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ABSTRACT

Profiling techniques highlight where performance issues mani-
fest and provide a starting point for tracing cause back through
a program. While people diagnose and understand the cause of
performance to guide formulation of a performance improvement,
we seek automated techniques for highlighting performance im-
provement opportunities to guide search algorithms.

We investigate mutation-based approaches for highlighting where
a performance improvement is likely to exist. For all modification
locations in a program, we make all possible modifications and
analyse how often modifications reduce execution count. We com-
pare the resulting code location rankings against rankings derived
using a profiler and find that mutation analysis provides the higher
accuracy in highlighting performance improvement locations in
a set of benchmark problems, though at a much higher execution
cost. We see both approaches as complimentary and consider how
they may be used to further guide Genetic Programming in finding
performance improvements.
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1 INTRODUCTION

Improving program performance is frequently of secondary impor-
tance to improving functionality [8]. Performance optimization is
most often attempted when a performance issue impinges on func-
tional correctness or when developers notice a clear improvement
opportunity [14]. Outside of these prominent scenarios, the im-
plicit nature of how source code contributes to overall performance
can allow potential performance opportunities to go unnoticed.
Where modern development practices recommend separation of
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concerns, high cohesion, low coupling and reuse of code, it becomes
increasingly unlikely that developers understand the performance
characteristics of the APIs and libraries their code depends on [19].
To aid locating performance bugs and bottlenecks in code, static [11]
and run-time profiling [20] have been developed. To understand
performance issues, people start at profiled “bottleneck” locations
and trace back through code [6] before devising a way to allevi-
ate the issue. Though profiling can locate a performance issue, it
may not always show where a performance improvement might be
found. As fault localisation [7] has been used to guide automate bug
fixing [22], we seek similar methods for localising performance [2]
to drastically reduce the search space in automated performance
improvement [9, 23].

The intuition behind the use of mutation is that there are locations
in a program which are “levers on performance” and have some dis-
proportionately large control over execution cost. We see our work
as explorative within the gap between fine-grained localisation of
only parameters [23], and higher level profiling of coarse-grained
units of code such as functions [3].

Our hypothesis is that code locations which are particularly influ-
ential to program performance are likely good locations for finding
performance improvements. To inspect this hypothesis, we con-
sider to what extent code mutation can attribute performance to
source code elements. Our research question follows as: Do code
changes at the location of performance improvements produce dif-
ferent run-time characteristics than changes in other locations in a
program?

1.1 Contributions

In this paper we inspect the use of two types of mutation:

• Deletion, which takes advantage of the hierarchical nature of
source code. Source code statements (and any child statements)
are deleted.

• Exhaustive, which makes all possible changes to each modifi-
cation point in a program per an Abstract Syntax Tree (AST).
For each code location, we can generate a set of program vari-
ants, one for each possible change at that location. In other
words, we generate all possible first order mutants [10] for each
modification point in a program.

We analyse the run-time characteristics of the resulting program
variants for all mutations made at each location in the program.
We evaluate profiling against 3 different analysis approaches in
section 3 based on these mutation techniques:

https://doi.org/10.1145/3194810.3194815
https://doi.org/10.1145/3194810.3194815


GI’18, June 2, 2018, Gothenburg, Sweden Brendan Cody-Kenny, Michael O’Neill, and Stephen Barrett

• Under deletion (subsection 3.2), the difference in performance
between the original and variant programs is attributed to all
code which was deleted.

• Under exhaustive mutation (subsection 3.3), the number of
times a program variant shows reduced execution cost is di-
vided by the number of times a mutation results in a compiled
program. This approach attributes performance change to finer-
grained sub-statement modification points (AST nodes) in a
program.

• For those code locations where no compilable programs can be
produced with a single point mutation, we use deletion analysis
values (subsection 3.4).

