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Abstract

Commercial GeneChips provide highly redundant but noisy data. Rapid identification and subse-
quent rejection of bad data effectively increases the quality of the remaining data at little cost whilst
serving as a basis for better understanding the bio-physics of short surface mounted DNA sequences.

Affymetrix High Density Oligonuclotide Arrays (HDONA) simultaneously measure expression of
thousands of genes using millions of probes. Regular expressions can be evolved from a Backus-Naur
form (BNF) context-free grammar using tree based strongly typed genetic programming written in gawk.
Fitness is given by egrep. The quality of individual HG-U133A probes is indicated by its correlation
across 6685 human tissue samples from NCBI’s GEO database with other measurements for the same
gene. Low concordance indicates a poor probe. The evolved data mined motif is better at predicting
poor DNA sequences than an existing human generated RE, suggesting runs of Cytosine and Guanine
and mixtures should all be avoided. Section 4.6 gives more RE GP gawk implementation details.

1 Introduction
Typically Affymetrix GeneChips (e.g. HG-U133A) measure gene expression at at least eleven points along
the gene. Individual measurements are given by short (25 base) DNA sequences, known as probes. These
are complementary to corresponding locations in genes. Being complementary, the gene product (messenger
RNA) preferentially binds to the probe. Cf. Figure 2. Half a million probes are placed on a glass slide in
a square grid pattern. A fluorescent dye is used to measure how much mRNA is bound to each probe.

Figure 1: Correlation coefficients between 11 probes for gene “S100 calcium binding protein A11” S100A11.
Nine of the perfect match are correlated but probes PM1 and PM2 (note negative values, in blue) are not.
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http://www.cs.ucl.ac.uk/staff/W.Langdon
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Figure 2: Schematic of an Affymetrix probe (209649 at PM5, left) bound with complementary target
sequence (right). DNA double helix represented as straight vertical ladder. Note complementary T–A and
C–G base bindings are shown by red rectangles. The 25 bases of the probe are tethered to the glass slide
by a flexible linker (black lower left). Firmly bound target sequences can be detected by treatment with a
florescent dye, whose location is detected with a laser and an optical microscope. The florescent intensity
is approximately proportional to the amount of bound target and so gives some indication of target gene
activity.
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While nothing is simple in Biology, to a first approximation the amount of mRNA produced by a
gene should be the same no matter which part of the mRNA molecule is bound to a probe. Affymetrix
groups probes into probesets. Each probeset targets a gene. Excluding controls, the HG-U133A has 22 215
probesets. For simplicity we concentrate upon the 21 765 HG-U133A probesets with exactly 11 probes.
Figure 1 shows for an example probeset its 110 correlations as a “heatmap” (yellow/lighter corresponds to
greater consistency between pairs of probes).

There are several biological reasons which might lead to probes on the same gene giving consistently
unrelated readings. (Alternative splicing, alternative polyadenylation and 3’-5’ degradation, come to mind
[Langdon et al., 2007a].) However these do not explain all of the many cases of poor correlation. In
[Langdon, 2008] we found some technological reasons. In particular [Langdon, 2008] showed that probes
containing a large ratio of Guanine (G) to Adenosine (A) bases are likely to perform badly. Subsequently
we have found that runs of Gs (which will tend to have a high G/A ratio) also tend to indicate problem
probes [Upton et al., ]. This has lead us to ask if there are other sequences which might indicate dodgy
probes.

The next section will describe the preparation of datasets containing the correlation coefficients and
probe sequences. Section 4 describes the evolutionary algorithm use to create search strings for egrep.
Section 5 describes how well the GP does. Section 6 uses the evolved motif to suggest potential Phys-
ical explanations for poor probes. Finally, in Section 7 we conclude that several regular expressions,
e.g. G(G|C){4}, in additions to GGGG, can be used together to locate poor probes.

2 Earlier Evolutionary Algorithm work using Grammars

Existing research on using grammars to constrain the evolution of programs can be broadly divided in
two: Grammatical evolution [O’Neill and Ryan, 2001] based largely in Ireland and work in the far east by
Wigham, Wong and McKay. (See, for example, [Whigham, 1996; Whigham and Crapper, 1999], [Wong
and Leung, 1996] and [McKay et al., 2006].)

