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Abstract. We propose a new nonrigid registration method based on
a unified framework of encoding spatial information in entropy mea-
sures. The encoding of spatial information improves nonrigid registration
against the problems caused by intensity distortion where the registra-
tion using traditional mutual information (MI) is challenged. Using this
encoding framework, we derive the new registration method, spatial in-
formation encoded mutual information (SIEMI). SIEMI registration has
a similar computation complexity as the registration using traditional MI
measures, but works significantly better in the nonrigid cases. We val-
idated the registration method using brain MRI and dynamic contrast
enhanced MRI of the liver. The results showed that the proposed method
performed significantly better than the normalized mutual information
registration.

1 Introduction

Mutual information (MI) [1,2,3] is one of the most widely studied techniques
for biomedical image registration in the last fifteen years. The registration using
MI measures, including the normalized forms such as the normalized mutual
information (NMI) [4], has shown good robustness and wide applicability [5,6].
However, several recent works [7,8,9,10] showed that the traditional MI measures
may not be appropriate in many situations for nonrigid registration.

The first common situation happens in registering in vivo medical images,
which have intensity non-uniformity (INU), also referred to as intensity distor-
tion or intensity bias. This INU results in the same tissue in different positions
having different intensity values, and thus some regions of the tissue having dif-
ferent intensity classes. Since patterns of INU fields vary in different images, the
inconsistency of intensity classes of one tissue in two images will lead to large
errors in nonrigid registration. Fig. 1 shows an example of registering two ini-
tially aligned brain MR images, where one contains INU while the other does
not. The nonrigid registration using NMI measure [4] generates a large erroneous
resultant deformation field. Fig. 1 (d) shows a more promising result using the
proposed method which will be described later. This method demonstrates a
much better robustness against the INU field.
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(a) (b) (c) (d)

Fig. 1. (a) T1-weighted brain image without intensity non-uniformity (INU) and
(b) the INU field computed from the subtraction of (a) and the image with INU.
(c) is the resultant deformation field of registering (a) to the image with INU
using NMI measure and (d) is the result using the proposed registration method.
The color bar indicates the displacement magnitude in (c) and (d). Brain data
downloaded from BrainWeb (www.bic.mni.mcgill.ca/brainweb/)

Other situations include the nonrigid registration of dynamic contrast en-
hanced MRI [11], perfusion MRI [12], and multi-modality images such as the
CT-MR registration application [9]. It is still challenging to employ traditional
MI measures for the nonrigid registration of these tasks.

To tackle the problems, Studholme et al. and Loeckx et al. proposed to
consider the spatial coordinate as an extra channel of information and combine
this information with the MI measure such as the regional mutual information
(RMI) [7] and the conditional mutual information (cMI) [8,9]. The cMI measure
was shown to be equivalent to the derived measure of RMI, referred to as RMI′

in [7], by using a different Parzen window estimation function for the spatial
variable [9,10]. Loeckx et al. further showed that the cMI registration performed
better than the registration using the original RMI similarity form [9].

In this work, we extend the generalized weighting scheme for spatial informa-
tion encoding in the previous work [10] to propose a new registration method.
The weighting scheme is to vary the contribution of pixels to a set of joint
histogram tables which are associated with a spatial variable. The registration
measure, spatial information encoded mutual information (SIEMI), is a vector
consisting of a set of entropy measures computed from these joint histogram
tables.

The rest of the paper is organized as follows: Section 2 presents the SIEMI
method; Section 3 provides the validation experiments, where discussion is also
included; finally, our conclusions are given in Section 4.

2 Method

2.1 Definition of terms and notations
Intensity distribution: Intensity distribution describes the appearance

and contrast of organs or tissues presented in a medical image.
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Intensity class: We assume that the imaged intensity values in our reg-
istration images, such as MRI data, are related to the tissue types. Therefore,
in an image scanned from ntis types of tissues, ntis intensity values should be
presented. However, the intensity of one tissue normally has an intensity range
in in vivo scans due to the non-uniformity of tissue property and noise. Also,
a number of different tissues, referred to as a class of tissues, may have their
intensity ranges overlapped. Hence, the intensity distribution is presented as nC
classes of intensity ranges, referred to as intensity classes.

Global intensity class linkage: The intensity class correspondence, re-
flecting the true joint intensity distribution of the two images, is normally un-
known before registration due to the misalignment in local regions. By assuming
the two images initially close to a true match and considering the local mis-
alignment as noise, we can estimate this correspondence using the approximated
joint intensity distribution from the global intensity information of the two im-
ages [13]. This global information, providing important guidance for correcting
misaligned local regions, is referred to as global intensity class linkage.

