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Abstract—Serendipitous recommendation has benefitted
both e-retailers and users. It tends to suggest items which
are both unexpected and useful to users. These items are not
only profitable to the retailers but also surprisingly suitable to
consumers’ tastes. However, due to the imbalance in observed
data for popular and tail items, existing collaborative filtering
methods fail to give satisfactory serendipitous recommen-
dations. To solve this problem, we propose a simple and
effective method, called serendipitous personalized ranking.
The experimental results demonstrate that our method sig-
nificantly improves both accuracy and serendipity for top-N
recommendation compared to traditional personalized ranking
methods in various settings.
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I. INTRODUCTION

Collaborative filtering (CF) based recommender systems
are playing an increasingly important role in a variety of
Internet services, such as Amazon, Netflix, and Last.fm.
They predict users’ preferences based on their observed
behavior. In recent years, some international contests such
as the Netflix $1 Million Challenge and the Yahoo! Music
Recommendation Challenge for the KDDCup 2011 have led
to the surging interest in CF-based recommender systems in
both academia and industry.

Though the widely publicized recommendation contests
have greatly promoted research on recommender systems,
they have narrowed the horizon of the literature at the
same time. The high stakes competition on relevance can
reduce the serendipity, which is a key aspect of recommender
systems. In fact, serendipitous recommendation has been
shown to benefit both e-retailers and users by suggesting
both unexpected and useful items, which are always located
in the tail of the popularity distribution. On one hand, the
aggregated profit on tail items is a large proportion of the
total profit [1]. For example, the proportion of tail item profit
is 25% on Amazon and 20% on Netflix. On the other hand,
the consumers tend to enjoy the serendipity of stumbling
upon something that turns out to be fascinating [2].

However, there is still no satisfactory CF solution for
serendipitous item recommendation. The serious imbalance
of observed preferences between popular (lowly unexpected)
and tail (highly unexpected) items results in unbalanced

training in a supervised learning model. For a rating pre-
diction task, supervised learning models tend to have more
training cases for popular items than for tail ones. Therefore,
the state-of-the-art CF models always give high performance
on popular items but relatively low performance on tail ones.
For a personalized ranking task, pairwise ranking models [3]
always select popular items as positive examples (because
they have more observed preferences) and tail items as
negative examples (because they have fewer observed pref-
erences). As a result, popular items are much more likely to
rank higher than tail items, making the recommendation list
lack of serendipity. A good list should have high accuracy to
match users’ tastes and should contain a not-too-low propor-
tion of unexpected items to give serendipity. Unfortunately,
due to the low performance on tail items, there is usually
a trade-off between accuracy and serendipity in the top-N
recommendation list. To the best of our knowledge, there is
no previous work that successfully improves both accuracy
and serendipity for top-N item recommendation.

We also investigate users’ preferences. Popular items have
probably already been recommended to (or noticed by) the
users. For example, Netflix presents recently released movies
on the home page and Yahoo! Music shows popular albums
or artists on its portal page. Thus if a popular item is not
rated (or consumed) by a user, it is likely that the user has
seen it but has no interest in it, while if a tail item is not
rated by a user, it is likely that he or she has not noticed
it yet rather than that he or she dislikes it. Based on this,
popular items without observed preferences are more likely
to be the true negative items to the user than tail ones.

Previous work by Cremonesi et al. [4] suggests that CF
algorithms optimized for minimizing root mean squared
error (RMSE) do not necessarily perform as expected in top-
N recommendation task. On the other hand, some recently
proposed ranking oriented CF approaches show good per-
formance in tackling the top-N recommendation problem,
which constitute the foundation of our algorithm.

Based on the facts above, we propose a simple and
effective method for serendipitous item recommendation,
which makes the ranking sensitive to the popularity of
negative examples. We compare our method, which we call
serendipitous personalized ranking, with traditional collabo-
rative ranking on three popular latent factor models using



logistic loss and hinge loss respectively. Two groups of
experiments are conducted on the Netflix dataset and the
Yahoo! Music dataset, which demonstrate that our method
significantly improves both accuracy and serendipity in top-
N recommendation.

