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ABSTRACT 

We propose a new framework to propagate the labels in a heart atlas to the cardiac MRI images for ventricle 
segmentations based on image registrations. The method employs the anatomical information from the atlas as priors to 
constrain the initialisation between the atlas and the MRI images using region based registrations. After the initialisation 
which minimises the possibility of local misalignments, a fluid registration is applied to fine-tune the labelling in the 
atlas to the detail in the MRI images. The heart shape from the atlas does not have to be representative of that of the 
segmented MRI images in terms of morphological variations of the heart in this framework. In the experiments, a 
cadaver heart atlas and a normal heart atlas were used to register to in-vivo data for ventricle segmentation propagations. 
The results have shown that the segmentations based on the proposed method are visually acceptable, accurate (surface 
distance against manual segmentations is 1.0± 1.0 mm in healthy volunteer data, and 1.6± 1.8 mm in patient data), and 
reproducible (0.7± 1.0 mm) for in-vivo cardiac MRI images. The experiments also show that the new initialisation 
method can correct the local misalignments and help to avoid producing unrealistic deformations in the nonrigid 
registrations with 21% quantitative improvement of the segmentation accuracy.  

Keywords: Registration, Cardiac MRI, Segmentation, Label Propagation, Atlas  
 

1. INTRODUCTION 
In cardiac functional analysis, the quantitative computation of the functional descriptors from the cardiac MRI (CMRI) 
images is important, such as the myocardial wall thickening, wall motion, and ejection fraction, etc. Hence, accurate 
segmentations of the cardiac images are crucial in cardiac studies. Currently, most of the clinical applications use manual 
segmentations. However, the manual segmentation is not only tedious and time-consuming but also subjective to intra- 
and inter- observer error which results in inconsistent measurements. Recently, a number of publications have reported 
on automatic segmentation techniques by propagating a priori labels to the CMRI images. These techniques can be 
classified into two categories:  

1. One is to build a statistical model from a group of training data and adapt the surface or boundary of the model 
to the corresponding boundaries in the segmented images based on the image intensity and/or gradient 
information [4, 5]. However, the construction of the statistical model [3] is also challenging because it needs a 
number of training data with already segmentations for each region; and the model has limited local adaptation 
flexibility which is determined by the input training data. Hence the training data used in the construction has to 
be representative of all possible heart shapes to achieve a high accuracy, which is practically more challenging 
than the segmentation itself. 

2. The other is to use nonrigid registrations to register a pre-constructed heart atlas into the coordinate of these 
segmented images for label propagations. One example is to propagate a manual segmented MRI image on the 
end-diastolic phase to the other phases for the whole cardiac cycle segmentations based on nonrigid 
registrations. Another example is to construct an average atlas from the manual segmentations of a number of 
different subjects for the nonrigid registrations between the atlas and other subjects’ data. These methods have 
been reported to be able to produce results with good correlations to the manual segmentations in [6-8] because 
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the nonrigid registration has a large number of degree of freedom (DOF) for local adaptations. However there is 
no anatomical constraint incorporated into the registrations in these methods; hence the atlas can be only used to 
register to the same subject or the subjects with similar heart shapes for the segmentation propagation. 
Therefore the atlas used has a limited impact on automating segmentation propagations across the population. 
The main reason for this limitation is that the initialisation method in these methods employs one single global 
transformation without a priori anatomical information and can produce local misalignments which can not be 
corrected by nonrigid registrations. 

In this paper, we propose a new framework based on image registrations for the ventricle segmentation propagations in 
CMRI images. This framework uses a new initialisation method to incorporate the anatomical priors and the fluid 
registration with large DOF for fine-tuning the local adaptations.  

• The initialisation method uses anatomical prominent regions in the atlas and constrains them to the 
corresponding regions in the CMRI images to minimise the possibility of the local misalignment. The 
“anatomical constraints” are introduced into the framework using region based registrations and can give a good 
starting estimate in terms of anatomical correspondence for the local adaptation in the nonrigid registration.  

