
GreenMalloc
Allocator Optimisation for Industrial Workloads

Aidan Dakhama W.B. Langdon Hector D. Menendez Karine Even-Mendoza

King’s College London & University College London

Symposium on Search-Based Software Engineering (SSBSE)

1 / 15



The Problem: Allocators are Tricky

The Problem

Memory allocators (like GLIBC, TCMAL-
LOC) have complex parameters.

Default settings are “one-size-fits-all”
and are often inefficient for specific,
complex, workloads.

The Impact

For long-running industrial workloads
(e.g., gem5), this leads to:

I Wasted memory

I Slower performance

I Increased energy consumption

2 / 15



The Core Challenge

Challenge 1: Complexity

The parameter search space is high-
dimensional, mixed discrete–continu-
ous. Manual tuning is difficult.

Challenge 2: Speed

Optimising directly on gem5 is imprac-
tical – a single evaluation run can take
hours or even days.

3 / 15



Our Solution: GreenMalloc

“ A framework to automatically find energy-

and memory-efficient allocator configurations

using a fast proxy benchmark. ”

4 / 15



The Proxy: RAND_MALLOC

A lightweight proxy benchmark to explore allocator parameters efficiently.

CLIPBOARD-LIST

Trace System
Generate a seed

trace from the real
system (gem5).

ARROW-RIGHT

COGS

Gener-
ate Proxy
RAND_MALLOC
creates a fast,

synthetic workload.

ARROW-RIGHT

REDO

Emulate
Behaviour

Exercises memory
allocation patterns,
acting as a proxy
for the full system.

This avoids the prohibitive cost of optimising directly on gem5, which can take hours or days per run.

5 / 15



The GreenMalloc Workflow

I Explore: Use a genetic algorithm to
optimise over the fast RAND_MALLOC
proxy.

I Evaluate: Optimise for green and
performant characteristics – Peak Memory,
and Instructions.

I Transfer: Select the pareto-optimal
solutions, and validate them against gem5.

I Validate: Keep the best transferred
configurations on the real gem5 system to
get final results

gem5 Trace
RAND_MALLOC

Proxy

NSGA-II
Optimisation

GLIBC/TCMALLOC
Allocators Injected

gem5 Validation

via perf &
valgrind

Pareto-Optimal
Parameters

6 / 15



The Search Problem

COGS

Algorithm
NSGA-II

Population: 24
Generations: 500

LEAF

Objective
1: Green
Minimise Peak
Heap Usage

(Measured by valgrind)

Tachometer-Alt

Objective 2:
Performance

Minimise In-
struction Count

(Measured by perf)

7 / 15



Experimental Setup

We tested the transferability with 50 C programs on gem5’s System Emulation (SE) mode, comparing
four configurations. We also repeated each search 5 times, across all configurations.

Allocator Tuning Parameter Count Search Space

GLIBC Default N/A N/A

GLIBC Tuned 7 ≈ 7 × 1035

TCMALLOC Default N/A N/A

TCMALLOC Tuned 13 ≈ 2 × 1041

8 / 15



RQ1: Did the Search Find Trade-Offs?

Yes. The search successfully identified different trade-off profiles for each allocator.

GLIBC

I Showedmore gradual
trade-offs (slope: -0.216).

I Produced larger Pareto fronts
(avg. 3 solutions).

I This suggests its default settings
have more room for optimisation.

TCMALLOC

I Had amuch steeper trade-off
(slope: -3.17).

I Produced smaller fronts (avg. 1.6
solutions).

I This suggests it operates closer
to its optimal boundaries,
requiring more aggressive
trade-offs.

9 / 15



RQ2: Results on gem5 (Memory)

Average Heap Size

I GLIBC: Showed clear improvement.

I Mean reduced by≈4% (180.4M to 173.3M bytes).

I Tighter standard deviation, indicating more stability.

I TCMALLOC:Mean was nearly unchanged.

I Showed less variance, improving predictability.