The paper is organized as follows: in Section II we
briefly review some related works. Section III describes our
serendipitous personalized ranking method in detail. We then
show the experimental results and analysis in Section IV.
Finally, we conclude the paper in Section V.

II. RELATED WORK

The two primary approaches in the field of collaborative
filtering are the neighborhood approaches [5], [6] and the la-
tent factor approaches [7], [8]. The neighborhood approaches
are based on the similarity among users or items, called user-
based approach and item-based approach respectively. Most
latent factor models are based on the factorization of the
user-item rating matrix [9]. Named after the related Singular
Value Decomposition, these latent factor models are known
as SVD models. According to [10], there are several variants
of SVD models which have high quality in rating prediction
tasks.

Ranking oriented collaborative filtering approaches have
been proposed recently in order to tackle the top-N recom-
mendation task more practically. Pessiot et al. [11] proposed
a pairwise preference error minimization framework to op-
timize the item ranking. Liu and Yang [12] presented an
EigenRank algorithm based on user-user similarity defined
by their item ranking. Moreover, Rendle et al. [3] proposed
a generic optimization criterion BPR-Opt and Weimer et al.
[13] proposed Ordinal Loss for maximum margin matrix
factorization (MMMF), both of which directly optimize for
ranking, and we adopt them as the baselines to compare
against.

It has been widely acknowledged that serendipity is a
key aspect in recommender systems [14]. Since serendipity
is difficult to study and largely depends on subjective
characteristics, there are various definitions and evaluations
proposed. Herlocker et al. [15] defined serendipity as a
measure of how often the recommended items are both
surprising and interesting to the users. Celma and Herrera
[16] presented two methods, item centric and user centric, to
evaluate the quality of serendipitous recommendations. [17]
introduced TANGENT, which is based on a graph mining
technique to provide “Surprise-me” recommendations. In
[18], the author proposed an algorithm which focused on
the search time each user would need to find a desirable
and novel item by him/herself. Murakami et al. [19] and Ge
et al. [20] captured the two essential aspects of serendipity:
unexpectedness and usefulness. Adamopoulos and Tuzhilin
[21] further revised this definition of serendipity and pro-
posed a recommendation approach which took both quality
and unexpectedness into account. However, their approach

is more like a two-stage procedure, which requires to predict
the quality and unexpectedness first and then combine them
to make a optimal decision. Other works such as [22], [23]
focused on the metric of novelty while [24], [25] dealt with
the trade off between accuracy and diversity. Though over-
lapping with the concept of serendipity, they did not capture
the unexpectedness and usefulness together. In this paper, we
follow the definition of serendipity in [19], [20] and propose
a serendipitous ranking model which optimizes accuracy and
serendipity in a single learning procedure. Thus, our method
can improve both recommendation accuracy and serendipity,
while in the previous works such as [20], [24], serendipity
or diversity always indicated a loss of accuracy.

Some work has proposed to leverage the problem of the
long tail. Park and Tuzhilin [26] used clustering ideas to
deal with the small number of ratings of the items in the
long tail. They clustered the items in the tail into various
groups and applied several models such as kNN and SVM
to predict ratings. The experimental results showed that the
clustered tail method solved the long tail problem in the
sense that the error rates for the items in tail were lower than
with the non-clustered method. However, [26] concentrated
on the evaluation metric of RMSE and did not address
the top-N recommendation scenario, which constitutes the
focus of this paper. Besides, [26] did not explore their
clustering methods on SVD models, which are state-of-the-
art collaborative filtering approaches. Steck [27] proposed a
popularity-stratified training method to examine the trade-
off between item popularity and recommendation accuracy.
However, this work was focused on rating regression and did
not directly optimize rank; it was evaluated by the measures
of item popularity and recommendation accuracy which are
different from serendipity.

To sum up, experimental studies of serendipity are still
rare; how to implement serendipitous recommender systems
is still an open question.

III. SERENDIPITOUS PERSONALIZED RANKING

The real objective of top-N recommendation is to op-
timize the ranking order, so the traditional squared error
loss function is actually not solving the right problem in
this scenario. Recently, some recommendation algorithms
which directly optimize for ranking have been proposed and
they demonstrate good recommendation accuracy. However,
these ranking-based approaches still work badly in sug-
gesting serendipitous items. There seems to be a trade-off
between recommendation accuracy and serendipity. In this
section we propose a Serendipitous Personalized Ranking
(SPR) method to explore the relation between accuracy and
serendipity.

