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Abstract. Registration and segmentation uncertainty may be impor-
tant information to convey to a user when automatic image analysis is
performed. Uncertainty information may be used to provide additional
diagnostic information to traditional analysis of cardiac function. In this
paper, we develop a framework for the automatic segmentation of the
cardiac anatomy from multiple MR images. We also define the regis-
tration and segmentation uncertainty and explore its use for diagnostic
purposes. Our framework uses cardiac MR image sequences that are
widely available in clinical practice. We improve the performance of the
cardiac segmentation algorithms by combining information from mul-
tiple MR images using a graph-cut based segmentation. We evaluate
this framework on images from 32 subjects: 13 patients with ischemic
cardiomyopathy, 14 patients with dilated cardiomyopathy and 5 normal
volunteers. Our results indicate that the proposed method is capable of
producing segmentation results with very high robustness and high ac-
curacy with minimal user interaction across all subject groups. We also
show that registration and segmentation uncertainties are good indica-
tors for segmentation failures as well as good predictors for the functional
abnormality of the subject.

1 Introduction

Magnetic Resonance (MR) imaging can be used to visualize the anatomy and
function of the heart in detail. The most commonly available MR images of the
heart include multiple stacks of short-axis (SA) and long-axis (LA) MR images.
These images are typically acquired as cine sequences showing the heart through-
out the entire cardiac cycle. Due to the anisotropic resolution of the images (high
in-plane resolution but low out-of-plane resolution) and the fact that different
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slices of the stack are acquired during different breath-holds automated segmen-
tation is difficult. On the other hand, 3D volumetric cardiac MR imaging is now
becoming feasible [1]. These images have high spatial resolution and are free
from inter-slice motion. However, the images have a lower signal-to-noise-ratio
and lack of contrast compared to SA and LA MR images. Therefore, combin-
ing 3D and cine MR image data, has potential to provide better accuracy and
robustness for automated segmentation.

One of the widely recognized technique for cardiac anatomy segmentation is
to propagate a pre-constructed atlas to the unseen images using image registra-
tion [2, 3]. By using a locally affine registration method (LARM), this technique
is able to deal with large shape variations of the heart. Another alternative is
voxel based segmentation [4, 5] The method is able to achieve sub-voxel accuracy
but requires a good initialization.

Atlas propagation is widely used either for the initialization for cardiac seg-
mentation [2] or as the primary segmentation method [3]. An important but not
yet fully explored aspect of such image segmentation is: How can we quantify
and visualize the segmentation uncertainty? This question can be further di-
vided into uncertainty arising from the registration [6, 7] and uncertainty about
the final segmentation. No matter how robust a segmentation technique is, it
is important to have the ability to alert the user if the uncertainty of the seg-
mentation quality is high. High uncertainty can either be a sign of an unreliable
segmentation result or of an abnormal cardiac anatomy.

Fig. 1. Work-flow of the automatic segmentation and uncertainty estimation frame-
work.

In this paper we extend an automatic image segmentation technique [8] to a
framework that simultaneously uses information from multiple (possibly sparsely
sampled) cardiac images. The integration of registration- and intensity-based
segmentation has shown the ability to achieve both good robustness and accuracy
[8]. In the proposed framework shown in Fig.1 we automatically segment the right
ventricle, left ventricle and myocardium simultaneously from high-resolution 3D
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MR images (3D) as well as multiple stacks of SA and LA cine MR images.
Before image segmentation we transform all images into a common spatial and
temporal coordinate system and correct the misalignments between inter- and
intra- sequences [9]. We first developed a registration scheme that propagates a
probabilistic atlas to the subject’s coordinate system and then used a multiple
component EM (MCEM) estimation algorithm for an initial segmentation. The
segmentation is then refined using a multi-image graph cut algorithm.

We also explore the potential of registration and segmentation uncertainty in
improving the robustness: If and only if the uncertainty of the segmentation is
high, the system will ask the user to input additional landmarks to help better
initialize the atlas-to-subject registration. The landmarks include apex, center of
mitral valve, center of left ventricle and two right ventricle insertion points. The
next section describes the segmentation framework in detail; Section 3 introduces
the idea of using uncertainty in the analysis. Finally, section 4 shows results from
32 patients while section 5 summarizes and concludes the paper.

2 Cardiac segmentation using multiple images

SA and LA cine MR views provide images with high spatial resolution within
each slice, but the spatial resolution between slices is poor. Nevertheless, both
SA and LA images have high temporal resolution revealing dynamic information
about the heart. By contrast, 3D MR images acquired within a single breath-
hold provide a static image of the heart with high spatial resolution in all three
directions. However, these images are often noisy and provide less good contrast
for the myocardium, leading to less accurate delineation. Therefore, we propose
to use all three types of MR images within a unified segmentation framework
that employs a two-step segmentation technique using registration and intensity-
based segmentation.