Spatial variable s and local region Ωs: Spatial variable s is an index
of a set of spatial positions, s = 1 . . . ns. The positions are defined according to
the nonrigid transformation parameters. For example, in fluid registration each
pixel (or voxel) can be defined as a value of spatial variable, while in free-form
deformation (FFD) registration each control point can be defined as a value of
s. It is commonly to define a local region Ωs for s such as the user-defined cubic
regions [7] or the local support volume of the FFD control point [8].

2.2 The framework of spatial information encoding

Spatial information encoding is achieved by varying the contribution of pixels
to a set of joint histogram tables {Hs}, from which a set of entropy measure
{Ss} are computed, as illustrated in Fig. 2. The contribution is according to the
spatial coordinate of the pixel and value of s.
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Ωs 

(s, θs) Ws(x) 

Fig. 2. The spatial variable s, associated local region Ωs, transformation pa-
rameter θs, weighting function Ws(x), joint histogram table Hs, and entropy
measure Ss. The spatial information encoded similarity measure is the vector
representation of {Ss}.
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Let Ir be the reference image, ITf be the transformed floating image by trans-
formation T , θs be a parameter of T , and Ωs be the user-defined local region.
Both θs and Ωs are associated with the spatial variable s. To compute Ss, we can
estimate the local histogram using the information solely within the local region
Ωs, referred to as local information. However, the size of the local region Ωs may
be very small compared to the global volume Ω, which potentially leads to two
problems. One is that the estimation of local probability distribution functions
(PDFs) using a small number of sample points may lose the statistical power of
the computed local entropy measure Ss [14,15]. The other is that this estimation
of local PDFs may lose the global intensity class linkage [16,17]. Both of the two
problems will result in reduced registration robustness using the local entropy
measures.

To deal with the limitation of solely using local information, Likar and Pernus
proposed to combine the local estimation with the global estimation [15]:

ps(r, f) = wp
L

+ (1− w)p
G
, (1)

where p
L

= 1
N
L

∑
x∈Ωs ωr(Ir(x))ωf (ITf (x)) is estimated from Ωs and p

G
=

1
N
G

∑
x∈Ωs ωr(Ir(x))ωf (ITf (x)) is estimated from the complementary volumeΩs,

referred to as the global information; ωr and ωf are Parzen window estimation
functions and N

L
and N

G
are the normalization factors. The weighting is set as

w = N
L

N
L

+N
G

, proportional to the volume size of the local region Ωs [15].
To assess the weights of each sample point x ∈ Ω, Eq. (1) is rewritten:

ps(r, f) =
1
N

∑
x∈Ωs

ω(◦)wN
N
L

+
1
N

∑
x∈Ωs

ω(◦) (1− w)N
N
G

, (2)

where ω(◦) = ωr(Ir(x))ωf (ITf (x)) and N = N
L

+N
G

. The weighting function is
then given by:

Ws(x) =

{
wN
N
L
, x ∈ Ωs

(1−w)N
N
G

, x ∈ Ωs
. (3)

By using the setting in [15], the weights of all points x ∈ Ω are then the same,
wN
N
L

= (1−w)N
N
G

= 1, resulting in the same value for all computed local measures,
S1 = S2 = · · · = Sns , and no spatial information being encoded in {Ss}.

Therefore, we can use w ∈ [N
L
/N, 1] to generalize the weighting scheme

[10]. The weighting function is illustrated as the red dash-line in Fig. 2. This
scheme has the mechanism of maintaining the global intensity class linkage as
well as differentiating local regions in the computation of {Ss}. However, the
disadvantage is that all sample points within the local region Ωs have the same
weight, wN/N

L
, regardless their different spatial coordinates.

Therefore, we propose to generalize the weighting scheme such that the value
of Ws(x) should be monotonically decreasing with respect to the distance be-
tween x and the coordinate of s. This weighting function is illustrated as the
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blue dash-line in Fig. 2. The spatial variable associated joint histogram table is
then given by:

Hs(r, f) =
∑
x∈Ω

ωr(Ir(x))ωf (ITf (x))Ws(x) . (4)

Accordingly, the joint PDF is computed as ps(r, f) = 1
Ns
Hs(r, f), where Ns =∑

r,f Hs(r, f) is the normalization factor. Given s = x, the estimated PDF turns
out to be similar to the local PDF in [13].

