
Causal Impact for App Store Analysis

William Martin
University College London, United Kingdom

w.martin@ucl.ac.uk

ABSTRACT

App developers naturally want to know which of their re-
leases are successful and which are unsuccessful. Such in-
formation can help with release planning and requirements
prioritisation and elicitation. To address this problem, I per-
formed causal analysis on 52 weeks of popular app releases
from Google Play and Windows Phone Store. The results
reveal properties of successful releases in multiple app stores,
and showcase causal analysis as a useful technique for devel-
opers seeking to know more about their software releases.

Keywords

App Store Mining and Analysis, Causal Impact

1. INTRODUCTION
App developers are often motivated to adopt high fre-

quency release strategies [3, 6, 7, 8, 10, 12, 16, 17]. Updates
can be made for reasons beneficial to users such as for fixes,
improvements and new features, and they can also be made
for reasons not beneficial to users, such as updating adver-
tisement libraries [8]. Sometimes updates are made simply
to try and stimulate an app’s relative performance in the
store [3], although high code churn can lead to decreased rat-
ings [7]. Popular apps have been found to have high update
frequencies, which do not correlate with their ratings [17].

Developers are privy to information about their own apps,
such as sales and cash flow; as outsiders we do not have this
information. However, app stores provide a method of mea-
suring app performance, in the form of download ranks, rat-
ings and reviews. I recorded metadata about the most pop-
ular apps in Google Play and Windows Phone Store over a
52 week period, in order to track their relative performance.
Causal Impact Analysis was performed on 1,547 releases to
identify those which may have caused significant changes in
app performance.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ACM Student Research Competition (SRC) ’16 Austin, Texas USA

c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4205-6/16/05.

DOI: http://dx.doi.org/10.1145/2889160.2891033

Figure 1: Causal impact graph for Carp Fishing
Simulator. The solid line shows the observed vec-
tor, the dotted line shows the counter-factual pre-
diction, and the shaded region indicates the 95%
confidence interval. After the release (vertical dot-
ted line) the observed rating is shown to deviate
significantly from the prediction.

2. CAUSAL IMPACT ANALYSIS
Causal inference [11, 13] is a technique used for exploring

events of significant impact on time series data. It is used in
economic forecasting, and also, recently, in software defect
prediction [4, 5, 26]. Causal Impact Analysis [1, 2] is a form
of causal inference, that works by training on a pre-event
data vector in order to make a counter-factual prediction.
This prediction tells us the most likely course of the vector
after the event, from which we can determine whether a
significant change has occurred in the observed data vector.

The counter-factual predictor has three components: i)
local trend, which works by sampling a normal distribution
for noise between time points, based on the variance in the
pre-event time period; ii) (optional) seasonal trend, which
applies a repeating bias that sums to zero over its time pe-
riod; iii) control trend, which applies coefficients to a set of
data vectors from external unrelated objects, and serves to
account for global variance in the model.

Fig. 1 shows an example significant release, identified by
my analysis, for the “Carp Fishing Simulator”.

3. STUDY DESIGN
I collected information on the rating, download rank, num-

ber of ratings and number of ratings in the last week from
307 Google Play apps and 726 Windows Phone Store apps
over 52 weeks.

I applied Causal Impact Analysis using the CausalImpact
framework, with no seasonal trend, and using the set of apps
with no releases over the 52 week time period for the control
trend. This set of apps consists of 97 apps in the Google Play
dataset, and 397 apps in the Windows Phone Store dataset.



Google

Windows

Figure 2: Box plots for Price and Release Text size
for Google and Windows, comparing (I)mpactful
against (NI) non-impactful releases, and (+veR) re-
leases that positively impact rating against (-veR)
releases that negatively impact rating.

The set of apps with potentially impactful releases consisted
of 210 Google Play, and 539 Windows Phone apps; the set
of releases for which there was sufficient prior and posterior
information to perform causal impact analysis was 1,547.

I set a 99% confidence interval on results, meaning that
only deviations with a less than 1% chance of being observed,
if there had been no impact, were deemed significant. A
separate experiment needed to be run for each performance
metric and release, in order to train a separate predictor in
each case. Each experiment then returned a p-value indi-
cating the likelihood that the cumulative difference between
the observed vector and the prediction could have occurred.

4. RESULTS
After applying causal impact analysis to releases in Google

Play and Windows Phone Store, 301 out of 754 releases
(40%) were found to be impactful in Google Play, and 437
out of 793 (55%) were found to be impactful in Windows
Phone Store. Each impactful release was found to affect at
least one of the four performance metrics positively or neg-
atively. In both stores, approximately half of the releases
impacted rating in some way: 20% positively impacting rat-
ing and 30% negatively impacting rating.