• The fluid registration which has a large number of DOF can flexibly adapt the morphologically initialised atlas 
into the detail of the CMRI images to achieve high segmentation accuracy.  

In the following sections, we will firstly describe the initialisation using region based registrations (IRBReg) method and 
the registration framework for automatic ventricle segmentations in CMRI images in the methodology section. Then, in 
the experiment and result sections, three groups of experiments are employed to demonstrate the segmentation and 
evaluate the performance. The first two groups of experiments employ a cadaver heart atlas to register to the CMRI 
images: the first group uses four healthy volunteer and four patient data to visually demonstrate the robustness and 
accuracy; the second group employs five volunteer data which have two same-time scans to produce two anatomical 
identical images except artefacts and noises to assess the reproducibility of the segmentations. The third group applies an 
atlas built from a normal heart (healthy volunteer) to four patient and four healthy volunteer data for ventricle 
segmentations and assesses the accuracy against the manual segmentations. Conclusion and discussion are given in the 
last section.  

 

2. METHOD 
2.1 Initialisation using region based registrations  

We propose a new initialisation method using region based registrations (IRBReg) to introduce the heart anatomical 
constraints into the initialisation stage for following nonrigid registrations. This method extracts some anatomically 
meaningful regions for one image, to register to the other image separately; and then combines all the resultant 
transformations into one displacement field using distance weighting interpolation to provide the starting estimate. For 
example, in cardiac atlas to MRI image registration, the morphological regions including ventricles, atriums, aorta, and 
artery can be extracted from the atlas into separate images to register to the MRI image to get the resultant 
transformations Gi and interpolate them into the starting estimate transformation T: 
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where, Vi represents the regions which are related to the extracted regions of the atlas and have been guaranteed by the 
overlapping correction procedure (OCP) to be no overlapping between themselves after the corresponding resultant 
transformations. The OCP works by dilating the overlapped regions and then excluding the dilated regions from Vi. 
Assume that Vi’ are all the extracted regions, such as chambers and arteries in the cardiac atlas image, and Ro’ is the 
overlap region after the resultant transformations; then Ro is the region after a morphological dilation from Ro’ using a d 
millimetre radius ball-shape structure element:  
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and then the OCP corrected regions are: 
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Ro ensures all Vi are overlap free before and after the corresponding affine transformations. Fig. 1 gives the flowchart of 
the computation of Vi for the left and right ventricle segmentations, where V1 and V2 for left and right ventricle cavities 
are denoted as Vl and Vr respectively and all the indexes of 1 and 2 are using l and r instead for denotation convenience. 
In our experiments, d is valued as 10 mm; however the choice of d value is not crucial in our experiments for two 

 
Fig. 1. A diagram demonstrating the overlapping correction procedure of the left and right ventricle cavities after two 

separate registrations. The dilation of the overlapped region is used to exclude the partial regions of the left and 
right ventricle cavities; The displacement of this region is interpolated based on the distance weighting 
interpolation. 

 

 
            (a)                                  (b)                                 (c)                                 (d)                                  (e) 

Fig. 2 The rigid transformation on the right ventricle cavity (a), the rigid transformation on the left ventricle cavity, 
and the transformation after interpolation based on the displacement of the two ventricle cavities choosing e 
value of 1.5 (c), 2 (d), and 4 (e).  



reasons: (1) the overlap rarely happens in ventricle segmentations due to the septal myocardium between them; (2) in 
ventricle registrations, the affine registration in the IRBReg will scale the atlas ventricle blood pools down to exactly fit 
into the corresponding ventricle blood pools in the MRI image to avoid the left and right ventricle overlapping. However, 
the overlap correction can be crucial in other applications such as whole heart segmentation for atriums and arteries, 
where d value should be valued related to the original distance between the two regions and the biggest distance 
transformation value of the overlap regions. 