The derivative of Hs(r, f) with respect to a transformation parameter θt is
given by:

∂Hs(r, f)
∂θt

=
∑
x∈Ωt

∂ωf (ITf (x))
∂θt

ωr(Ir(x))Ws(x) , (5)

where Ωt is the local support volume of θt. The computation of ∂ωf (ITf (x))/∂θt
is the same as that in the traditional MI registration [1,2,3]. The computation
complexity of Eq. (5) is O(|Ωt|). Finally, the computation for marginal histogram
tables and PDFs is similar, based on which MI or the normalized measures and
their derivatives are computed.

2.3 Spatial information encoded mutual information

Similarity measure: The set of entropy measures {Ss} is computed from
their associated PDFs. This computation results in a vector measure composed
of {Ss} between the two registration images, as Fig. 2 shows. We refer to this
measure as the spatial information encoded mutual information (SIEMI):

SIEMI = {S1,S2, · · · ,Ss, · · · ,Sns}
T
, (6)

To present a scalar value of SIEMI, one scheme is to compute the weighted
sum of {Ss}:

SIEMIsum =
∑
s

p(s)Ss , (7)

where p(s) = Ns/
∑
t(Nt).

Alternatively, since SIEMI is a vector, the squared magnitude of the vector
can be computed as a scalar similarity measure:

SIEMImag =
∑
s

(
Ss
)2
. (8)

The entropy measure Ss can be the joint entropy, MI, or the normalized
forms such as NMI [4] and entropy correlation coefficient [2]. Studholme et al.
[4] showed that NMI was robust to the changes in overlap volumes. Therefore,
we use NMI for the implementation of Ss in this work. Noted that the results of
using other MI forms may not be significantly different.
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Driving forces and optimization of SIEMI: Given a nonrigid transfor-
mation parameter θs, the steepest ascent direction of registration using the scalar
SIEMI is given by the derivative of SIEMI in Eq. (7) or Eq. (8) as follows:

F SA(θs) ≡
∂SIEMI
∂θs

=
∑
t

∂C(St)
∂θs

,where C(St) is (St)2 or p(t)St .
(9)

The computation complexity of Eq. (9) is O(ns · |Ωs|), where ns is the number
of the spatial variable values. However, this computation may be practically too
expensive when ns is large, compared to only O(|Ωs|) in standard MI.

Since SIEMI is a vector of {Ss}, we propose to optimize each Ss with respect
to θs using a direction of local ascent, resembling a greedy strategy:

FLA(θs) ≡ ∂Ss/∂θs . (10)

The computation complexity of Eq. (10) is now significantly reduced to O(|Ωs|),
which compares with O(ns|Ωs|) of Eq. (9). This local ascent optimization as-
sumes that the optimization of each Ss would not deteriorate that of others,
and thus would globally converge. The convergence of local ascent optimization,
along with the comparisons with using global ascent optimization for SIEMIsum,
SIEMImag, and NMI, will be validated in Section 3.1.

2.4 Choices of Ws(x) and unifying existing works

The spatial variable s is defined according to the nonrigid transformation model
used in the registration. In this work, we employ the free-form deformations
(FFDs) [5]. The value of s is defined to the index of the control points of FFD
grids, and Ωs is the local support volume of the control point.

Spatial information encoding is determined by the weighting scheme Ws(x).
By using constant value such that Ws(x) = 1, the computed measure Ss is
identical to traditional entropy measure such as the MI or NMI.

By using the boxcar function, the 0-order B-spline function β0:

Ws(x) =
{

1, if x ∈ Ωs
0, otherwise (11)

the joint PDFs associated with s, ps(r, f), become the regional PDFs and the
corresponding SIEMIsum is then given by:

SIEMIsum|Ws=β0,Ss=MI =
∑
s

p(s)
∑
r,f

ps(r, f) log
ps(r, f)

ps(r)ps(f)
, (12)

which is identical to the derived RMI′ measure proposed in [7].
By using the cubic B-spline function β3 such that:

Ws(x) = β3
∆1

(x1 − φs1)β3
∆2

(x2 − φs2)β3
∆3

(x3 − φs3) , (13)
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the joint PDFs associated with s become the conditional PDFs p(r, f |s), where
x = [x1, x2, x3]T is the sample point’s coordinate, [φs1, φs2, φs3]T is the coordi-
nate of the s corresponded FFD control point, and [∆1, ∆2, ∆3] are the FFD
spacing in each dimension. SIEMIsum then becomes the cMI in [8,9].