We evaluate these approaches on a set of test problems and find
that

• profiling achieves the highest accuracy of all approaches on a
small number of specific nodes, but does not generalise across
all improvements in our problem set (Table 3),

• mutation analysis can, on average, better highlight possible
performance improvements (Figure 2), and

• there is a significant trade-off between computation time re-
quired and accuracy (subsection 5.1)

2 ILLUSTRATIVE EXAMPLE

We take the scenario where a variable is initialised early in program
execution and later determines how many times a loop executes.
The execution cost of this variable initialisation is low as the line is
only executed once, however a large amount of program execution
cost can be attributed to the value of this variable when used as a
condition for loop execution.

We construct a variant of BubbleSort with an additional redundant
outer loop Figure 1a. A profiler will give this outer loop a very
low value in terms of execution cost as can be seen in Figure 1b,
therefore taking attention away from a prominent performance
improvement opportunity.

The execution count in Figure 1b shows the number of times each
statement is executed as a percentage. When an array of size 10
with all elements in reverse order is passed as a, lines 4 & 5 are
both executed 200 times. The execution count for each statement
will vary depending on the distribution of values within the array.
An array of 10 values with a different ordering will produce a
different execution count profile and can change the ranking of each
statement with respect to the others. If a fully sorted array is passed
then statements 5, 6 and 7 will not be executed. A reverse sorted
array executes each line the maximum number of times possible
and is expected to give the same ranking of statements as input size
is increased. If profiling was used in this case to guide automated
performance improvement [9], it would appear to decrease the
chances of finding this performance improvement as effort is spent
modifying other locations.

In contrast, deletion analysis shows how much of the program
execution cost is attributable to the outer loop. Figure 1c shows
the amount of execution cost that is saved when a statement (in-
cluding any sub-statements) is removed. Execution cost savings

are a percentage of the overall cost of executing the program.
Note that as deletion analysis removes a statement inclusive of
any sub-statements, percentages are cumulative. When statement
2 is removed the entire body of the method is removed, and so
close to 100% of the execution cost is saved. Statement 2 receives a
marginally larger percentage and is ranked ahead of statement 3.
Deleting line 6 will result in a program which does not compile, in
this case the line receives the execution cost saving from its parent
statement as all nodes within a statement (and any sub-statements)
are given the same value initially.

3 PERFORMANCE LOCALISATION
TECHNIQUES STUDIED

In this section we further detail the localisation techniques that
are compared in our evaluation 1 Though many static analysis
techniques exist for detecting performance issues, we compare
with profiling as it is the most prominent approach in industry and
has been used to guide GP for automatic performance improvement
[9].

3.1 Profiling

Our approach to profiling is relatively fine-grained to other ap-
proaches which may measure, for example, elapsed time for method
execution. We measure the number of times each statement in a
program is executed. For each source code statement, as defined
in the Java language specification [4], we add an instrumentation
statement. Each instrumentation statement consists of a function
call with a program identifier and the line number for that location.
When the instrumented program is run an execution count for each
line is gathered.

3.2 Deletion Analysis

Deletion analysis was designed in an attempt to shift focus from bot-
tlenecks towards code which has some influence over performance.
A program has a statement removed and the resulting program
variant is evaluated. Deletion analysis exploits the ordered and hier-
archical structure of imperative code as execution cost is attributed
to statements which appear earlier in the code and to statements
higher in the hierarchy. When a statement contains sub-statements,
for example a “FOR”, “WHILE” or “IF” statement, the inner block
statement and all sub-statements are removed also. The hierarchical
structure of imperative code is made accessible by using Abstract
Syntax Tree (AST) parsers [21]. Statements are removed in order of
their appearance in a breadth-first approach as per AST structure
meaning outer loops are removed before inner loops, with the most
nested code being removed last. Using deletion analysis, all AST
nodes within a statement are given the same value. While hierarchi-
cal information could be similarly gathered by summing profiled
execution count for nested statements, deletion mutation also may
remove code which impacts performance later in the program.