After the overlapping correction, the distance weighting interpolation [1, 2] is employed to interpolate the transformation 
between Vi:  
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where, wi(X) is the distance weighting function for X, and Xi is the nearest point to X in Vi.    
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where di(X) is the Euclidean distance between point X and the region Vi. The smoothness of the displacements after the 
interpolation is determined by the choice of e (e>1 guarantees the first derivative is continuous) and the larger of e 
valued the more weighting the short distance points will have in the interpolation. Fig. 2 gives the deformation fields of 
interpolation results by e value of 1.5, 2, and 4 for the two ventricle segmentation applications. Based on the 

 
                    (a)                                         (b)                                             (c)                                             (d) 

 
                    (e)                                            (f)                                                (g)                                                  (h) 

Fig. 3 The Images from different hearts: the atlas image from the voxel-man with some changes (a); and a volunteer data 
(b); the right ventricle blood pool of the MRI image overlaps with the left ventricle blood pool of the atlas after rigid 
registration – the arrow in (c); after nonrigid registration, the overlapped blood region is registered together and the 
myocardium is contracted to a minimum to make it least effectible for the intensity based similarity measure – the 
arrow in (d) shows a middle step of a nonrigid registration. (e)-(h) shows a segmentation on a pathologically dilated 
right ventricle patient data: (f) and (h) are the results after IRBReg and fluid registration; (e) and (g) are the results 
after affine and fluid registration without IRBReg. 



consideration of both smoothness and computation efficiency, a value of 2 whose result doesn’t have significant 
difference to that of 1.5 which was proposed in [2] is used in the experiments next section.  

In fig. 4, the blue coloured dash region demonstrates the IRBReg idea in the ventricle registration example.  

2.2 Automatic ventricle segmentation using atlas-CMRI registrations 

One should note that there are two challenges in the automatic segmentation of the CMRI images using inter-subject 
registration techniques.  

First is to achieve a good starting estimate to initialise the anatomical correspondence between the atlas and the MRI 
image. This is essential to achieve a successful inter-subject nonrigid registration when their shapes have big variations, 
such as heart images. A good initialisation can help minimising the possibility of local misalignments. Fig. 3 (a)-(d) 
shows an example when a global affine transformation between a heart atlas (a) and a CMRI image (b) gives a starting 
estimate which has anatomical correspondence error in the apical region of the ventricles: the left ventricle of the atlas 
overlaps the right ventricle of the MRI image (c); finally, the nonrigid registration fails to correct the overlapped region 
(d). Therefore, the IRBReg method described above is employed to initialise the correspondence between the atlas and 
the MRI image based on the anatomical information of the heart.   

The second challenge is the nonrigid registration between the atlas and the MRI images. Since the atlas we propose to 
use does not have to be built from special modality images, the atlas is not expected to have the same intensity 
information as the MRI images. Therefore, a multi-modality registration similarity measure is needed in this registration 
task – one should notice the normalized mutual information (NMI) method which is widely used for multi-modality 
image registrations [11]. Furthermore, the transformation model used in the nonrigid registration needs a large number of 
DOF to achieve the high accuracy which determines the performance of the segmentation. In this paper, the fluid 
deformation model is used in [9, 10] in the nonrigid registration because the diffeomorphism of the fluid deformation 
model is guaranteed by the physical mechanics which is practically easier to control than by introducing a smoothness 
constraint term into the cost function with a weighting factor. 