We first describe the notational framework. U = {u1, u2,
..., um} denotes the set of all users and I = {i1, i2, ..., in}
denotes the set of all items. The ratings of U on I are stored
in a matrix R(m × n), and the entry rui represents the



rating user u assigns to item i. Let S and S̄ denote the set
of (u, i) pairs whose ratings are observed and unobserved
respectively. Further, we define I+u as the set of items that
user u likes:

I+u := {i ∈ I : (u, i) ∈ S, rui >= r+}

where r+ denotes a high rating value which depends on
the rating range of the dataset, following the methodology
used in [4]. Different from the traditional approach, most
ranking models use item pairs as training data and optimize
for correctly ranking the user-dependent item pairs instead of
approximating the single item ratings. As suggested by [28],
there is a much larger proportion of negative examples than
positive examples in the unobserved part. Both [4] and [28]
show that considering unobserved as negative can improve
top-N recommendation accuracy. So in our work we assume
that a user prefers all observed items that he/she gives high
ratings to (>= r+) over the non-observed items or the
observed items that he/she gives low ratings to (< r+). Thus
the training data Ds ∈ U × I × I is formalized as follows:

Ds := {(u, i, j)|i ∈ I+u ∧ j ∈ I \ I+u }

The triple (u, i, j) ∈ Ds means that user u prefers item i to
item j.

A. Traditional Personalized Ranking Approach

Many traditional personalized ranking methods maximize
the metric of area under the ROC curve (AUC). The AUC
of a user on a given model is defined as [29]:

AUC(u) :=
1

|I+u ||I \ I+u |
∑
i∈I+u

∑
j∈I\I+u

δ(r̂ui − r̂uj)

where r̂ui is a real-valued function of the model parameter
(omitted) which captures the preference of user u on item
i. A value of r̂ui − r̂uj > 0 means the model predicts that
user u prefers item i to item j. The average AUC can be
obtained by :

AUC :=
1

|U |
∑
u∈U

AUC(u)

With the notation of Ds it can be formalized as:

AUC =
∑

(u,i,j)∈Ds

zuδ(r̂ui − r̂uj) (1)

Here zu is a normalizing term:

zu =
1

|U ||I+u ||I \ I+u |
δ(x) is a 0-1 function, which corresponds to 0-1 loss:

δ(x) =

{
1 x > 0
0 otherwise

(2)

Since a 0-1 loss function is non-differentiable, some surro-
gate loss functions l(x) are used for optimization. There are

two main kinds of surrogate functions. One is logistic loss,
which corresponds to Bayesian personalized ranking [3]:

l(x) = ln(1 + e−x) (3)

Another is hinge loss, which leads to maximum margin
matrix factorization (MMMF) model [13]:

l(x) = max(0, 1− x) (4)

These loss functions can be easily solved by using stochastic
gradient descent.

B. Serendipitous AUC Optimization

The AUC metric evaluates the predicted probability that
a user’s preference values on his/her liked items are greater
than that on his/her disliked items (low rated or unrated).
However, users are more likely to provide feedback on
popular items because they are easily found. In other words,
the observed feedback is biased towards popular items
compared to users’ real interests. There is a much larger
proportion of ratings on the popular items than on the tail
items. Thus a model which is learned by optimizing the AUC
metric defined in Equation 1 will result in a large popularity
bias. That is, the popular items which are easily expected
will be much more favored and the unexpected items will
rarely appear in the top-N list. In order to suggest more
serendipitous items to the user, we propose a Serendipitous
AUC (SAUC) metric by adding a term of popularity weight
in Equation 1:

SAUC =
∑

(u,i,j)∈Ds

zuδ(r̂ui − r̂uj)(Pop(j))α (5)

where Pop(j) denotes the popularity of item j. Since the
observation that a user prefers an item to a popular item
provides more information to us in capturing his/her interest
than the observation that he/she prefers an item to an
unpopular item. Thus we multiply (Pop(j))α to promote
the triple (u, i, j) where j is popular.