1.69×108

1.71×108

1.73×108

1.75×108

1.77×108

1.79×108

1.81×108

1.83×108

1.85×108

1.87×108

1.89×108

1.91×108

1.93×108

glibc TCMalloc

{ {

glibc TCMalloc

{ {Def
au

lt

Optim
is

ed

Def
au

lt

Optim
is

ed

B
y

te
s

Average Heap Size

Optimised glibc

Default glibc

Default TCMalloc

Optimised TCMalloc

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Def
au

lt

Optim
is

ed

Def
au

lt

Optim
is

ed

B
y

te
s

Memory Release Rate

Optimised glibc

Default glibc

Default TCMalloc

Optimised TCMalloc

10 / 15



RQ2: Results on gem5 (Memory)

Peak Heap & Release Rate

I Peak Heap: No significant
reductions for either allocator.

I This suggests peak usage was
already near minimum.

I Memory Release Rate:

I GLIBC: Benefitted significantly.
Free rate rose from 0.0080 to
0.0196 (≈2.4x faster).

I TCMALLOC: Also improved, with
a higher average release rate.

{ {

2.18×108

2.20×108

2.22×108

2.24×108

2.26×108

2.28×108

2.30×108

2.32×108

2.34×108

2.36×108

2.38×108

Def
au

lt

Optim
is

ed

Def
au

lt

Optim
is

ed

B
yt

es

Peak Heap Size 

Optimised glibc

Default glibc

Default TCMalloc

Optimised TCMalloc

glibc TCMalloc

1.69×108

1.71×108

1.73×108

1.75×108

1.77×108

1.79×108

1.81×108

1.83×108

1.85×108

1.87×108

1.89×108

1.91×108

1.93×108

glibc TCMalloc

{ {

glibc TCMalloc

{ {Def
au

lt

Optim
is

ed

Def
au

lt

Optim
is

ed

B
y

te
s

Average Heap Size

Optimised glibc

Default glibc

Default TCMalloc

Optimised TCMalloc

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Def
au

lt

Optim
is

ed

Def
au

lt

Optim
is

ed

B
y

te
s

Memory Release Rate

Optimised glibc

Default glibc

Default TCMalloc

Optimised TCMalloc

11 / 15



RQ2: Results on gem5 (Performance)

Instruction Counts

I Both allocators saw small but measurable reductions
in instructions.

I GLIBC: Reduced mean instructions from 4.992× 109

to 4.990× 109, with tightened deviation.

I TCMALLOC: Reduction in mean instructions from
4.77× 109 to 4.76× 109, with less variance.

glibc TCMalloc

{ {Def
au

lt

Optim
is

ed

Def
au

lt

Optim
is

ed

4.4×109

4.6×109

4.8×109

5.0×109

5.2×109

5.4×109

5.6×109

5.8×109

6.0×109

6.2×109

6.4×109

6.6×109

6.8×109

7.0×109

7.2×109

7.4×109

7.6×109

7.8×109

In
st

ru
ct

io
n

s

Instruction counts (perf)

Optimised glibc

Default glibc

Default TCMalloc

Optimised TCMalloc

12 / 15



RQ2: Results on gem5 (Best Case)

Conclusion

I GreenMalloc found one TCMALLOC configuration that was a clear “win-win”.

I It achieved a 4.65% reduction in instruction count...

I ...and a 2.06% reduction in peak heap usage at the same time.

I This shows the potential of the approach.

13 / 15



Conclusion & Future Work

Conclusion

I We introduced GreenMalloc, a
search-based framework for
allocator tuning.

I We utilise a lightweight proxy to
efficiently optimise complex
systems.

I We show gains for both GLIBC
and TCMALLOC on gem5.

Future Work

I Apply this strategy to other
aspects of complex software.

I Target gem5’s full system (FS)
mode.

I Explore broader targets,
including:
I Virtual Machines (VMs)
I Containerisation Systems
I Other Simulators

14 / 15



Thank You

Check out our tool below

Aidan Dakhama
aidan.dakhama@kcl.ac.uk

15 / 15