1Implementation available at https://github.com/codykenb/locoGP in sub-directory
locoGP_eclipse/src/locoGP/experiments in file ExhaustiveChange.java

https://github.com/codykenb/locoGP
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1vo id s o r t ( I n t e g e r [ ] a , i n t l e ng t h ) {
2f o r ( i n t h = 0 ; h < 2 ; h++) {
3f o r ( i n t i = 0 ; i < l e ng t h ; i ++ ) {
4f o r ( i n t j = 0 ; j < l e ng t h − 1 ; j ++ ) {
5i f ( a [ j ] > a [ j + 1 ] ) {
6i n t k=a [ j ] ;
7a [ j ]= a [ j + 1 ] ;
8a [ j + 1]= k ;
9} } } } }

(a) “BubbleLoops” problem: Bubblesort with an extra redundant
outer loop

8.03%
8.03%
8.03%

35.7%
35.7%

0.5%
0.5%

(b) Profiler: Execution fre-
quency for each statement

99.99998%
99.99989%
99.9634%

62.14537%
62.14537%

10.20626%
8.68829%

(c) Deletion Analysis: Execu-
tion savings when a statement
(including sub-statements) is
deletedFigure 1: BubbleLoops problem and profiles

Deletion analysis may not always be applicable for every statement
in a program. Consider statement 6 in Figure 1a which initialises
the variable k. Deleting this line will result in a program which
does not compile and which we cannot evaluate.

3.3 Exhaustive Mutation Analysis

We applymutation to every node in a program to producemore fine-
grained rankings of AST nodes (e.g. within a statement). This yields
information about statements which could not be evaluated under
deletion. For example, any valid change to variable initialisation or
the loop condition in the outermost loop (statement 2 in Figure 1a)
is likely to show a pronounced change in the execution cost of the
resulting program.

Under exhaustive mutation, a set of program variants is produced
by repeatedly replacing an AST sub-tree with every other valid
sub-tree as found in the original program as allowed by AST typing.
For example, a statement will be replaced by all other statements,
or an expression will be replaced with all other expressions in
the program. A program P, is made up of a set s of all elements
in the program. Let s’ be a set of clones of all elements in s. For
each element l in s in the program P, a variant program can be
generated by exchanging l for each of the elements in s’. Alternative
code elements are gleaned from the program itself but we add
all language-defined [4] operators regardless of whether they are
contained in the program. While this appears to produce a large
number of costly program evaluations, in practice not all variant
programs are compilable or evaluatable (as discussed further in
subsection 5.1).

Each node in a program is attributed a value by taking the number of
times a modification resulted in a program with reduced execution
cost divided by the number of times a modification resulted in a
compilable variant as written in Equation 1.

Example results of values attributed by exhaustive mutation analy-
sis to statement 2 in Figure 1a for (int h = 0; h < 2; h++) {
are shown in Table 1. It is not possible to modify some nodes in the
AST as listed in the table by “-”. Where no mutation can be produce
a compilable program variant, the value is 0.

Table 1: Exhaustive mutation analysis example on a single
line of code taken from the BubbleLoops problem

Node Text Value
1 for (int h... 1.0
2 int h=0 -
3 h=0 -
4 h .6
5 0 .7
6 h < 2 -
7 h .16
8 2 .85
9 h++ -
10 h 0

NodeVal =
Nexecutionreduction

Ncompiled
(1)

Equation 1: Exhaustive Analysis gives each node a quotient
value of the number of times the execution cost is reduced,
divided by the number of times a compilable program is cre-
ated.

3.4 Exhaustive and Deletion Combined

Though exhaustive analysis mutates at a sub-statement level, it is
still possible that no mutation at a given location is able to produce
a compilable, and hence evaluatable, program variant. To alleviate
this issue, we use the results of deletion analysis to “fill the gaps” in
the results of exhaustive mutation analysis where no single change
produced a compilable program.