In the experiments, we assign the popularity weight
Pop(j) ∝ Nj , where Nj is the number of ratings of item j
in the observed set S. The exponent α is a parameter which
can be tuned for optimal performance. Note that SAUC with
α = 0 is equivalent to AUC and a larger α means the model
will tend to suggest more tail items which may be highly
unexpected. By tuning the value of α we can improve both
accuracy and serendipity of the recommendation result.

SAUC can also be optimized using logistic loss (Equation
3) or hinge loss (Equation 4). We conduct experiments to
compare the two loss functions.

C. Collaborative Filtering Models

In order to explore the effectiveness of our SPR, we apply
it to various collaborative filtering algorithms. In this section,
we will first introduce the CF models that we use and then
show how to apply SPR to these models.



The latent factor model has good predictive accuracy
and is one of the main algorithms in collaborative filtering.
Most latent factor models are based on factorizing the user-
item rating matrix [9]. Named after the related Singular
Value Decomposition, these models are also known as SVD
models. According to [10], there are several variants of SVD
models which have high quality in the rating prediction
tasks. Thus we adopt them to explore the effectiveness of
our SPR in recommendation accuracy and serendipity1. SVD
models factorize the user-item rating matrix to the product
of two low rank matrices, namely the user factor pu and the
item factor qi, where pu and qi are both of f -dimension.
The rating of user u on item i is predicted as follows in the
basic SVD model:

r̂ui = bui + qTi pu (6)

where bui is a bias term which accounts for the user and
item effects. One extension to SVD is known as SVD++
[9]; it has a much higher quality in rating prediction than
the basic SVD:

r̂ui = bui + qTi

pu + |R(u)|− 1
2

∑
j∈R(u)

yj

 (7)

where R(u) denotes the set of items rated by user u, and∑
j∈R(u) yj represents the implicit preference of user u.
The neighborhood model is another important approach

in CF; it has an advantage over the latent factor model
in detecting local information. In the work of [10] they
integrate a neighborhood model with a latent factor model
to enrich each other:

r̂ui = bui + qTi pu + |R(u, i; k)|− 1
2

∑
j∈R(u,i;k)

cij (8)

Here R(u, i; k) stands for the k-nearest neighbors of item i
which are rated by user u. In Equation 8, the first two terms
represent the basic SVD model while the last term represents
the neighborhood model. We denote this integrated model
as SVDNbr.

These models are traditionally learned by optimizing
RMSE in the rating prediction problem. However, in top-N
recommendation, they can still work perfectly by optimizing
AUC and SAUC. This can be easily achieved by replacing
r̂ui and r̂uj in Equation 1 and Equation 5 with model
parametrization in Equation 6,7 and 8 respectively.

IV. EXPERIMENTS AND DISCUSSION

In this section, we present the experiments to evaluate
the performance of our serendipitous personalized ranking
method in both recommendation accuracy and serendipity.
We have chosen three popular latent factor models, namely
SVD, SVD++ and SVDNbr, which are known to give high

1SPR can also be applied to adaptive neighborhood models in the similar
way
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Figure 1. Rating distribution for Netflix and Yahoo! Music

performance in the rating prediction tasks. In our evaluation,
the three models are learned by optimizing AUC or SAUC,
which are denoted as method PR and SPR respectively
in the following sections. Two groups of experiments are
conducted to compare PR and SPR. The first group is aimed
to evaluate recall while the second group concentrates on
precision and serendipity in the top-N recommendation list.

A. Dataset

We use two popular datasets in our study: the Netflix data
[30] and the Yahoo! Music data [31]. The Netflix dataset
contains about 100 million ratings on a scale of 1 to 5 from
480, 189 users on 17, 770 movies. The provided dataset is
already split into a training set and a probe set. The Yahoo!
Music dataset contains about 250 million ratings on a scale
of 0 to 100 from 1, 000, 990 users on 624, 961 music items.
The provided Yahoo! Music dataset has been split into two
disjoint sets: a training set and a validation set.