In grammatical evolution the genotype can be thought of as a variable length linear vector of bytes
rather than a tree. Programs are generated by recursively following a BNF grammar. The choice of which
option in each rule is to be used is determined by the next byte in the vector. The 8-bit value is converted
to a substitution option simply by reducing the integer by modulus the number of options in the rule.
If recursively expanding the BNF requires processing more rules than there are bytes in the genotype,
grammatical evolution simply starts again at the start of the byte vector. If it requires less, the additional
bytes are simply ignored.

The grammar systems employed by Wigham Wong and Mckay are more sophisticated and the tree
shaped genotype is more integrated with the grammar.

There is quite a body of work on using evolution to induce formal grammars. E.g. [Nikolaev and Slavov,
1998] tackelled the Tomita regular expression benchmarks, whilst [Langdon, 1998] evolved a context free
grammar. [Cetinkaya, 2007] used grammatical evolution to create regular expression for processing HTML.

Ross induced stochastic regular expressions from a number of grammars to classify proteins from their
amino acid sequence [Ross, 2001]. Typically his grammars had eight alternatives. In Stockholm regular
expressions have been evolved to search for similarities between proteins, again based on their amino acid
sequences [Handstad et al., 2007]. Whilst Brameier in Denmark used amino acids sequences to predict the
location of proteins by applying a multi-classifier [Langdon and Buxton, 2001] linear GP based approach
[Brameier et al., 2007] (although this can be done without a grammar [Langdon and Banzhaf, 2005]). A
similar technique has also been applied to study microRNAs [Brameier and Wiuf, 2007].

The next section describes our single stage strongly typed tree based GP being applied to an important
DNA problem: explaining why some DNA sequences in wide spread commercial use make poor GeneChip
probes.
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3 Preparation of Training Data

3.1 Calculation of Correlation Coefficients for GEO GeneChips

For completeness this section repeats the description of the calculation of the correlation coefficients given in
[Langdon, 2008]. As part of major Bioinformatics datamining exercise, all the human Affymetrix GeneChips
in the USA National Center for Biotechnology Information’s GEO [Barrett et al., 2007] had been down
loaded [Langdon et al., 2007b]. This included CEL files from 6 685 HG-U133A GeneChips, each containing
half a million data points. The measured mRNA was collected from a wide range of Human tissues and
disease states.

Since it is impossible to accurately control the total amount of mRNA dropped on each GeneChip, it
is necessary to normalise the data. We used quantile normalisation, which non-linearly rescales the data
so that the mean and standard deviation (and all higher moments) are the same. We normalised each chip
against a reference average chip [Langdon et al., 2007b].

The correlation coefficient of each pair of probes within each probeset in the HG-U133A design was
calculated. (A total of 5 310 652 correlation coefficients.) To avoid undue influence of outliers: if either
probe was more than three standard deviations from its average value that tissue sample was exclude
from the calculation of that probe pairs correlation. Also, each GeneChip was checked for spatial defects
[Langdon et al., 2007b] and the sample exclude if either probe was within 4 probes of a known spatial
error. Even after excluding these data, all correlations used probe pairs from several thousand samples.

The placement of probes on GeneChips, like the HG-U133A, is designed to put similar probes next to
each other. This is done to ease the photolithographic chemical process used in manufacture and leads
to horizontal bands in average intensity. Probe variability tends to increase with average intensity (until
the signal is so strong that the probe saturates, which reduces its ability to vary). Since signal variation
(as opposed to noise) is required for correlation, correlation also tends to increase with average intensity
leading to horizontal bands in correlation across the GeneChip. Figure 3 shows the expected bands in
average correlation for each probe.

The distribution of probe-probe correlation coefficients for probes in the same probeset has two peaks:
one near 0.8 and the other near 0, cf. Figure 4. As the peak at zero emphasises, there are many probes
which are simply not well correlated with the other members of their probeset. Explaining why is a major
research effort. The peak at 0.8 corresponds better behaved probes.

Part of the sample preparation process requires an enzyme to act upon purified mRNA starting at the
3’ end. I.e. at the normal back end of mRNA. The enzyme works its way forward towards the 5’ front
of the mRNA. Unfortunately it has a tendency to fall off. Therefore the strength of signals tends to fall
further away from the 3’ end. This is a known problem and laboratories regularly check that the effect
is not too extreme in each sample. Nonetheless, there is a small trend for correlation between probes in
the same probeset to fall as the distance between where they measure along the mRNA gene transcript
increases. (The 5’ end is the negative direction in Figure 4).