Based on the IRBReg and fluid registration, we propose a framework for automatic ventricle segmentations from CMRI 
images which many cardiologists are interested in for clinical diagnosis and researches. Firstly, a heart atlas which has 
every anatomically prominent region labelled, such as left, right ventricle blood pools, and myocardium, is employed in 

 
 

Fig. 4 The cardiac ventricle segmentation framework by means of propagating the labelling in a heart atlas to the detail of 
CMRI images based on IRBReg (in blue dash region) and fluid registration.  



the framework. These labelled regions can be extracted from the atlas into independent images as a priori knowledge to 
separately register to the CMRI image in the IRBReg. Then, the fluid registration [9, 10] is used to fine-tune the labelling 
in the atlas to the detail in the MRI image while also minimizing the possibility of producing anatomically unrealistic 
deformations between the atlas and the MRI image. Since the atlas has labelled all the regions, a mask image which has 
all blood pool can be easily extracted from the atlas and applied to the fluid registration to practically improve the 
registration’ robustness and decrease the run-time. This is because in inter-subject cardiac image registrations, the blood 
pool region normally needs much larger deformation fields than the myocardium. Hence, before applying the full heart 
fluid registration, the blood-pool-mask based fluid registration is firstly applied to correct most of the difference between 
them. Furthermore, to maximize the information of the images used in the NMI computation, we propose to compute the 
joint intensity probabilities pms, entropies HA, HB, and HAB (please refer to [9] for detail) based on the whole images while 
compute the force (gradient of the similarity) on the mask regions for solving the partial differential equation (PDE) in 
the fluid registration: 

 
⎩
⎨
⎧

∉
∈

=
blood

blood

VX
VXXGradient

XForce
                                   ,0

                 ),(
)(                                        (6) 

This can save 80~90% run-time for computing the fluid force. 

Fig. 4 gives the flowchart of the proposed framework for cardiac ventricle segmentations. 

 

3. EXPERIMENTS 
Three groups of experiments are employed to demonstrate the performance of the proposed segmentation framework 
based on the IRBReg and the fluid registration on cardiac MRI images. The cadaver atlas used in the first two groups 
was from http://www.voxel-man.de, as shown in fig. 3 (a) with a few changes. The voxel size of this atlas is 
0.6mm*0.6mm*0.6mm. The other atlas used in the third group of experiments was built from a healthy volunteer with 
voxel size 0.5mm*0.5mm*0.5mm.The MRI sequence is the balanced steady state free precession (b-SSFP) for whole 
heart imaging from a 1.5T clinical scanner (Philips Medical System, Best, The Netherlands) equipped with 32 
independent receive channels. The free breathing scan is realized by enabling one navigator beam before data acquisition 
and the trigger delays of the end-diastolic phase is selected manually with a preview T2 preparation and FAT saturation 
pulse. The gating window for the free breathing is controlled to be around 6mm in volunteers’ acquisition given the 
volunteers have received a breath-with-regular-pattern training; while this is not guaranteed for the patient data 
acquisitions. 

In the first group of experiments, we employ four health volunteers and four patients with abnormal heart shape due to 
dilated right ventricle or after valve replacement surgeries to visually assess the accuracy of the segmentations. The 
volunteer MRI data were scanned with acquisition resolution around 1.7mm*1.7mm*1.7mm and same reconstructed 
resolution based on short-axis view, and the patient MRI data were scanned with acquisition resolution 2mm*2mm*2mm 
and reconstructed to 1mm*1mm*1mm based on sagittal view. 

In the second group of experiments, images from interleaving scans which acquire two k-space data at the same time 
from a subject to construct two images that have exact the same anatomy information but different noise and artefacts, 
and images from test-re-test scans which acquire two images successively are used to assess the reproducibility of the 
segmentation results. Three evaluation factors are computed for the assessment: volume size difference, volume overlap 
( )/()( BABA UI ) [12], and the endocardial and epicardial surface distance between the two results. Five subjects are 
included in this experiment and one were scanned based on short-axis view with acquisition resolution 
1.7mm*1.7mm*1.7mm and same reconstructed resolution, others were based on sagittal view with both acquired and 
reconstruction resolution 1.6mm*1.6mm*1.6mm.  