Figure 1 plots the rating distributions of the Netflix and
Yahoo! Music datasets. Item bars in the horizontal axis are
ordered according to their popularity, most popular at the
left. Each bar contains 2% of items except for the last two
bars which represent the last 50% of less popular items in
Netflix and Yahoo! Music respectively. About 33% of ratings
in Netflix involve only the most popular 1.7% of items.
Similar to [4], we define this small set of popular items
as the short head and the rest as the long tail. The rating
distribution of Yahoo! Music is even more long tailed, where
the short head involves only the most popular 0.4% of items.

B. Experimental Setup

In the first group of experiments we follow the testing
methodology of [4] to evaluate recall. For each dataset,
known ratings are randomly split into two subsets: the
training set M and the test set T . The test set contains only
high ratings, 5-star for Netflix by following [4] and 80 or
higher for Yahoo! Music according to the official definition



of users’ liked music2. So we can reasonably state that T
contains items liked by the respective users. The creation
of M and T are based on their original splitting. For the
Netflix dataset, the training set M is the original training
set excluding the probe set, while the test set T consists
of all the high ratings in the probe set. A similar splitting
procedure is applied to the Yahoo! Music dataset, i.e., the
training set M is the original training set and the test set T
contains all the high ratings in the validation set.

We train our models over the training set M . Then for
each (u, i) pair in T , we randomly sample 1000 additional
items unrated by user u. Then we generate a ranking list
for all the 1001 items. In the top-N recommendation task,
if the rank of the test item i is smaller than or equal to N ,
we get a hit. Thus the overall recall is defined as follows:

recall@N =
#hits

|T |

where |T | is the number of test ratings. In order to evaluate
the performance of recommending methods on the aspect of
serendipity, the test set T is further split into two subsets,
Thead and Ttail. Thead consists of items in the short head
while Ttail contains items in the long tail. Thus recall@N
on Ttail can reflects the ability of the method in suggesting
serendipitous items.

In the second group of experiments, we randomly split
the original training set into a new training set Tr and a
ground truth set Gt. Gt contains 1/5 high rating items of
each user (5-star for Netflix and scored 80 or higher for
Yahoo! Music), while Tr contains all the remaining data.

In order to explore the performance of our method in sug-
gesting serendipitous items, we follow the metric proposed
by Murakami et al. [19] and Ge et al. [20] which captures the
two essential aspects of serendipity: unexpectedness and use-
fulness, and adapt their measures to our method. Particularly,
according to [20], an unexpected set of recommendations for
user u (UNEXP (u)) is defined as:

UNEXP (u) = RS(u) \ PM (9)

where PM is a set of recommendations generated by a
primitive model which is assumed of low unexpectedness.
RS(u) denotes the top-N recommendations generated by a
recommender system for user u. When an element of RS(u)
does not belong to PM , they consider it to be unexpected. In
our experiments, we follow the methodology of [21] using
the top-K items with the largest number of ratings to form
the PM recommendation list (where K = 100).

Based on the definition of unexpectedness, they introduce
serendipity measure as :

Srdp(u) =
|UNEXP (u) ∩ USEFUL(u)|

N
(10)

2http://kddcup.yahoo.com
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Figure 2. Recall of SVD-RMSE and SVD-RANK on Netflix

where USEFUL(u) denotes the useful (relevant) items for
user u and N is the size of recommendation set RS(u).
In our experiments, we consider an item to be useful to
an user if it is high rated by the user (USEFUL(u) =
{i|(u, i) ∈ Gt}). Thus, the average serendipity for top-N
recommendation is defined as follows:

Srdp@N =
1

|U |
∑
u∈U

|UNEXP (u) ∩ USEFUL(u)|
N

(11)
Besides, the well-known precision at N (P@N ) metric is
used to evaluate the precision performance. Through our
comparison, the number of latent factors is set to 100 in
both groups of experiments.

C. Recall

It has been pointed out by previous work [4] that al-
gorithms optimizing RMSE do not optimize rank in top-
N recommendation. We use experiments to confirm this
assumption at the beginning of our exploration. We ap-
ply the RMSE optimized basic SVD (denoted by method
SVD-RMSE) and the rank optimized SVD (denoted by
method SVD-RANK) in the same Netflix setting. Figure
2 illustrates the performance comparison between SVD-
RMSE and SVD-RANK, from which we can see that the
ranking method has a significant advantage over the RMSE
optimized method. For instance, the recall of SVD-RANK
at N = 10 is about 0.44 which has an improvement of 78%
over the recall of SVD-RMSE. The results demonstrate that
a ranking method is more appropriate for top-N scenario,
thus we adopt it in our serendipitous recommendation.