4 METHODOLOGY

We use a set of benchmark problems with known performance
improvements 2.

The majority of these problems were taken from online examples
and improvements were found using Genetic Programming (GP)
2Available at: https://github.com/codykenb/locoGP in sub-directory
locoGP_eclipse/src/locoGP/problems

https://github.com/codykenb/locoGP
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[17]. AST nodes where change produces an improved program
version are deemed the most important (“improvement” nodes).
Improvement nodes are where GP should be applying the most
mutation to have the highest chance of finding a performance im-
provement. We seek a technique which can find this ranking so that
it can focus GP to find improvements more quickly. We compare
the rankings produced from profiling and performance localisation
against our idealised ranking to determine which localisation tech-
nique is most accurate. As the goal is to use mutation to highlight
performance improvement locations under further mutation, we
exclude any mutations which produce performance improvements.

4.1 Problem Set

Our problem set consists of a Huffman code-book and sort imple-
mentations3.

Table 2 names the implementations and provides descriptive mea-
sures for each program as well as improvement types:

• LOC refers to the number of lines of code in the program
• AST nodes refers to the number of modification points in
each program when it is parsed into an Abstract Syntax Tree
representation [21].

• Imp Nodes refers to the number of nodes in a program which
need to change to achieve an improved version of the program.
As there are multiple changes which produce the same perfor-
mance improvement, we use the improvements which give the
greatest reduction in execution cost with the smallest number
of modifications.

• Improvement refers to the largest percentage improvement
in execution cost known for each program [17].

• Improvement Types gives a high level description of the
known improvement types for each program. For loop un-
rolling, the important node is the containing block statement.

4.2 Test Cases

Program execution cost is affected by input size and distribution.We
use a range of input sizes and distributions to ensure the profile is
general. The distribution includes random, fully and reverse sorted
ordering. For the Huffman code-book problem five different test
cases which include repeated sequences and those without any
repeated character.

4.3 Comparing Localisation Techniques

We have an idealised “best” ranking of nodes which put “improve-
ment” nodes at the top. These top ranked improvement nodes are
required to change to produce a known improvement in each pro-
gram. Fractional ranking is used as all nodes in a statement jointly
share a given ranking.

For each program, each localisation technique produces a ranking
for all nodes. The closer an improvement node is to where it should
be in the idealised ranking is used as our measure of “accuracy”. The

3Long-form code listings for all programs in our problem set is available at: https:
//codykenb.github.io/locoGP/locoGP-ImprovementsFound.html

PercentRankError =
Ri − Ra
Ntotal

(2)

Equation 2: Percentile Ranking Errormeasure calculated for
each improvement node. Ri is ideal ranking, Ra is actual de-
rived ranking, and Ntotal is total number of nodes in the pro-
gram.

distance an improvement node is from where it should be in our
idealised ranking is what we use as our “ranking error” measure.
We normalise the ranking error for each node by dividing it by the
number of nodes in the overall program to find at what percentile
the node is placed.

For each technique we compare the percentile ranking error of each
important node across all problems. This gives us 48 important
nodes across all problems for comparison. We also do pair-wise
comparison between techniques to be sure there is a statistically
significant difference between them directly. We find the difference
between the approaches by subtracting the percentile rankings of
the important nodes. We use a bootstrapping technique to analyse
these differences. We sample randomly from these differences 100
times, with replacement, and calculate the average. This is repeated
100 times. This bootstrap approach gives an estimator for mean
and approximate 95% confidence intervals are given by the 0.015
and 0.975 quantiles.

We further summarise results by looking at nodes ranked in the
upper 50th percentile of all nodes. Nodes which have a ranking in
the upper 50th percentile of all nodes represent instances where
profiling can be said to have been “accurate”. As increasing the
ranking of one node reduces the ranking of another, where an
improvement node is in the lower 50th percentile of all nodes then
the technique can be said to be “deceived”.