2.1 Spatio-temporal registration

The images we use for each patient consist of stacks of SA and LA images (ac-
quired as cine images) as well as a 3D anatomical end-systolic volume. The LA
image stacks consist of four (4CH), three (3CH) and two chamber (2CH) views.
Note that, the SA and LA images are acquired during a separate breath-hold
for each slice while the 3D anatomical image is acquired in a single breath-hold.
Due to potential differences in the position of the heart (e.g. due to respiration)
there is usually some spatial misalignment between the images (inter-sequence
misalignment) as well as between individual slices of the SA and LA images
(intra-sequence misalignment). In addition there is temporal misalignment be-
tween the 3D anatomical image and the SA and LA cine images. In order to
use multiple images simultaneously, these misalignments must be corrected. The
3D image provides good spatial resolution to serve as target for accurate slice-
to-volume registration [9]. In this framework we first register all available LA
and SA image sequences to the 3D image using a 1D temporal registration by
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maximizing normalized mutual information as a similarity measure followed by
a spatial 3D rigid registration using the same similarity measure. The resulting
spatio-temporal (4D) transformation corrects both the inter-sequence misalign-
ment and intra-sequence slice shifts so that all images can be transformed to the
same spatio-temporal coordinate system, in this case, the coordinate system of
the 3D anatomical MR image.

2.2 Atlas based segmentation

In [8] image registration was used to propagate an atlas constructed from normal
population to subjects. A locally affine registration method (LARM) [3] was
used to address the large local shape variability of pathological cardiac anatomy,
commonly seen across large populations with pathologies. LARM is integrated
into the registration process as an intermediate registration step between a global
affine registration and a fully non-rigid registration. Compared to traditional
registration schemes, LARM is capable of providing a good initial alignment
between the images of patients with pathologies and the atlas constructed from
normal subjects.The deformation is defined under the following equation 1:

T (X) =


Gi(X) X ∈ Vi∑i=n

i=1 Wi(X)Gi(X) otherwise

(1)

where Gi(X) is region Vi’s estimated affine transformation andWi is the distance
between given X and Vi.

After atlas propagation, We [8] used a two-component Gaussian mixture
model for the myocardial tissue modelling infarcted and non-infarcted myocar-
dial tissue while being spatially constrained by the probabilistic atlas [2] propa-
gated.

We extend the above method to multi-image atlas propagation using a com-
bined normalized mutual information similarity measure in which the similarity
for each image is weighted by the relative number of voxels in the image.

2.3 Multi-image graph cut refinement

The MCEM algorithm [8] segments the 3D, SA and LA images separately al-
though the atlas is propagated to all images simultaneously. We propose to use
an energy function based on Markov Random Fields (MRF) in combination with
graph-cuts [5] to refine the segmentation across all images at the same time. 4D
graph cuts have recently been used to segment image sequences [10, 11]. Here,
we have adopted the 4D graph cut approach to utilize information from multiple
MR images with different spatial resolution. To differentiate our approach from
a 4D graph cut segmentation of image sequences, we refer to it as multi-image
graph cut segmentation.

Let Ii be the i-th image of multiple images, segmenting Ii is defined as a
process of assigning a label fp ∈ L to each voxel p ∈ Ii. An MRF-based energy
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function can be formulated as:

E(f) = λ
∑
p∈Ii

Dp(fp) +
∑

{p,q}∈N

V intra
p,q (fp, fq) +

∑
{p,q}∈M

V inter
p,q (fp, fq) (2)

where N and M are a neighborhood of voxels within an image and across dif-
ferent images respectively and f is the labeling of Ii [5]. The data term Dp(fp)
measures the disagreement between the a-priori probabilistic model and the ob-
served data. Vp,q(fp, fq) is a smoothness term penalizing discontinuities of the
segmentation in N or M . The parameter λ governs the influence of the data
and smoothness terms. We found heuristically that setting λ = 2 leads to robust
results for myocardium segmentation. Two different smoothness terms are cho-
sen respectively for inter image similarity and intra image similarity since they
are intuitively distinguished. For intra image similarity continuity in intensity
space is enforced. While for inter image similarity comes from overlap between
voxels. And continuity in intensity space is neither granted nor meaningful due
to different modalities and strong spatial alignment.

To optimize eq. (2), a graph G =< V,E > with a node v ∈ V for each
voxel p is defined on images. Each edge e ∈ E consists of connections between
node v and two terminal nodes F and B (also called source and sink node)
as well as connections between neighboring voxels. The terminal nodes F and
B represent the two labels describing foreground and background, respectively.
By determining a minimum cut on graph G, the desired segmentation can be
obtained[5]. The data term Dp(fp) is estimated using the MCEM segmentation
[8] which generates a probability for each class of each voxel.

