GreenMalloc

Allocator Optimisation for Industrial Workloads

Aidan Dakhama W.B.Langdon Hector D. Menendez Karine Even-Mendoza
King's College London & University College London

Symposium on Search-Based Software Engineering (SSBSE)

1715

The Problem: Allocators are Tricky

The Problem

Memory allocators (like GLIBC, TCMAL-
LOC) have complex parameters.

Default settings are “one-size-fits-all”
and are often inefficient for specific,
complex, workloads.

The Impact

For long-running industrial workloads
(e.g., gemb), this leads to:

» Wasted memory
» Slower performance
» Increased energy consumption

2/15

The Core Challenge

Challenge 1: Complexity Challenge 2: Speed

The parameter search space is high- Optimising directly on gem5 is imprac-
dimensional, mixed discrete-continu- tical - a single evaluation run can take
ous. Manual tuning is difficult. hours or even days.

3/15

Our Solution: GreenMalloc

i1
A framework to automatically find enerqy-

and memory-efficient allocator configurations

using a fast proxy benchmark. .

4/15

The Proxy: RAND__MALLOC

A lightweight proxy benchmark to explore allocator parameters efficiently.

c

" e
Gener- Emulate
Trace System Behaviour
Generate a seed ate Proxy Exerci
xercises memory
RAND_MALLOC .
t f th | -
' synthetic workload. for thg full S)F/)ster¥1

This avoids the prohibitive cost of optimising directly on gem5, which can take hours or days per run.

S)/AS)

The GreenMalloc Workflow

» Explore: Use a genetic algorithm to
optimise over the fast RAND_MALLOC
proxy.

» Evaluate: Optimise for green and
performant characteristics - Peak Memory,
and Instructions.

» Transfer: Select the pareto-optimal

solutions, and validate them against gem5.

» Validate: Keep the best transferred
configurations on the real gem5 system to
get final results

RAND_MALLOC

Proxy S LRREREEE gem> Trace
via perf &
valgrind
GLIBC/TCMALLOC
Allocators Injected
NSGA-II
Optimisation

Pareto-Optimal
Parameters

gemb5 Validation

6/15

The Search Problem

L
Algorithm

NSGA-II
Population: 24
Generations: 500

<

Objective
1: Green
Minimise Peak
Heap Usage
(Measured by valgrind)

@R

Objective 2:
Performance
Minimise In-
struction Count
(Measured by perf)

7715

Experimental Setup

We tested the transferability with 50 C programs on gemb5’s System Emulation (SE) mode, comparing
four configurations. We also repeated each search 5 times, across all configurations.

Allocator

Tuning

Parameter Count

Search Space

GLIBC
GLIBC
TCMALLOC
TCMALLOC

Default
Tuned
Default
Tuned

N/A
7
N/A
13

N/A
~ 7 x 10%°
N/A
~ 2 x 10*

8/15

RQ1: Did the Search Find Trade-Offs?

Yes. The search successfully identified different trade-off profiles for each allocator.

GLIBC TCMALLOC
> Showed more gradual »> Had a much steeper trade-off
trade-offs (slope: -0.216). (slope: -3.17).
» Produced larger Pareto fronts » Produced smaller fronts (avg. 1.6
(avg. 3 solutions). solutions).
» This suggests its default settings » This suggests it operates closer
have more room for optimisation. to its optimal boundaries,

requiring more aggressive
trade-offs.

9/15

RQ2: Results on gem5 (Memory)

Average Heap Size

» GLIBC: Showed clear improvement.

> Mean reduced by ~4% (180.4M to 173.3M bytes).

» Tighter standard deviation, indicating more stability.
>

>

TCMALLOC: Mean was nearly unchanged.
Showed less variance, improving predictability.

" N
glibc TCMalloc 10/15

RQ2: Results on gem5 (Memory)

Peak Heap & Release Rate

> Peak Heap: No significant
reductions for either allocator.

> This suggests peak usage was
already near minimum.

»> Memory Release Rate:

> GLIBC: Benefitted significantly.
Free rate rose from 0.0080 to
0.0196 (~2.4x faster).

» TCMALLOC: Also improved, with
a higher average release rate.

Peak Heap Size

Memory Release Rate

2.36x10°

238x10°
Bl Default giibc
Optimised glibc

Default TCMalloc
B Optimised TCMalloc

234108

v

B Default glibc

=1 Optimised giibc

=1 Default TCMalloc

[Optimised TCMalloc

,,,,,,,,,,,,,,,,,, .+

2.32x10°

Bytes

2.26x10°

o
Jins

2.24x10°

2.22x10°

2.20x108 ¢

0.00

0.01

& D N
& & R
& o‘?‘@ < o&@
glibc TCMalloc

O
e % o K
< o‘?@ B 0&“

glibc TCMalloc

11715

RQ2: Results on gem5 (Performance)

Instruction Counts

» Both allocators saw small but measurable reductions
in instructions.

» GLIBC: Reduced mean instructions from 4.992 x 10°
t0 4.990 x 10°, with tightened deviation.

» TCMALLOC: Reduction in mean instructions from
4.77 x 10° to 4.76 x 10°, with less variance.

Instructions

Instruction counts (perf)

W Optimised glibc.

W Defaiif TCMallog

W Optimised TCMalloc

glibc

TCMalloc

12/15

RQ2: Results on gem5 (Best Case)

Conclusion

» GREeNMALLOC found one TCMALLOC configuration that was a clear “win-win”".
» It achieved a 4.65% reduction in instruction count...

» ...and a 2.06% reduction in peak heap usage at the same time.

» This shows the potential of the approach.

13715

Conclusion & Future Work

Conclusion

» We introduced GREENMALLOC, a
search-based framework for
allocator tuning.

> We utilise a lightweight proxy to
efficiently optimise complex
systems.

» We show gains for both GLIBC
and TCMALLOC on gem5.

Future Work

» Apply this strategy to other
aspects of complex software.

» Target gem5's full system (FS)
mode.
> Explore broader targets,
including:
» Virtual Machines (VMs)

> Containerisation Systems
» Other Simulators

14715

Thank You

Check out our tool below

Aidan Dakhama

aidan.dakhama®@kcl.ac.uk

15715

