found conditions for special case.
- 5. Other results: showing others wrong, color adversary structures.
- Illustrative examples:

• Publications at: Africacrypt 2010, Asiacrypt 2010 & 2011, ICITS 2009, IEEE IT 2008, ISAAC 2005

Secret Sharing and Threshold cryptography

- What is it? Secret sharing allows backup of data in a reliable and private manner.
- Potential applications: Cloud storage, distributed security
- Results achieved on:
- 1. threshold cryptography: three new schemes, one based on pairings
- 2. Secret sharing: linking bounds to combinatorics
- Publications at: FC 2006, ICITS 2008, ISC 2007

Voting

• Plurality voting is not optimal:

	Voter 1	Voter 2	Voter 3	Voter 4	Voter 5
Most preferred candidate:	A	A	B	В	C
Second preferred candidate:	B	B	C	C	B
Least preferred candidate:	C	C	A	A	A

- Results achieved on:
- 1. Equilibria of plurality voting with abstentions, e.g., is sequential voting better?
- 2. Hacking Helios 2.0, an Internet voting scheme using lots of cryptography

Department of Computer Science, University College London

cation	3.A
They want to privately and reliably communicate (or edges) the adversary can control is limited and	4. O • Put
ckup in case public key is broken, prevent the UK	4 • Wh
	f(x)

- \mathbf{b}

A new Internet voting scheme: submitted Other results: (a) Keeping the tally private, (b) Klein bottle routing. ublications at: ACM EC 2010, EVT/WOTE 2010, ICISC 2005, ISC 2005.

Secure multiparty computation

'hat is it? Parties P_1, P_2, \ldots, P_n knowing respectively x_1, x_2, \ldots, x_n want to privately compute (x_1, x_2, \ldots, x_n) , i.e., nothing leaks more than what follows from the output. • Potential applications: Private cloud computing, privacy in general. • Results achieved on:

1. Using black-box groups to perform secure multi-party computation 2. Reduce the use of VSS to make it more practical: submitted 3. Asymmetric Trust and its applications in secure multi-party computation • Some details:

Sun-Yao-Tartary (2008) made a link with perturbation theory. • Publications at: Asiacrypt 2007, Crypto 2007, Journal of Cryptology (accepted).

Critical infrastructures

• Results achieved on, e.g.:

1. Robust Operations, i.e., how to make a robust variant of an operational research problem? 2. Identifying critical infrastructures, e.g., using AND/OR graph models 3. Analysing concrete vulnerabilities, e.g., potential weaknesses of Internet Banking 4. Anti-jamming networks and constructing resilient data networks • Publications at: COCOON 2005, ICITS 2011, IPL 2011, ISORA 2005

Other

• Results achieved on:

1. Privacy in social networks, e.g., privacy in Facebook versus Google+ 2. Efficient and proven secure hybrid encryption

3. Efficient key stream authentication using combinatorics

4. Key distribution, e.g., for conferences using pairing based cryptography, or non-malleable while robust against active adversaries

5. Cryptanalytic study, e.g., of E0, Luffa, Rabbit Shannon Cipher • Publications at: CANS 2008, CCS 2011 (poster), Crypto 2004, FC 2007 & 2008, ICISC 2010, Inscrypt 2010, IPL 2005, ISC 2006 & 2010, Journal of Cryptology 2010, ProvSec 2008, RSA 2007