3.2 Training Data Sets for Evolving DNA Motifs

Apart from the initial calculation of the correlation coefficients (where we use the same data as we used
in [Langdon, 2008], cf. previous section) new training data sets were constructed. To exclude genes which
are either never expressed (or are constantly expressed) we selected 4 118 probesets where ten or more
non-overlapping probe pairs had correlations of 0.8 or more. For each probe we use the median value of
all 10 of its correlations with other members of its probeset (excluding those it overlaps).

We had previously noted that probes which target overlapping parts of the gene (i.e. where the regions
are within 25 bases of each other) tend to have high correlation. This happens even if the probes are
not well correlated with the other measurements for the same gene. This is why we excluded correlation
between overlapping probe pairs when deciding whether to include a probeset or not.

These were evenly split into three to provide independent training, test and validation data.
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Figure 3: Mean of 5 310 652 correlations between probes in probesets across 6685 HG-U133A GeneChips.
White regions contain no probesets. Smallest -0.63 (red). Median 0.16. Max 0.97 (yellow). 0.7% 3341
probes have a mean correlation greater than 0.8 with the other probes in their probeset.
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Figure 4: Correlation between PM probe and last PM probe in each GEO HG-U133A probesets. (Approx
10 000 data points per distance bin. Controls excluded.)
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Figure 5: Training data. Probes with intermediate values (0.3 . . . 0.8) are not used.

Measurement of ultra low (pico molar) concentrations of long chain molecules, like mRNA, is noisy.
Affymetrix provides various control signals, including multiple measurements to reduce noise. One contro-
versial mechanism is adjacent to each measuring probe is a control “mismatch” probe. In previous work
[Langdon, 2008] we found the “mismatch” probes were often poorly correlated with other measurements
for the same gene. Since this is known, we ignored MM probes in this study.

3.3 GP Training Set

As Figure 5 shows correlation coefficients cover a wide range with many taking intermediate values. Since
we are using correlation only as an indication of how well a probe is working we decided to exclude the
middle values from training and instead use probe pairs that were highly correlated (≥ 0.8) or were very
poorly correlated (≤ 0.3). Of the 15 092 available training examples, there are 7 832 probes highly correlated
with the rest of their probeset but only 583 poorly correlated. To avoid unbalanced training sets, every
generation all 583 negative examples are used and 583 positive examples are randomly chosen from the
7 832 positive examples available.

4 Evolving Regular Expression Motifs

The genetic programming system is a strongly typed tree GP system with subtree crossover [Poli et al., 2008;
Langdon, 1998]

4.1 BNF grammar of Regular Expression

The BNF grammar used (cf. Figure 6) is an extension of that given by Cameron http://www.cs.sfu.ca/
people/Faculty/cameron/Teaching/384/99-3/regexp-plg.html. In particular matching the beginning
of strings (^) and the {n,m} form of Kleen closure are also supported. The BNF has been customised
for DNA strings. (I.e. <char> need only be A C G and T). It has also been simplified so that BNF rules
either contain exactly two alternatives (which are themselves single symbols) or none. I.e. they are a list
of further substitutions. Since various combinations of the start of string symbol, null strings and Kleen
closure cause egrep to loop, care has been taken to ensure the new BNF does not permit null strings
after ^.
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<start> ::= <RE>
<RE> ::= <union> | <simple-RE>
<union> ::= <RE> "|" <simple-RE>
<simple-RE> ::= <concatenation> | <basic-RE>
<concatenation> ::= <simple-RE> <basic-RE>
<basic-RE> ::= <RE-kleen> | <elementary-RE>
<RE-kleen>::= <minmaxquantifier> | <kleen>
<kleen>::= <star> | <plus>
<star> ::= <elementary-RE2> "*"
<plus> ::= <elementary-RE2> "+"
<minmaxquantifier> ::= <elementary-RE4> "{" <int> <optREint> "}"
<elementary-RE> ::= <group> | <elementary-RE1>
<elementary-RE1> ::= <xos> | <elementary-RE2>
<elementary-RE2> ::= <any> | <elementary-RE3>
<elementary-RE3>::= <set> | <char>
<elementary-RE4> ::= <group> | <elementary-RE2>
<group> ::= "(" <RE> ")"
<xos> ::= <sos> | "$"
<sos> ::= "^" <elementary-RE4>
<set> ::= <positive-set> | <negative-set>
<positive-set> ::= "[" <set-items> "]"
<negative-set> ::= "[^" <set-items> "]"
<set-items> ::= <set-item> | <set-items2>
<set-items2> ::= <set-item> <set-items>
<set-item> ::= <char>
<char> ::= <c00> | <c01>
<any> ::= "."
<c00> ::= T | C
<c01> ::= A | G