A normalised percentile ranking error is the distance a node is
ranked from its ideal ranking, divided by the number of nodes in
that program (Equation 2). This captures false negatives. We do
not focus on false positives as their presence does not prevent GP
from finding an improvement. What is important for GP is that all
improvement nodes are ranked highly.

5 RESULTS

The four performance localisation techniques, Profiling, Deletion,
Exhaustive, and Deletion with Exhaustive gap filling (Ex & De), are
compared for accuracy in Table 3.

We show a split at the 50th percentile to make the point that using
a probability distribution over these accuracy values will result in
some cutoff point where nodes below will receive lower importance
and those above will receive higher importance (in comparison to
a scenario where all nodes have the same ranking or importance).
We can conceive of importance being only those nodes which are
in the top 1% of all nodes. In such a scenario, profiling is the only
approach which would designate any improvement node as impor-
tant. Profiling would be considered best in this scenario but would
only highlight a single improvement node as important. The lower

https://codykenb.github.io/locoGP/locoGP-ImprovementsFound.html
https://codykenb.github.io/locoGP/locoGP-ImprovementsFound.html
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Table 2: Problem Improvement Overview

Problem Name LOC AST Nodes Imp Nodes Imp Improvement Type
Insertion Sort 13 60 5 9% Loop unrolling
Bubblesort 13 62 3 45% Redundant Traversal (exclude sorted portion)
BubbleLoops 14 72 5 71% Redundant Traversal (exclude sorted portion)
Selection Sort 2 16 72 4 11% Removed redundant increments during tests
Selection Sort 18 73 4 2% Removed redundant array access
Shell Sort 23 85 3 5% Various changes in increment size
Radix Sort 23 100 6 3% Reduced iteration, comparison with 0
Quick Sort 31 116 4 54% Reduced iterations, remove tests
Cocktail Sort 30 126 4 15% Cloned and perforated loops (loop unrolling)

Redundant Traversal (exclude sorted portion)
Merge Sort 51 216 1 5% Remove redundant array clone
Heap Sort 62 246 6 41% Remove redundant array access and assignment
Huffman Code-book 115 411 3 43% Redundant Traversal (exclude sorted portion)

we place the threshold for importance as a percentile, the larger the
combinations of those nodes become. The more of the important
nodes we want to include as important, the more program nodes we
must consider. To include all important nodes we must consider all
nodes in the program, which does not help us reduce the number of
nodes worth considering important. The more nodes we consider,
the exponentially more combinations we need to consider.

When interpreting Table 3 we consider Exhaustive with Deletion
(Ex & De) to be the best as this approach places the largest num-
ber of improvement nodes in the upper 50th percentile. The three
mutation-based approaches also put a majority of the improvement
nodes in the upper half of all nodes.

Table 3: The accuracy of performance localisation tech-
niques.

Accuracy Profiler Deletion Exhaustive Ex & De
99-100% 1 0 0 0
90-99% 7 8 9 11
80-90% 7 2 9 6
70-80% 3 10 7 5
60-70% 3 6 5 9
50-60% 2 4 2 5
40-50% 2 3 4 1
30-40% 6 2 5 3
20-30% 10 5 1 6
10-20% 2 2 0 2
0-10% 5 6 6 0

We further show a pair-wise comparison of the approaches using
a bootstrap statistical technique (as described in subsection 4.3)
over the differences of percentiles for each improvement node.
Figure 2 shows pairwise differences between Profiling, Deletion,
Exhaustive, and Exhaustive combined with Deletion. On average,
improvement nodes are ranked roughly 2.75 percentage points
higher under Deletion analysis when compared with a Profiler,
6.25 percentage points higher under Exhaustive analysis when

compared with Deletion, and 3.6 percentage points higher still
when using Exhaustive with Deletion.