Figure 3 provides a first assessment of recommendation
accuracy and serendipity of PR and SPR on the Netflix
dataset. Figure 3(a) shows recall on the test set while Figure
3(b) shows recall on the long tail set (with the most rated
1.7% of items removed from the test set). In both figures
we can see that our proposed SPR outperforms PR regarding
recall at all values of N ∈ [1, 20]. For instance, in Figure
3(a) the recall of SPR at N = 10 is about 0.52, i.e., it has
a probability of 52% to place an appealing movie in the
top-10 recommendation list, which is higher than the recall
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Figure 3. Recall of PR and SPR on Netflix
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Figure 4. Recall of PR and SPR on Yahoo! Music

of PR (about 44% at N = 10). This result demonstrates
that our considering of popularity weight in personalized
ranking models will not hurt the overall recommendation
accuracy, instead, it can greatly improve it. Noting that
the gap between line PR and SPR in Figure 3(b) is wider
than that in Figure 3(a), which shows that our serendipitous
personalized ranking method has a greater advantage over
the traditional personalized ranking method in suggesting
serendipitous items.

Figure 4 shows a performance comparison of recall be-
tween PR and SPR on the Yahoo! Music dataset, with results
similar to Figure 3. This further proves that SPR outperforms
PR in recommendation accuracy and serendipity. In both
Figure 3 and Figure 4, we use the basic SVD model with
logistic loss. However, a similar improvement of SPR over
PR is found when applied to the extension models SVD++
and SVDNbr. Here we set the popularity weight α of SPR
to 0.5, which is optimal for recommendation accuracy. The
impact of α will be further discussed in a later section.

D. Precision and Serendipity

In this section, we will look at the precision and seren-
dipity of the recommendation lists generated by the methods
PR and SPR. Precision is evaluated by the well-known pre-
cision at N (P@N ) metric while serendipity is evaluated by

Srdp@N , which is defined in Equation 11. The popularity
weight α is also set to 0.5 here.

Table I shows the average precision and serendipity of
the recommended top-5 lists across all users on the Netflix
dataset. In this table, the results of PR and SPR applied to
the three latent factor models with two loss functions are
all listed. In the metric of P@5, SPR has an improvement
over PR of about 10% in all three models with either loss
function. That is to say our proposed serendipitous personal-
ized ranking method can give better overall recommendation
precision than the traditional personalized ranking method.
This observation informs us that precision and serendipity
may no longer be a trade-off in SPR. Now let us turn to
the results of Srdp@5 for further confirmation. Averagely,
SPR outperforms PR for about 55% with regard to Srdp@5.
Taking the model SVD++ with logistic loss as an example,
the Srdp@5 of SPR is 0.3036, i.e., about 30% of the
recommended items are both unexpected and useful, which
has an improvement of 58% over PR.

Table II presents the recommendation precision and seren-
dipity of PR and SPR on the Yahoo! Music dataset. The
same models and evaluation metrics are used as on the
Netflix dataset. From Table II we can obviously see that
our proposed serendipitous personalized ranking method