<optREint> ::= <2ndint> | $
<2ndint> ::= "," <int>
<int> ::= <d0>
#4 Bit Gray Code Encoder
<REdigit> ::= <d111> | <d0>
<d0> ::= <d00> | <d01>
<d00> ::= <d000> | <d001>
<d01> ::= <d010> | <d011>
<d000> ::= 1
<d001> ::= 3 | 2
<d010> ::= 7 | 6
<d011> ::= 4 | 5
<d111> ::= 8 | 9

Figure 6: Grammar (based on Backus-Naur form) used to specify legal regular expressions for use as
egrep search strings for testing DNA sequences.
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4.1.1 Kleen closures

Brameier and Wiuf suggests that the traditional * and + form of Kleen closure are not suitable for bioin-
formatic applications [Brameier and Wiuf, 2007]. Instead they recommend the {n,m} form which explicitly
defines both lower (n) and upper (m) limits on the number of times the preceeding symbol must occur. Ac-
cordingly we extended the BNF used to define regular expressions to include {n,m}. However both {n,m}
and traditional Kleen closures are used by evolved solutions. To avoid mutation.awk seeing “Hamming
cliffs”, the integer quantifiers used in the {n,m} are Gray coded [Bäck, 1996]. Similarly the syntax groups
together the chemically more similar Pyrimidines (T and C) and Purines (A and G).

Our system supports full positive integer values for minmaxquantifier, however even modest values
can lead egrep to hang the computer. Therefore n and m are limited to 1-9. Finally egrep rejects {n,m}
if m<n. This is handled by a semantic rule which removes ,m from the phenotype when m is less than n.

4.2 Simplifying the BNF for use by Evolutionary Algorithms

For simplicity the BNF is written so that grammar rules are either simple substitution rules
(e.g. <minmaxquantifier>) rules with two options (e.g. <RE>) or terminals (e.g. "*" and T). In BNF
terms, a terminal is a symbol which cannot be substituted in the grammar. Therefore, unlike the BNF
rules, it becomes part of the egrep regular expression. The simple substitution rules do not have any
element of choice. They can be considered as “syntactic sugar”. Once invoked, then the next level in
the BNF must also be invoked. They, like terminals, cannot be chosen as crossover points or targets for
mutation. Their principle use is to enable the rules with options to be kept simple.

The binary choice rules are the active parts of the syntax. As they are always binary, each sentence
recognised by the BNF has an equivalent binary string. (A BNF sentence means an egrep regular expression
in our case.) Each bit correspond to a BNF rule with two options needed when parsing the sentence. The
bit indicates which option should be invoked. Note that the meaning of each bit depends upon where we
have reached in the parsing the sentence (i.e. on the earlier bits). Given the recursive structure of this
grammar, the bit string could (in principle) be of infinite length. In traditional GP terms, this list of choices
is the evolving tree. The BNF grammar acts to put labels on the choices, which constrain crossover, but
it is the choices (not the BNF grammar) which is the genetic material of the evolving individual. Note,
unlike grammatical evolution, strongly typed crossover respects [Radcliff, 1993] the meaning of the BNF
rules.

4.3 Creating Random BNF Sentences

The initial random population is created using ramped half-and-half [Koza, 1992]. It may help to think of
this as applying the usual genetic programming ramped half-and-half algorithm to a binary tree (of choice
nodes).