Figure 2 also cross validates our evaluation as the differences in
improvement node percentiles correlate with the ordering (though
not magnitude) of which techniques are more accurate than others
in Table 3. The difference between the number of improvement
nodes ranked in the upper half of all nodes as shown in Table 3
(Deletion ranks more nodes in upper half than Profiling, Exhaustive
more than Deletion, and Exhaustive & deletion gap filling further
more still than Exhaustive alone).
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Figure 2: Comparison of the differences between node per-
centile rankings for the four different approaches

Table 4 shows descriptive summary values for each technique (Long
form results are available [1].
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Table 4: Summary

Prof Del Exh Ex & Del
Nodes: most accurate (out of 48) 13 10 13 12
Nodes: least accurate 15 19 8 6
Nodes: ranked in upper half 23 30 32 36
Nodes: ranked in lower half 25 18 16 12
Problems: only accurate nodes 4 4 5 5
Problems: majority deceived 6 2 2 2
Best on Problems 3 1 4 4

Nodes most accurate shows for how many nodes each technique
is the most accurate of all techniques. Profiling has the highest
accuracy values on the most nodes (13 out of a total of 48 important
nodes).
Nodes least accurate sums the number of improvement nodes
each technique attributes the lowest ranking of all techniques. Dele-
tion analysis gives the lowest ranking to the most nodes when
compared with all other techniques.
Nodes ranked in upper half and Nodes ranked in lower half
show a sum of the number of nodes ranked above and below the
50th percentile respectively.
Problems with only accurate nodes counts the number of prob-
lems which do not contain any improvement nodes ranked in the
lower 50th percentile.
Problemsmajority nodes deceived shows a less stringent count
of the number of problems where a majority of the improvement
nodes are ranked in the lower half of all nodes. Where a majority
of nodes are given a low ranking a technique can be said to be
“deceived” as to the location of an improvement.
Best on Problems refers to when a technique has given a majority
of nodes the highest ranking.

Although profiling is accurate on 23 nodes across 8 problems, it is
also deceived on a majority of the improvement nodes in 6 of the
problems. It did however perform better than any other approach
on 3 of the 12 problems including the Huffman Code-book problem
which is the largest in our test set.

The use of Exhaustive analysis with deletion refinement ("Ex &
Del" in table 4) was least deceived of all techniques across all nodes,
with only 12 nodes lower than the 50th percentile of all nodes. It
was deceived on at least 1 node in 7 of the 12 problems and was
deceived on the majority of important nodes in 2 of the problems.
It also has the highest accuracy on 12 of the 48 important nodes. It
performs the best across 4 of the problems.

In these results we assume that if an approach is deceived on a
majority of important nodes in a problem, it is likely that it will
take longer to find an improvement as GP modifies other locations
in the program. If half or more of the nodes are ranked highly, then
it is likely that the approach will help GP find at least one of the
possible improvements more quickly.

We consider a technique’s ability to avoid being deceived as be-
ing more important than being the most accurate. We expect that
there is some threshold value below which the use of a technique
to guide a search process would lower the chances of finding an

improvement. Effort spent modifying irrelevant nodes is effort that
is not spent on important nodes. Due to this, we can hypothesise
that a search algorithm would be delayed in finding performance
improvements when focusing too much search effort on irrelevant
nodes.

This is most obviously exemplified in the hand-crafted "Bub-
bleLoops" problem, where an extra redundant outer loop has been
added to Bubblesort. Profiling attributes a very low ranking to loca-
tions where simple changes which would half the execution cost of
the program. Other examples which were not specifically crafted
to be deceptive problems include Selection 2, Selection, Shell, Radix
and Cocktail sort.

5.1 Computational Cost of Analysis

As can be seen in Figure 3, profiling is the cheapest analysis to
perform as instrumentation only need be performed once and a
single execution of a program is needed to gather results. Even if
we use profiling to find each statement’s sensitivity to input size
[2], we may only need use a small number of test cases to find
this information. As evaluation time dominates, we use this as our
measure of computational cost. We take profiling to cost a single
evaluation.