I grouped the impactful releases together in each store,
in order to compare against releases which were not found
to significantly impact app performance. I also compared
the set of impactful releases that positively affected rating,
against those that negatively impacted rating, in order to
identify ways in which developers might be able to increase
their ratings. The following candidate causes were consid-
ered, for the differences between these groups of releases:
price, day of release, and length of release description text.

As shown in Fig. 2, across both stores, impactful releases
were more likely to positively impact rating if they were
more expensive. The length of release text also plays a
factor: releases with longer (presumably more descriptive)
release text, are more likely to be impactful, and to posi-
tively impact rating. Fig. 3 shows histograms for the releases
on each day of the week, comparing impactful against non-
impactful releases. We can see that releases are more likely
to be impactful if released between Saturday and Tuesday
in both app stores.

More results can be found in the technical report [15].

Google Windows

Figure 3: Histograms for day of release comparing
impactful (white) and non-impactful (grey) releases,
for Google and Windows.

5. RELATED WORK
Past studies on app store release planning have looked into

day of release [6, 10], potential reasons for updates [3, 8] and
update frequency [17]. I built on this work and looked at
releases which sigificantly impact app performance in their
app stores, using empirical data mined from app stores as
is commonly used in app store analysis [9, 14, 18, 22, 24,
25]. Previous studies have compared Blackberry and An-
droid stores [23], and compared multiple Android stores [20,
21]; I compared properties between releases in Google Play
and Windows Phone Stores. Past studies such as the one
by Ruiz et al. [19] have used longitudinal data to monitor
changes in rating; this study monitors such metrics, and
looks for releases which may have caused significant devia-
tions to them.

6. THREATS TO VALIDITY
In order to imply a causal relationship between releases

and subsequent app performance, we need to apply a very
large assumption indeed: that no external events may have
caused the observed changes to an app’s relative perfor-
mance. Clearly, this assumption cannot be made, and so
we cannot assume true causality between releases and the
changes observed. However, we can use causal impact analy-
sis to identify those releases after which a performance met-
ric changes significantly; then, by grouping such ‘impactful’
releases together, we can ameliorate risk of external factors
as causes for the observed changes, and can identify useful
properties and heuristics for developers.

7. CONCLUSIONS AND FUTURE WORK
I have collected app metadata for the consistently most

popular apps in Google Play and Windows Phone Store over
a 52 week period. By performing causal impact analysis on
individual releases, I have identified a subset of releases after
which their app’s performance changed significantly. I have
grouped together these ‘significant releases’ in order to iden-
tify candidate causes for their impact, and found that price,
day of release and descriptions of release content are factors
in a release’s likelihood to be impactful, and to positively
impact app rating.

This study has shown that causal impact analysis is a
useful method for identifying individual releases which may
have affected an app’s performance. This is particularly
useful for developers, who may wish to run the tool on their
own releases to work out specific successes or failures, in
order to adapt their releasing or requirements development
approach going forward.



8. REFERENCES
[1] K. H. Brodersen. CausalImpact. https:

//google.github.io/CausalImpact/CausalImpact.html.
Retrieved 28th May 2015.

[2] K. H. Brodersen, F. Gallusser, J. Koehler, N. Remy,
and S. L. Scott. Inferring causal impact using bayesian
structural time-series models. Annals of Applied
Statistics, 9:247–274, 2015.

[3] S. Comino, F. M. Manenti, and F. Mariuzzo. Updates
Management in Mobile Applications. iTunes vs Google
Play. Centre for Competition Policy (CCP),
University of East Anglia, 2015.

[4] C. Couto, P. Pires, M. T. Valente, R. S. Bigonha, and
N. Anquetil. Predicting software defects with causality
tests. Journal of Systems and Software, 93:24–41,
2014.

[5] C. Couto, C. Silva, M. T. Valente, R. Bigonha, and
N. Anquetil. Uncovering causal relationships between
software metrics and bugs. In Proceedings of the 16th
European Conference on Software Maintenance and
Reengineering (CSMR’12), pages 223–232, 2012.

[6] D. Datta and S. Kajanan. Do app launch times
impact their subsequent commercial success? an
analytical approach. In International Conference on
Cloud Computing and Big Data (CloudCom-Asia),
pages 205–210. IEEE, 2013.

[7] L. Guerrouj, S. Azad, and P. C. Rigby. The influence
of App churn on App success and StackOverflow
discussions. In 22nd IEEE International Conference
on Software Analysis, Evolution, and Reengineering
(SANER’15), pages 321–330, 2015.