We start from <start> and recursively follow the BNF. However when we reach a rule with options
we need to chose one. As in ramped half-and-half we keep track of how deep we are nested. If we have not
reached the depth needed to terminate the recursion, we randomly chose one of the options. This is the
equivalent of choosing a GP function. (As with other strongly typed GPs, if a chosen route through the
syntax has no further choices to be made, we may be forced to terminate a recursive branch early.)

To terminate a recursion we chose the “simpler” option. Our BNF has been written so that the simpler
option is always on the right. (This is flagged by RE in the rule name.) If there is no “simpler” choice, the
choice is made randomly. This mechanism is also be used for mutating existing regular expressions.

Although this may seem complex, even gawk (an interpreted language) is fast enough to handle popu-
lations of a million individuals.
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4.4 Crossing over BNF Sentences

Creating a new sentence from two high fitness sentences is essentially subtree crossover [Poli et al., 2008]
applied to the binary choice tree (cf. Section 4.1) with the addition of strong type constraints [Mon-
tana, 1995]. This is implemented by scanning the grammar used to create the first parent for all the
rules with two options. One of these is randomly chosen. For example, suppose the first parent starts
<start> <RE> <union>· · · and suppose <union> is chosen as the crossover point. For a grammatically
correct child to be produced all that is necessary is that the crossover point chosen in the second parent
should also be <union>. (There are complications to do with depth and size limits, which we shall ignore
for the time being.) Therefore the second parent is scanned to find all occurrences of <union>. One of
them is randomly chosen to be the second crossover point. (If there are none, this crossover is aborted and
another initial crossover point is chosen. If we keep failing, eventually another pair of parents is chosen.)

Crossover is based on normal GP subtree crossover, cf. [Poli et al., 2008, Figure 2.5]. The new child
is created by copying the start of the first parent, excluding the subtree at the first parent’s crossover
point. Then genetic material from the subtree at the second parent’s crossover point is added. Finally the
remainder of the first parent is appended to the child. This is implemented by crossing over the binary
choice trees to create a binary choice tree for the new child. Apart from issues of tree size and depth, we
are guaranteed that the new binary choice tree will represent a valid sentence in the BNF grammar.

The final step is to recursively trace through the BNF grammar, obeying the binary choices. Each time
an BNF terminal (except the null symbol) is encountered it is appended to the new regular expression. In
order to be able to breed following generations, the new individual’s genotype must also be passed to the
next generation. For convenience this is done by writing each BNF symbol as it is encountered to the file
holding the next generation.

4.5 Evaluating the Fitness of BNF Sentences

Each generation a command file is generated which contains a egrep -c -v ’RE’ command for each
individual in the population. (RE is the individual’s regular expression.) The command is run on a file
holding the DNA sequences of the 583 probes poorly correlated with the rest of their probeset. egrep -c -v
counts the number of probes which do not match the evolved motif (RE). The same command is also run on
a file holding the 583 positive probes selected for use in this generation. The fitness of the regular expression
is based on the difference between the number of lines in the two files which match RE. Expressions which
either match all probes or fail to match any are penalised by subtracting 583 from their score. (There is also
a 583 penalty per file if egrep fails. This was invoked when developing the regular expression BNF syntax,
cf. Section 4.1. However the grammar was tweaked (e.g. by limiting <minmaxquantifier> to numbers less
than 10) so that egrep can now cope with all the strings it is given.)

4.6 Implementation

The system starts with an outer command shell script which is responsible for initialising the population
and termination. It invokes an inner script RE_gp1.bat once per generation. The population is stored as
a text file which contains, for each individual in the population, a line holding its genotype and an egrep
command line containing the individual expressed as a regular expression. I.e. its phenotype.

4.6.1 RE gp1.bat

Every generation RE gp1.bat executes the population as a command script. It passes to it two files. One
holds the negative test cases. The second holds the positive cases selected for this generation. I.e. the
second changes each time RE_gp1.bat is invoked. egrep’s output is piped through fitness.awk and sort
is used to select the best 200 of the current generation. gawk command lines and file stats.awk are invoked
to provide immediate feedback on the run’s progress.
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select.awk extracts each of the best 200 individuals from the current population and puts them into
a temporary file for use by crossover.awk, mutation.awk and shrink.awk. Shrink mutation is described
in [Langdon, 1998]. (In this experiment only crossover.awk is used.)

crossover.awk creates the next population by crossing over pairs of individuals chosen uniformly at
random from the current elite. syntax.awk is used to process the BNF grammar and contains several
functions which are used by crossover.awk, stats.awk, random syntax.awk etc.