Finally, we use an atlas built from a normal heart for the segmentation propagation to segment another four health 
volunteer data with acquisition resolution 2mm*2mm*2mm and reconstructed to 1mm*1mm*1mm based on sagittal 
view and the four patient data used in the first group of experiment. The manual segmentation results on these data are 
employed to quantitatively evaluate the accuracy of the segmentations from both the proposed method and the method 
without the IRBReg. 



 

4. RESULTS 
In our experiments, all ventricle segmentations are visually successful. Fig. 6 and fig. 7 give the three orthogonal views 
of the four patient and four health volunteer segmentation results on the cardiac ventricles in the first group of 
experiments. The visual observation from the segmentation results show that: (1) the segmentation is better at the 
endocardial surface where the boundary is clear than at the epicardial surface where some boundary is indistinct; 
however the segmentation of the papillary muscle is hard to control whether to be included or excluded from the 
myocardium; (2) the accuracy of the surface segmentation on the right ventricle is not always worse than that on the left 
ventricle though the tricuspid and pulmonary valves are more variable than mitral and aortic valves in label propagations 
especially in the pathological data with dilated right ventricles; (3) the segmentation at the regions which have adjacent 
tissues, the segmentation is less accurate but still acceptable because the force-masking fluid registration take the whole 
image information and is able to keep the heart shape from the prior shape information of the atlas; (4) the segmentation 
is robust from most of the MRI artefacts; (5) the valve boundaries segmentation which fails most of the other automatic 
segmentation methods which are based on image intensity gradient also addresses a difficult tasks for the proposed 
method because there is not obvious difference between the valves and the blood in the MRI images, but we still get 

Table 1 Segmentation results against manual segmentations. Here gives the error percentage distribution. Endo-LV 
means the endocardial surface of left ventricle, Endo-RV is the endocardial surface of right ventricle, and Epi-
LV denotes the epicardial surface around left ventricle. 

 

  0-1mm 1-2mm 2-3mm 3-4mm 4-5mm >5mm 

Endo-LV 78%     16%     3%     1%     0.6%     1% 

Endo-RV 69%    23%     5%     1%     0.8%     0.6% Volunteer 
Data 

Epi-LV 62%     18%     9.5%     5.1%     2.6%     2.0% 

Endo-LV 45% 22% 15% 7% 3% 7% 

Endo-RV 40% 20% 14% 9% 6% 11% Patient 
Data 

Epi-LV 46% 24% 15% 7% 4% 4% 

 

 
Fig. 5 The mean surface distance distribution and standard deviation of the surface distance from volunteer data and patient data 
(left); and the average overlap volume factor and volume difference of them (right). This figure shows the difference between 
the segmentation results by using the IRBReg method for initialisation and without IRBReg.  



acceptable accuracy from the propagation; (6) finally, the segmentations on healthy volunteer are better than on 
pathological data in terms of accuracy. This is because the gating window for free-breathing navigating is normally set to 
wider in the MRI acquisition for the patients due to the uncontrollable breathing patterns of the patients. The wider 
gating window results in heavier motion artefacts from the breathing motions. The image quality can be visually 
evaluated with big difference between healthy and patent data from fig. 6 and fig. 7.  

The average volume difference for the segmented left, right ventricle cavities, and the myocardium in the reproducibility 
experiment are 1.2%, 7.8%, and 5.1% respectively; and the overlap are 0.87, 0.76, and 0.75 respectively. The average 
surface distance, including the endocardial surface and epicardial surface of the ventricles, is 0.7± 1.0 mm. The method 
has shown good reproducibility of the ventricle segmentations from the surface distance although the volume difference 
and overlap volume factor are largely dominated by the valve definition variations. The relatively low reproducibility of 
the valves definition suggests that a re-definition of the valve position by covering the chambers with a flat plane after 
the segmentation should give a more reproducible chamber separation than label propagation from the atlas. This will be 
one of our future works.  