In this study, we use the Gaussian kernel function forWs(x), in 3D as follows:

Ws(x) = Ae
−
(

(x1−φs1)2

2σ2
1

+
(x2−φs2)2

2σ2
2

+
(x3−φs3)2

2σ2
3

)
, (14)

where A = 1 and [σ1, σ2, σ3] are the standard deviations. In practice, the locality
of the Gaussian function is set to the volume within three times the standard de-
viation. Therefore,Ws(x) using Eq. (14) is similar to the cubic B-spline function
in Eq. (13), given σi = 2

3∆i, where ∆i is the FFD spacing in each dimension.
The amount of information used in the computation ofHs in Eq. (4) is related

to the non-zero-value domain of Ws(x). More information corresponds to better
registration robustness, while more locality means higher achievable registration
accuracy. A strategy to combine them is to start the registration using Ws(x)
with a large non-zero-value domain such as the global space and hierarchically
decrease the domain. This hierarchy scheme can be related to the multiresolution
FFD registration [18] such as by setting the none-zero-value domain to the local
support of the corresponding control point [8]. In this study, we set σi = l∆i to
regularize the locality ofWs(x) in the multiresolution FFDs [18]. In this scheme,
the information used in the computation of Hs can be extended to (1.5l)d times
of the local support volume of the control points, where d is the dimension. We
use l ∈ [1, 2] in our experiments, where the smallest FFD spacing is 10 mm and
the minimal number of sample points for the construction of histogram tables
can be easily met [19].

We notice that there are applications which may need much finer spacing
FFD registration. For this situation, we need to define [σ1, σ2, σ3] of Eq. (14) to
be large enough to guarantee enough sample points for the construction of Hs,
such as σi=10mm when l∆i<10mm.

It should be noted that the computation complexity of the optimization using
Eq. (10) is not significantly increased along with the increased value of l. This
is because it is determined by the size of local support volume as Eq. (5) shows.

3 Experiment

3.1 Global steepest ascent VS local ascent optimization

Data: This experiment uses 2D brain MR T1 images, downloaded from
BrainWeb to demonstrate the difference of SIEMI registration using the steepest
ascent optimization, Eq. (9), and the local ascent optimization, Eq. (10). The
steepest ascent optimization was applied to NMI, SIEMI using sum of {Ss},
referred to as SIEMISA

sum, and SIEMI using magnitude of {Ss}, referred to as
SIEMISA

mag. The SIEMI registration using the local ascent optimization is re-
ferred to as SIEMI.
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Table 1. The registration accuracy, given by warping index (WI), of the four
schemes. The table also presents the p-values of the t-test between the registra-
tion accuracy of SIEMI and that of the other three methods, and the ratios of
computation time (RCT) of the other three methods to that of the SIEMI.

NMI SIEMISA
sum SIEMISA

mag SIEMI

WI (0.01 mm) 23± 0.9 11± 0.6 11± 0.5 11± 0.7
P-value <0.0001 0.462 0.662 —
RCT 0.60 160 144 1

One of the registration images did not have INU while the other had a 20%
field. The initial transformations, regarded as the ground truth for the regis-
tration accuracy assessment, were combinations of scalings and FFD transfor-
mations [5] with 45 × 54 mm mesh spacing. Six different scaling values were
chosen between [0.95, 1.05] and the FFD transformations moved the central
control points either 15 mm or -15 mm at each direction, together generating 24
initial transformations. The warping index, root mean square (RMS) residual dis-
placement error, of the initial transformation fields ranged between [3.47, 4.63]
(3.90± 0.49) mm.

The registration used a series of concatenated isotropic FFDs with two levels
(spacings 20mm and 10mm) [18,20]. The registration firstly employed 100 itera-
tion steps for the 20 mm FFD level, and then 40 steps for the 10 mm FFD level.
The warping index was calculated every 10 iteration steps.

Results: Fig. 3 (left) illustrates the mean warping indexes by the four reg-
istration methods. They are displayed in every 10 iteration steps. The mean
accuracy is also displayed in Table 1 where the evidently small standard devia-
tion values, all less than 0.01 mm, indicate the consistent performance of each
registration scheme in the test cases. It is evident from Table 1 that NMI regis-
tration needed the least computation time, but it achieved a much worse warping
index than the other three registration schemes.

For the SIEMI registration schemes, the computation of each iteration step
in SIEMI was more than 100 times faster than those of SIEMISA

sum and SIEMISA
mag,

as Table 1 shows. The optimization of SIEMI is shown to converge twice to three
times slower than SIEMISA

sum and SIEMISA
mag (Fig. 3 (left)), but it is still much

faster in overall. Furthermore, there was no statistically significant difference in
terms of registration accuracy between the use of the local ascent optimization
and that of the two global steepest ascent schemes, as the p-value of the two
tailed, paired t-test between SIEMI and SIEMISA

sum was 0.462, and that between
SIEMI and SIEMISA

mag was 0.662.