When a program is mutated, variant programs can be categorised
as (1) not compilable, (2) infinite Loop, (3) run-time Error where
functionality & execution cost differs from original program, (4)
functionally degraded where functionality & execution cost differ.
(5) more expensive (only execution cost differs from original pro-
gram), (6) identical to original program in terms of functionality
and execution cost and (7) less expensive in terms of execution
cost. Previous results indicate that a large proportion (71 - 84%) of
variant Java programs do not compile [17] although these values
are found under a wider range of mutations than considered here
(statement cloning is allowed).

All statements in a program can be legally deleted per the Java syn-
tax due to the context insensitive nature of its grammar regarding
statements. Deletion analysis, as implemented, requires instrumen-
tation for every variant program. As we create a variant program
by deleting each statement the number of evaluations required is
almost linear to the number of statements in a program. In practice
it is slightly less than linear as deleting some lines of code results
in a program variant which does not compile and does not need to
be evaluated. Evaluating whether a program does not compile is
quicker relative to the time it takes to fully evaluate a runnable pro-
gram. Deletion based localisation strikes a balance between being
relatively accurate across many problems and having an execution
cost linear with program size.

On the face of it, exhaustive analysis for a program containing n
elements gives 2n combinations. Evaluation is not required where
a single point mutation is not possible due to the Java type sys-
tem, for duplicate code elements or for programs which do not
compile. Unfortunately we can not exclude programs with infinite
loops4 and runtime errors. In any case, exhaustively mutating all

4Aswe cannot determine for how long a programwill execute, we somewhat arbitrarily
choose a practical timeout of 2.5 times the program’s execution.
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code elements with all other elements in a program is practical
for the relatively small programs in our test set. Although many
replacements are not possible due to language typing constraints
as enforced by the AST representation used, exhaustive mutation
remains expensive, requiring the attempted replacement of every
node with every other node. Many replacements will result in pro-
grams which can be quickly found to not compile, and therefore do
not incur the comparatively large evaluation cost of repeat variant
program execution with several different test input values.
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Figure 3: Comparison of the cost of analysis between Ex-
haustive, Deletion and Profiling. Profiling is flat, requiring
only one evaluation. Deletion is linear with program size.
Exhaustive is exponential in relation to the number of AST
nodes free to be modified.

5.2 Threats to validity

The main threat to validity of our results is the size of the problem
set with the concern being that our results do not generalise outside
this set. This issue is of particular concern due to the limited variety
of program type in our set; all but one of our test programs im-
plements a sorting algorithm. Though the problem set of Sort and
Huffman Codebook problems appears to be varied enough to make
ranking improvement nodes highly across all problems currently
unattainable, there remains a potential issue that the approach of
exhaustive mutation and deletion analysis has been specialised to
the algorithms in our problem set. Adding problems to the test set
with particular attention paid to choosing a wider variety of prob-
lem types would reduce this concern. The length of programs is

relatively small which calls into question how accuracy is affected
when analysis is performed over much larger programs. As we use
a sum total of execution cost it may be more difficult to measure
how a mutation affects the overall cost. Our current intuition is
that the accuracy of mutation-based performance localisation de-
creases with program length, though this would require further
experimentation to validate.

The important nodes listed in our tables are sometimes part of
multiple possible improvements. There are dependencies amongst
some of the nodes where modifications must be made in a certain
sequence to yield an improved program making some improve-
ments easier to find than others. Not all nodes are equal, given that
a change in some may produce low functionality programs and are
dependent on other modifications. As not all nodes are equal in
terms of dependencies a simple summation summary may not ap-
propriately capture a localisation techniques accuracy. If a majority
of important nodes in a program are highly accurately identified it
may not improve search where these nodes depend on one specific
node which has unfortunately been misidentified. The "importance"
of nodes is thus not uniform. This concern can be addressed by a
closer inspection of how “difficult” each improvement is to achieve.
If an improvement requires multiple changes to the program it can
be said to be more difficult to find than an improvement requiring
only a single modification.