The smoothness term between neighboring voxels within an image is defined
over a cubic neighborhood N by the following equation:

V intra
p,q = wintra

1

ln(1 + (Ip − Iq)2) + ϵ
(3)

Here I is intensity and ϵ is a small constant value which compensates for noise
when Ip is close to Iq. For neighbouring voxels we define wintra = 1/d where d
is the distance between two voxels.

For voxels across different images, a different smoothness term is chosen.
We define a smoothness term that depends on the degree of overlap between
the voxels instead of the intensity similarity to enforce spatial consistency and
address the different modalities between images. We use the Dice metric to
compute the amount of overlap between images

V inter
p,q = winter(2||Sp ∩ Sq||)/(||Sp|| ∪ ||Sq||) (4)

where Sp and Sq are the voxel volumes of voxel p and q and winter is a constant
weight chosen as 2 from extensive experiment. The result of this equation is real
number between 0 and 1 due to different voxel size and position of the images.
The smoothness term is defined in a neighborhood M where V inter

p,q > 0.
By using this multi-image graph cut approach, we connect intra-image voxel

neighbors according to their intensity similarity and distance and inter-image
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voxels neighbors according to their spatial overlap. This enables us to segment
multiple images simultaneously and consistently. Finally the energy function is
optimized using graph-cuts and multiple labels are achieved at the same time
using the expansion and the swap algorithm[5].

3 Uncertainty definition and evaluation

3.1 Registration Uncertainty

Given two images, Iatlas and Ii (the subject’s ith image), we can estimate a
transformation T which maps image Ii to Iatlas so that a voxel of Ii(x) cor-
respond to Iatlas(T(x)) and their intensity values should be similar. Using a
probabilistic formulation for the image registration problem [6], the uncertainty
of a transformation T at point x can be modeled by the following equation :

uc(T(x)|(Ii(x), Iatlas)) = 1− p((Ii(x), Iatlas)|T(x))p(T(x))

p((Ii(x), Iatlas))
(5)

We model the likelihood term, p((Ii(x), Iatlas)|T(x)), as a normal distribution of
the intensity difference between transformed Iatlas and Ii estimated using an EM
algorithm after histogram equalization. Similarly, the prior of the transforma-
tion, p(T(x)), is modeled as a Rician distribution of the Jacobian determinant
of the transformation [12]. The distribution is estimated based on the inver-
sion technique proposed in [13]. The Rician distribution is a non-negative and
asymmetric distribution which approximates the distribution of the Jacobian
determinant well for a given transformation. Finally, p((Ii(x), Iatlas)) can be
modelled as a constant term.

3.2 Segmentation Uncertainty

The uncertainty of a given label from our 4D graph cut segmentation can be
modeled by the following equation:

uc(Lj |Ii(x)) = 1− p(Ii(x)|Lj)p(Lj)

p(Ii(x))
(6)

where p(Ii(x)|Lj) is the likelihood that intensity of Ii(x) belongs to Lj as es-
timated by the segmentation method. p(Ii(x)) is modelled as a constant term
and

p(Lj) =
1

log(δj + 1 + ϵ)
(7)

Here ϵ is a small constant value and δ is the interquartile range of the multi-
ple component distribution that represents Lj ’s intensity distribution from our
segmentation method. The interquartile range is chosen because it’s a robust
statistic that conveys the dispersion of a distribution [6] and corresponds well
to the intra-region homogeneity of a segmentation. It is robust in the sense that
it provides meaningful information even for non-Gaussian distributions like the
ones that can be obtained from the MCEM segmentation.
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Table 1. Validation results: The Dice overlap measure for the endocardial segmentation
(LV) and epicardial segmentation (LV+MYO) results comparing automatic and manual
segmentation. ∗ means that the pair-wise t-test is significant at p < 0.05 and ⋆ p < 0.01

Group Segmentation Segmentation using SA only[8] Proposed segmentation

all
endocardial∗ 0.907± 0.032 0.920± 0.026
epicardial∗ 0.908± 0.028 0.921± 0.024

apex
endocardial⋆ 0.837± 0.095 0.900± 0.059
epicardial⋆ 0.838± 0.079 0.910± 0.052

mid
endocardial 0.918± 0.028 0.923± 0.024
epicardial 0.920± 0.029 0.925± 0.021

basal
endocardial ∗ 0.894± 0.048 0.916± 0.041
epicardial ∗ 0.896± 0.036 0.917± 0.033

3.3 Uncertainty quantification and user interaction

For each voxel xi in all images, its registration and segmentation uncertainty
can be evaluated and visualized using eqs. (5) and (6) respectively. We can
further define the registration and segmentation uncertainty of a given region
Lj by averaging over the region. The quantification of uncertainty can be used
to inform the user about how reliable the segmentation results are.