4.6.2 crossover.awk

Function crossover() (cf. Section 4.4) is called with a randomly chosen pair of parents. If it fails
(e.g.because it cannot find compatible crossover points) then another pair of parents is randomly cho-
sen.

crossover() first makes a list of all the genetic rules in the first parent. I.e. those rules with two
options. One of these is randomly chosen. To enforce strong typing crossover() next forms a list of all
the places in the second parent where this rule is used. If there aren’t any, crossover() goes back and
randomly tries another crossover point in the first parent. Once a compatible pair of crossover points has
been found crossover proceeds in the usual way for subtree crossover.

Genetic material from the start of the first parent up to its crossover point is copied by treenode()
into globals tree and IP. In effect tree is a variable length bit string which defines the genetic material
of the new individual. Then genetic material from the subtree starting at the second parent’s crossover
point is copied from the second parent by traverse() into globals tree and IP. Finally treenode() is
used to copy genetic material from after the subtree to be replaced from the first parent. At this point
tree and IP contain a complete specification, in terms of the branch points in the BNF grammar, for the
new individual.

A modified version of the code used to recursively create random programs is now invoked. SubInit_()
chases through the BNF grammar, following each substitution rule as it encounters it and storing them as
a list in prog and PC. However, when SubInit_() finds a binary option rule it uses the next element in
tree to decide which option to take.

The function print_prog transfers the current individual’s regular expression (as stored in globals prog
and PC) to the output stream (assumed to be connected to a file which will hold the next generation). The
output is formated as an egrep command.

gawk is an interpreted language which does not have a notion of declaring variables (but note the use of
additional function arguments to limit the scope of variables to within the function). Instead variables are
created as they are used. Note the use of the function element, which checks that an element of an array
exists before returning it. If such a check is not made, referencing a non-existent array element will cause
it to be created with a default value. The default value is the empty string, which can be interpreted as
false or zero, depending upon how it is used. The function check is used to try and verify that the syntax,
read in by syntax.awk, has not been corrupted.

5 Results

At the end of the first run, with a population of 1000 (cf. Table 1 and Figure 7) GP evolved a probe
performance predictor (see Figure 8) equivalent to GGGG|CGCC|G(G|C){4}|CCC. It is obvious that it includes
the previous rule GGGG [Upton et al., ] but includes other possibilities. Therefore it finds more poor probes.
Inevitably it will also incorrectly predict more high correlation probes are poor but the increase is more
than offset by its better performance on the poor probes. See Figure 9. Thus it has a fitness of 856 v. 776
for GGGG.
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Table 1: Strongly Typed Grammar based GP Parameters for GeneChip Correlation Prediction
Primitives: The function and terminal sets are defined by the BNF grammar (cf. Figure 6. BNF

rules with two options correspond to binary GP functions. The rest of the BNF grammar
correspond to GP terminals.

Fitness: true positives+true negatives. (I.e. proportional to the area under the ROC curve or Wilcox
statistic [Langdon and Barrett, 2004].) Less large penalty if egrep fails or it matches all
probes or none.

Selection: (200,1000)
Initial pop: Ramped half-and-half 3:7
Parameters: 100% subtree crossover. Max tree depth 17 (no tree size limit)
Termination: 50 generations
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Figure 7: Evolution of breeding population (best 200 of 1000) of regular expressions to find poor GeneChip
probes. Each generation the positive training cases are replaced leading to fluctuations in the measured
best fitness (*). However diversity remains high and there are usually few individuals with the same highest
fitness (2). In this run the number of distinct phenotypes (×) (i.e. egrep search strings) is almost identical
to the number of distinct genotypes. Bloat is limited (+), apparently by the tree depth limit (17). However
the system slows down by (≈ 1

2) as evolution proceeds.
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Figure 8: Geneotype of best program in generation 50. Active choice nodes in the BNF (cf. Figure 6) are
emphasised by placing them in ovals. The resulting phenotype is simply the 58 (excluding empty symbols)
end nodes, read in left to right order: GC{3}|G{4}|C{4}|CG{1}C{2}|GG{4}C+|G(G|C){4}|G(G|C)4|C{3}.
It is equivalent to GGGG|CGCC|G(G|C){4}|CCC.
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Figure 9: Performance of evolved motif on its training data versus human generated motif (dashed).
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Figure 10: Performance of evolved (solid line) and human (dashed) generated motifs on verification data
(dotted). The search string automatically created by GP finds more bad probes (left) but at the cost of
flagging more good probes as suspect (right hand side).
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Table 2: Performance of motifs. Number of probes matched.