After using the cadaver atlas for segmentation propagations in the first two groups of experiments, we use another atlas 
from a healthy heart volunteer’s in the third group of experiments. Table 1 gives the error distribution for the endocardial 
surface of the left and right ventricles, and the epicardial surface of the left ventricles: overall around 90% of the regions 
are less than 2mm on the volunteer data and 66% on the patient data. Fig. 5 (a) gives the mean surface distance and 
standard deviation distribution from the four healthy volunteer and four patient data using the segmentation method 
proposed in this paper and the method without the IRBReg method. The mean surface distance by the proposed method 
on the four volunteers is overall 1.0± 0.2 mm for mean surface distance and 1.0± 0.4mm for standard deviation, and 
1.8± 0.7mm and 1.6± 0.6mm respectively on the four patient data; while without the IRBReg method the surface 
distance is mean 1.3± 0.6mm and standard deviation 1.4± 0.5mm on the volunteer data, and mean 2.0± 0.8mm and 
standard deviation 2.0± 0.7mm on the patient data. Fig. 5 (b) give the average volume overlap and volume difference of 
the segmentation results. The results from this group of experiments show that the accuracy on the patient data is worse 
than on volunteer data, which confirms the visual evaluation conclusions in the first group of experiments. Fig 5 also 
shows that there is no drastic improvement from the IRBReg in terms of the quantitative evaluation. This is because the 
flexibility of the fluid registration is able to register the boundary between the atlas and MRI images thank to the 
thickness of the septal myocardium. Fig .3 (e) – (h) show a pathological heart disease data case segmented by the 
methods with and without the IRBReg. One can notice the visually significant difference between the two segmentation 
results. In this paper, we do not given the evaluation on the right ventricle epicardial surface because the thickness of the 
right ventricle myocardium on the end-diastolic phase is comparable to the segmentation error and the epicardial surface 
on right ventricle is hard to manually delineate due to the limitation of the visualisation in our segmentation tool. 

The average runtime for one dataset segmentation with selected region of interest (heart region) is about 20-30 minutes 
on a 2.66GHz 16G RAM computer. 

 

5. CONCLUSIONS 
In this paper, we propose a segmentation framework for cardiac MRI images based on two steps: (1) a new initialisation 
method using the region based registrations (IRBReg) and (2) the fluid registration which has large number of DOF to 
align the local details. The IRBReg method introduces the anatomical constraints into the initialisation stage to minimise 
the possibility of local misalignment in the inter-subject registrations, which makes the atlas independent from the 
segmented data in terms of the heart shape variations. The flexible deformation model of the fluid registration can 
accurately fine-tune the label propagation from the atlas to the detail in the MRI images. In the experiments, the results 
have shown that the ventricle segmentations are visually acceptable (from fig. 6 and fig. 7), accurate (1.0± 1.0 mm on 
healthy volunteer data and 1.8± 1.6mm on patient data), and reproducible (0.7± 1.0 mm) for in-vivo CMRI datasets. 
Fig. 3 shows the advantages of the new initialisation method for local correction and the final segmentation accuracy, 
which compares with the results without the IRBReg. The average performance by the proposed segmentation method is 
1.4± 1.3mm; while without the IRBReg, the segmentation accuracy is 1.7± 1.7mm. Finally, the proposed segmentation 
framework is not restricted in ventricle segmentations. It is potentially able to be applied to the whole heart segmentation 
which is more challenging. The IRBReg method can also be applied to other applications where the nonrigid 
registrations fail due to local misalignments in the initialisation derived from a single affine transformation. In our future 



work, we will apply the segmentation method on the whole heart segmentations, to different modality heart images, and 
evaluate the results on more different pathological patient data.    
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Fig. 6 The ventricle segmentation results on health volunteers’ data. 

 



 

 
Fig. 7 The ventricle segmentation results on patients’ data.  

 


	Text1: Copyright 2008 Society of Photo-Optical Instrumentation EngineersThis paper was published in SPIE proceedings 2008 and is made available as an electronic reprint (preprint) with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modifiction of the content of the paper are prohibited.