[8] J. Gui, S. Mcilroy, M. Nagappan, and W. G. Halfond.
Truth in advertising: The hidden cost of mobile ads
for software developers. In Proceedings of the 37th
International Conference on Software Engineering
(ICSE’15), 2015.

[9] M. Harman, Y. Jia, and Y. Zhang. App Store Mining
and Analysis: MSR for App Stores. In Proceedings of
the 9th IEEE Working Conference on Mining Software
Repositories (MSR’12), pages 108–111, 2012.

[10] N. Henze and S. Boll. Release your app on sunday eve:
Finding the best time to deploy apps. In Proceedings
of the 13th International Conference on Human
Computer Interaction with Mobile Devices and
Services (MobileHCI’11), pages 581–586, 2011.

[11] P. W. Holland. Statistics and causal inference. Journal
of the American Statistical Association, 81(396):pp.
945–960, 1986.

[12] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams. Do
faster releases improve software quality? an empirical
case study of Mozilla Firefox. In Proceedings of the 9th
IEEE Working Conference on Mining Software
Repositories (MSR’12), pages 179–188, 2012.

[13] M. H. Maathuis and P. Nandy. A review of some
recent advances in causal inference. arXiv preprint
arXiv:1506.07669, 2015.

[14] W. Martin, M. Harman, Y. Jia, F. Sarro, and
Y. Zhang. The app sampling problem for app store
mining. In Proceedings of the 12th IEEE Working
Conference on Mining Software Repositories
(MSR’15), pages 123–133, 2015.

[15] W. Martin, F. Sarro, and M. Harman. Causal impact
analysis applied to app releases in Google Play and
Windows Phone Store. Technical report, University
College London, 2015.

[16] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and
M. Harman. A survey of app store analysis for
software engineering. Technical report, University
College London, 2016.

[17] S. McIlroy, N. Ali, and A. E. Hassan. Fresh apps: an
empirical study of frequently-updated mobile apps in
the google play store. Empirical Software Engineering,
pages 1–25, 2015.

[18] R. Minelli and M. Lanza. Samoa – a visual software
analytics platform for mobile applications. In
Proceedings of 29th International Conference on
Software Maintenance (ICSM’13), 2013.

[19] I. J. Mojica, M. Nagappan, B. Adams, T. Berger,
S. Dienst, and A. E. Hassan. An examination of the
current rating system used in mobile app stores. IEEE
Software, 2015. To appear.

[20] Y. Y. Ng, H. Zhou, Z. Ji, H. Luo, and Y. Dong. Which
android app store can be trusted in china? In
Proceedings of the 2014 IEEE 38th Annual Computer
Software and Applications Conference, COMPSAC
’14, pages 509–518, Washington, DC, USA, 2014.
IEEE Computer Society.

[21] T. Petsas, A. Papadogiannakis, M. Polychronakis,
E. P. Markatos, and T. Karagiannis. Rise of the planet
of the apps: A systematic study of the mobile app
ecosystem. In Proceedings of the 2013 Conference on
Internet Measurement Conference, IMC ’13, pages
277–290, New York, NY, USA, 2013. ACM.

[22] F. Sarro, A. A. Al-Subaihin, M. Harman, Y. Jia,
W. Martin, and Y. Zhang. Feature lifecycles as they
spread, migrate, remain and die in app stores. In
Proceedings of the Requirements Engineering
Conference, 23rd IEEE International (RE’15). IEEE,
2015.

[23] M. D. Syer, B. Adams, Y. Zou, and A. E. Hassan.
Exploring the development of micro-apps: A case
study on the blackberry and Android platforms. In
Proceedings of the 2011 IEEE 11th International
Working Conference on Source Code Analysis and
Manipulation (SCAM’11), pages 55–64, 2011.

[24] M. D. Syer, M. Nagappan, A. E. Hassan, and
B. Adams. Revisiting prior empirical findings for
mobile apps: An empirical case study on the 15 most
popular open-source Android apps. In Proceedings of
the 2013 Conference of the Center for Advanced
Studies on Collaborative Research (CASCON’13),
pages 283–297, 2013.

[25] Y. Yang, J. Stella Sun, and M. W. Berry. APPIC:
Finding The Hidden Scene Behind Description Files
for Android Apps. Technical report, Dept. of
Electrical Engineering and Computer Science
University of Tennessee, 2014.

[26] P. Zheng, Y. Zhou, M. R. Lyu, and Y. Qi. Granger
causality-aware prediction and diagnosis of software
degradation. In IEEE International Conference on
Services Computing (SCC’14), pages 528–535, 2014.