GGGG|CGCC|G(G|C){4}|CCC

Whole training set
Median Correlation < 0.3 ≥ 0.3

410 4448
-v 173 10061

Test set
Median Correlation < 0.3 ≥ 0.3

448 4436
-v 174 10045

GGGG

Whole training set
Median Correlation < 0.3 ≥ 0.3

195 479
-v 388 14030

Test set
Median Correlation < 0.3 ≥ 0.3

209 434
-v 413 14047

The confusion matrix for the evolved regular expression on the whole of the training set (including
the 6677 middling values which GP never saw) is given in Table 2 (left) and on the verification data
Table 2 (right) (The corresponding matrices for GGGG are included below that of the evolved motif in
Table 2. Unlike in many machine learning applications, there is no evidence of over fitting. Indeed the
corresponding results for the test set (second matrix of each pair) are not significantly different (χ2, 3 dof)
from those on the whole training set. The evolved regular expression picks up significantly more (χ2, 3 dof)
(448 v. 209) poorly performing probes on the validation set than the human produced regular expression.
Figure 10 shows the number of DNA probes matching the evolved motif against their average correlation
with the rest of their probeset.

5.1 Speed

As is common in evolutionary strategies [Beyer, 2001], almost all the time is taken by the fitness evaluation.
In our case, elapse time is dominated by the command script which runs egrep -c. Typically this takes
8.5mS per individual.

Speed depends upon the size and complexity of the evolved regular expressions. Earlier in the runs
(i.e. generation 9) they are on average shorter (17.2 v. 52.8 characters) and so the time taken to process
each is only 5.4mS. (Note egrep -c is run on two files of 583 lines. Each line containing 25 letters). The
time taken by gawk to process the BNF grammar, perform crossover, generate the regular expressions, etc.
is negligible.

6 Discussion

Theoretical and empirical studies of GeneChips confirm that the behaviour of DNA probes tethered to a
glass surface can be quite different from DNA behaviour in bulk solution. This is a new and difficult area
and there are not deep pure Physics experimental results. Therefore experimental studies have concentrated
on data gathered during normal operation of the chips [Langdon et al., 2008].

Our automatically generated motif, suggests that in addition to Gs, Cs are important. Indeed the
fact that only three consecutive Cs is predictive (whereas four Gs are needed) suggests that Cs are more
important than Gs. It is known in GeneChips DNA C–G RNA binds more strongly than DNA G–C RNA
[Naef et al., 2006]. (Both C and G bind more strongly than A and T.) We are tempted to suggest that
a CCC sequence on a DNA probe can act as a nucleation site encouraging the probe to bind to GGG on
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RNA. Indeed the evolved motif suggests that four Gs and mixtures of five Cs and Gs might also form
nucleation sites.

The sequence CCC is too short to be specific to a particular gene. GeneChips are designed on the
assumption that only DNA and RNA sequences which are complementary to the full length of the probe
will be stable. However studies have shown that nonspecific targets can be bound to GeneChip probes for
several hours even if held only by the nucleation site. This may be why probes with quite short runs of
either Cs or Gs can be poorly correlated with others designed to measure the same gene.

7 Conclusions

Access to the raw results of thousands of GeneChips (each of which costs several hundreds of pounds)
makes new forms of bioinformatic data mining possible.

Millions of correlations between probes in the same probeset, which should be measuring the same
gene, show wide variation. Evolution of regular expressions confirms previous work [Langdon, 2008; Upton
et al., ] that the DNA sequences from which the probes themselves are formed can indicate poor probe
performance. Indeed several new motifs (e.g. CCC) which predict probe quality have been automatically
found.

Linux code are available via FTP ftp://cs.ucl.ac.uk/genetic/gp-code/RE gp.tar
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