3.2 Performance to intensity non-uniformity

Data: This experiment employs 3D brain MR images to study the perfor-
mance of NMI and SIEMI registration in different magnitudes of INU fields.
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Fig. 3. The mean warping index of the 24 cases in every 10 iteration steps (left)
and the mean and median values of the registration errors by SIEMI and NMI
in the different intensity non-uniformity fields (right).
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Fig. 4. The Box-and-Whisker diagrams of 48-case registration errors by SIEMI
(left) and NMI registration (right) in different intensity non-uniformity fields.

The MR images were downloaded from the BrainWeb with 3% noise. Eleven
levels of INU fields were generated, from 0% to 20%, using the equation B =
a1x

2 + a2y
2 + a3z

3 + a4xy + a5xz + a6yz + a7x + a8y + a9z, where [x, y, z] is
the pixel coordinate, and {ai} are random values in [−1, 1]. The magnitudes of
the fields were normalized to the percentage of the intensity range of the origi-
nal image. Forty-eight deformation fields were generated using the same method
employed in Section 3.1, where the FFD mesh used in this experiment was 3D
and with 45 × 54 × 45 mm spacing. These initial deformations, warping index
ranging from 0.31 mm to 6.27 mm (2.67 ± 1.49 mm), were used to generate 48
registration cases for each level of the INU fields.

SIEMI and NMI registration used the same transformation model, a series of
concatenated isotropic FFDs with two levels (spacings 20mm and 10mm) [18,20].



10 Xiahai Zhuang, David J. Hawkes, Sebastien Ourselin

Fig. 5. One example of the simulated dynamic contrast enhanced MR data in
15 time points. The first one from the left of the upper row is the image without
enhancement. The images from the second of the upper row to the second row
are the dynamic enhanced data from time point one to fifteen.
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Fig. 6. The registration results, warping indexes, of the four simulated dynamic
contrast enhancement MRI cases by SIEMI and NMI registration.

Results: Fig. 4 plots the Box-and-Whisker diagrams of the warping index
of the 48 registration cases by NMI and SIEMI in each level of INU fields, and
Fig. 3 (right) shows the mean and median numbers of them. The two registra-
tion methods achieved similar warping indexes in most of the cases in 0% INU
level, but NMI had three outlier cases whose errors were larger than 0.5 mm. In
the cases of images with INU, SIEMI registration performed with a fairly con-
sistent mean warping index with respect to different levels of INU magnitudes,
while NMI registration had radically increased registration errors when the INU
became strong.

3.3 Application to dynamic contrast enhanced MRI

Data: This experiment employs four sets of simulated DCE MRI data where
the intensity values during flush-in of the contrast agent varied as a function of
time and positions. Fig. 5 shows an example whose results are plotted in Fig. 6
(c). The DCE MRI data had simulated free-breathing motions which deformed
the images. The four datasets had different magnitudes of motions. The images
from different time points were all registered to a reference image, the MR image
without enhancement, to correct the deformations in the liver. We calculated the
warping index on the liver region.
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Results: Fig. 6 plots the registration results. SIEMI performed evidently
better than NMI, particularly between time points 5 to 10 when the contrast
agent started to enter the liver region and changed the intensity values. The
results also show that during the time points 1 to 5 when the contrast agent had
not yet arrived the liver to change the intensity, NMI achieved similar warping
indexes as SIEMI. From time point 10 to 15, the contrast agent in the liver was in
late enhancement and the intensity distributions were more uniform. Therefore,
NMI started to perform better than in the time points of enhancing. However,
the accuracy was still not as good as that of SIEMI because there was still INU
in the data due to the enhancement.

4 Conclusion

We have presented a new method, spatial information encoded mutual infor-
mation measure (SIEMI), for nonrigid registration. This registration approach
is based on the general spatial information encoding framework. We achieved
the encoding using a weighting scheme to differentiate the contribution of pixels
to the set of entropy measures which are associated with the spatial variable.
The similarity measure of SIEMI is a vector which consists of the set of entropy
measures. To efficiently search the optimum of this measure, we proposed to use
the local ascent optimization scheme. The result showed that the local ascent
was able to converge to similar accuracy and save up to two orders of magnitude
computation time compared to the registration using the global ascent scheme.

SIEMI was particularly proposed to tackle the nonrigid registration problems
caused by the intensity non-uniformity (INU) or enhancement in the images. We
validated the method using brain MR data with different level of INU and dy-
namic contrast enhancement MRI of the liver. The results showed that SIEMI
well overcame the problems and performed significantly better than the regis-
tration using normalized mutual information.
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