6 DISCUSSION

The major advantage of Profiling is the relatively low computa-
tional cost required. A single run of an instrumented program is
enough to profile. Deletion analysis requires a program execution
for each statement in a program though is more accurate on average.
Exhaustive mutation is more accurate still but also considerably
more expensive to perform.

The problem size we use is relatively small and there is a potential
limitation especially with exhaustive mutation regarding scalabil-
ity. A potential solution might be to use a hybrid of approaches.
Deletion analysis could be used initially to find what statements
influence execution cost the most. If removing the outermost loop
reduces execution cost by some small fraction of overall cost, it
may not be worth deleting and executing further nested statements.
At some depth in the program subtree deletion analysis can be
skipped where execution cost savings are negligible. Once deletion
analysis has identified the most influential lines of code, exhaustive
mutation can then be used sparingly to only distinguish between
nodes within highly influential statements. Such an approach would
further exploit the hierarchical structure of source code.

We use our results to say that the location of a performance bottle-
neck, as typically found using a profiler, does not always highlight
potential performance improvements. When a performance im-
provement receives a low ranking, a search algorithm such as GP
will be less likely to find the improvement than had there been no
node ranking at all.

The cost of performing mutation can be offset in scenarios when
mutation is performed for other purposes such as mutation testing
[5] or genetic improvement [16, 22] (which utilises GP in many
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cases). Our results in this paper show that it is worth further at-
tempting to further exploit the information generated by repeatedly
executing mutated programs. Our main use case for this approach
is as a guide for Genetic Programming (GP) to find performance
improvements [17]. As mutation is the main driving force of the GP
search process, it may be possible to localise performance during
GP.

7 RELATEDWORK

Our work fits between locating state with fine-grained mutation
[23] and locating coarse-grained code units (functions) with pro-
filing techniques [3] though static analysis techniques are also
relevant. Using mutation to create many program variants has
long been studied for software testing [5] and has recently been
inspected for understanding the robustness of software [10, 18].
Closest to our approach is the use of mutation to discover “deep
parameters” or locations where a modification in code relevant to
program performance [23]. A deep parameter is a programmutation
which affects program performance but not functionality. If pro-
gram functionality changes in any measurable way, per an available
test suite, the code location which was modified is removed from
consideration as an interesting location for performance improve-
ment. In contrast, our work shows that there is value in considering
the location of mutations which degrade functionality but crucially
also reduce execution cost. Input sensitive profiling uses progres-
sively larger sized input values to highlight what lines of code have
a particularly acute response to increased program input size [2].
A similar approach has been used with success to guide GP [9]
showing the importance of performance localisation.

Static analysis is a lightweight alternative to dynamic analysis for
finding performance issues. Static analysis appears to be more spe-
cific to certain types of performance issues[13, 15]. One advantage
of identifying specific performance issues is that automatically fix-
ing these performance bugs may be achieved by applying code
changes which are known to frequently provide a fix [12]. In the
current form of this work, when a performance bug is detected
the unit of code marked as relevant to the bug is a (comparatively
coarse-grained) function (or method in Java) [12]. Coarse-grained
approaches which use a method or function as the smallest unit
of code considered, appear more scalable for larger programs [11].
We see such approaches as complimentary where progressively
less scalable approaches (such as exhaustive mutation) is only used
after more scalable approaches have been used to broadly indicate
what methods or libraries are associated with a performance issue.

8 CONCLUSION & FUTUREWORK

Our approach for using mutation to highlight performance im-
provements is general in that we do not target any specific type
of code nor do we recommend any type of solution. We specu-
late that mutation results may be more generally applicable for
different types of “performance” where mutation has a big impact
on memory, network or disk usage provided these characteristics
can be measured. While brute force search over all variants of a
large program is unlikely to be practical, future work can hopefully
allow similar performance location accuracy on far fewer program
variants.
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