Table I
PRECISION AND SERENDIPITY ON NETFLIX

Model Loss Method P@5 Srdp@5

SVD
Logistic PR 0.3612 0.1443

SPR 0.3839 0.2534

Hinge PR 0.3339 0.1500
SPR 0.3778 0.2460

SVD++
Logistic PR 0.3958 0.1916

SPR 0.4316 0.3036

Hinge PR 0.3561 0.2458
SPR 0.4110 0.2932

SVDNbr
Logistic PR 0.3751 0.1521

SPR 0.4080 0.2962

Hinge PR 0.3435 0.2522
SPR 0.3781 0.2978

Table II
PRECISION AND SERENDIPITY ON YAHOO! MUSIC

Model Loss Method P@5 Srdp@5

SVD
Logistic PR 0.1454 0.0010

SPR 0.2803 0.1909

Hinge PR 0.1534 0.0122
SPR 0.2751 0.1995

SVD++
Logistic PR 0.1761 0.0113

SPR 0.3605 0.2445

Hinge PR 0.1805 0.0348
SPR 0.3568 0.2771

SVDNbr
Logistic PR 0.1513 0.0026

SPR 0.4626 0.3499

Hinge PR 0.2322 0.1286
SPR 0.4374 0.3834

has an advantage over the traditional personalized ranking
method with regard to both recommendation precision and
serendipity, as is the case on the Netflix dataset. However,
the average improvement in precision of SPR over PR on
Yahoo! Music is 110%, which is much larger than that on
Netflix. For instance, the precision of SPR applied to the
model SVD++ with logistic loss is 0.3605, which has an
improvement of 100% over PR applied to the same model,
while the precision improvement of the same model on
the Netflix dataset is only about 10%. What’s more, on
the aspect of serendipity, the gap between PR and SPR on
Yahoo! Music is even wider. PR has very low performance
on serendipity, with a Srdp@5 of 0.0010 in the basic SVD
model with logistic loss, which is not comparable to that
of SPR in the same model. The reason is that the Yahoo!
Music dataset has a larger popularity bias than the Netflix
dataset (see Figure 1). The traditional personalized ranking
method will bias towards the popular items because most
of the observed items are popular, making the recommenda-
tions lowly unexpected (i.e., most recommended items are
contained in PM). By adding a larger popularity weight
to those training cases (u, i, j) in which j is popular, the
popular (easily expected) items are penalized, thus SPR can
recommend more serendipitous items in the top-N list.
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Figure 5. Impact of popularity weight α on accuracy and serendipity on
Netflix
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Figure 6. Impact of popularity weight α on accuracy and serendipity on
Yahoo! Music

We conclude that our proposed serendipitous personalized
ranking method is a win-win, improving both recommenda-
tion accuracy and serendipity without increasing computing
complexity.

E. Impact of Popularity Weight

In this section we will discuss the impact of popularity
weight α in Equation 5 on both recommendation accuracy
and serendipity. In our experiments, α is tuned in the range
[0, 1]. Figure 5 illustrates the impact of α on the Netflix
dataset while Figure 6 shows the impact on the Yahoo!
Music dataset. From Figure 5 and Figure 6 we can see that
the optimal value of α with respect to P@5 is around 0.5
on both datasets. Too high or too low a value of α will
lead to a decrease in precision. On the Netflix dataset, the
poorest P@5 is achieved when α is set to 1 while on the
Yahoo! Music dataset P@5 is worst when α is set to 0. This
difference again reflects the different popularity bias in the
two datasets.

Figure 5(b) illustrates the change of serendipity with α
on the Netflix dataset, from which we can see that Srdp@5
increases with the growth of α in the range of [0, 0.5] and
reaches its best around 0.5. A larger popularity weight α
will lead to a poorer performance on serendipity. Similar
results are observed on the Yahoo! Music dataset in Figure
6(b). This observation informs us that there is a trade-off
between popularity weight and serendipity. If the popularity
weight α is too high, the model will be optimized to
favor long tail items which may be not useful to the user,
thus the usefulness will be reduced. If α is too low, the
model will bias towards the popular items which are lowly



unexpected, thus the unexpectedness will be reduced. So in
both situations, the recommendation serendipity will drop.

Noting that both P@5 and Srdp@5 achieve their best
when α is around 0.5 , this states that our SPR method can
optimize accuracy and serendipity simultaneously. Further,
Figure 5 and Figure 6 clearly demonstrate the improvement
on accuracy and serendipity when α is set to the value of
0.5 over the value of 0. Since an α value of 0 represents the
performance of the traditional personalized ranking method;
this again shows the effectiveness of our serendipitous
personalized ranking method.

V. CONCLUSIONS

In this paper we propose a serendipitous personalized
ranking method to explore the relation between recom-
mendation accuracy and serendipity. Our method extends
traditional personalized ranking methods by considering
item popularity in AUC optimization. We apply it to the
various variants of SVD models and conduct experiments
to compare it with the traditional personalized ranking
methods. The results show that our method improves both
recommendation accuracy and serendipity significantly.
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