Based on results from the uncertainty analysis, we can design a system that
that detects abnormally high uncertainty. In our analysis we have four failure
cases in which the global affine registration fails during the atlas registration. The
subsequent segmentations also fail. Myocardial registration uncertainty is a good
indicator for failed global affine registration (failed cases 0.86± 0.14, successful
cases 0.39 ± 0.08 p < 0.0001). A combination of registration and segmentation
uncertainties is better in terms of classification using linear discriminant analysis
(LDA) (failed cases 1.73± 0.12, successful cases 1.2± 0.08 p ≪ 0.0001). A good
threshold for detecting segmentation failures using the combined registration
and segmentation uncertainty is 1.59 derived from LDA with accuracy of 100%.

In the cases that we detect a segmentation failure, the user is asked to define
6 landmarks (apex, center of left ventricle, anterior and inferior insertion points
of right ventricle, center of right ventricle and center of basal plane). These
landmarks are also defined in the atlas. By introducing knowledge about these
additional 6 landmarks, the atlas-to-image registration can be initialized more
accurately and all segmentations performed correctly.

4 Results

In this paper we used datasets form 32 subjects. Each dataset consists of short
axis (SA), long axis (LA) four (4CH), three (3CH) and two chamber (2CH) cine
MR image sequence (2.2 × 2.2 × 10,mm, 30 phases) and anatomical 3D MR
images (1.1× 1.1× 1.1,mm, one phase).

Manual segmentations were performed by a cardiologist to extract the my-
ocardium and left ventricle in all images after spatio-temporal registration. We
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then compared these to the segmentation results obtained via our previous tech-
nique [8] which uses SA MR images only and the proposed technique. Both
techniques utilize the landmarks from the user for four patients for which the
global affine registration fails. For comparisons between the methods we used the
Dice metric, D = (2||Sa ∩ Sb||)/(||Sa||+ ||Sb||) where Sa and Sb are respectively
the manual label segmentation and automatic label segmentation. The results
are summarized in tab.1. The results indicate that our proposed segmentation
scheme performed better than the original method especially on the basal and
the apex segments. The basal and apex are very difficult to segment using SAMR
images only due to the large slice thickness and partial volume. In the proposed
approach the segmentation in these region is enhanced by adding information
from 3D and LA images.
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Fig. 2. Left figure shows myocardial segmentation uncertainty and right figure shows
myocardial registration uncertainty

Uncertainty is a good indicator for the failure of the global affine registration.
However, during our experiment, there is no strong correlation between uncer-
tainty and accuracy of the segmentation if the uncertainty does not rise beyond
the threshold used. If the segmentation is considered successful, the uncertainty
relates more to abnormality of the patient’s cardiac anatomy than the accura-
cy of the segmentation. This is possibly due to the fact that our segmentation
algorithm is designed to segment pathological images well using LARM [3] and
MCEM [8]. To examine if the uncertainty correlates to the abnormality of the
patients, we assume that segmentation uncertainty which comes from intensity
and geometry distribution relates to abnormal intensity like ischemic cardiomy-
opathy while registration uncertainty which comes from geometry distribution
corresponds well to abnormal geometry like dilated cardiomyopathy. Figure.2
shows that myocardial segmentation uncertainty is a very good predictor for
separating ischemic cardiomyopathy from the rest of subjects (ischemic subject-
s 0.82 ± 0.012, other subjects (normal and dealated) 0.80 ± 0.016 p < 0.001),
meanwhile myocardial registration uncertainty is a good predictor for separat-
ing dilated cardiomyopathy from normal subjects (dilated subjects 0.38± 0.08,
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Fig. 3. End Diastolic Volume(EDV) of the subjects from the segmentation, p value
between normal and ischemic is 0.025, between normal and dilated is 0.054 and between
dilated and ischemic is 0.287.

normal subjects 0.33 ± 0.04 p < 0.05) but not from ischemic subjects. Com-
pare to EDV Figure.3, uncertainty outperforms EDV by distinguishing ischemic
(p < 0.001 against p < 0.05) from other and separate dilated (p < 0.05 against
p > 0.05) from normal.

5 Conclusion and Future Work

In this paper we present a novel two-step multiple image segmentation framework
using three widely available MR image sequences. Using LARM and MCEM we
are able to deal with local shape variations as well as infarcted myocardium.
The segmentation is performed simultaneously from all images using a multi-
image graph cut approach. The accuracy is significantly improved compared to
previous segmentation methods by utilizing both intra- and inter-image infor-
mation Table.1. We finally define a system that detects segmentation failures
using registration and segmentation uncertainties.

Cardiac pathology is not always easily detectable in images, e.g. the trans-
position of vessels, but likely to be detected by registration and segmentation
uncertainty. Since we can define uncertainty for every part of the cardiac anato-
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my, it is desirable to investigate if the relationship between uncertainty and
abnormality could help to detect these pathologies automatically.
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