7 PROBLEMS SOLVED USING DATA
STRUCTURES

In this chapter we show that data abstraction can be beneficially used withetigyen
programming (GP). Work so fdfeller, 1994a; Andre, 1994b; Brave, 1995; Jannink,
1994 shows GP can automatically create programs which explicitly use directly ad-
dressable (indexed) memory to solve problems and Chapters 4, 5 and Gsieat®

that GP can automatically generate abstract data structures such as stacks, queues and
lists. In this chapter we show that GP can evolve programs which sobldgms
using such data structures. In two cases we show better GP performanceswhen u
ing data structures compared to directly addressable memory. In the regresse
(which is the first problem presented) the evolved solution uses axpaoid data
structure which is appropriate to the problem rather than indexed nyemi@nm both

are available. Section 7.4 reviews published GP work where explicitoneis used

and concludes that in most successful cases data structures appropriafe td kb

have been provided for the GP (although the experimenter may not kesgl¢he term
“data structure”).

Three example problems are presented. In each the task is to induce a program
which processes a context free language given training samples of thadgngie
chose problems that should be solvable using stack data structurescks \sere
the easiest of the data structures investigated in Chapters 4, 5 and 6e. elio
general, data structures at least as powerful as stacks are required to prooess cont
free languages.

In Section 7.1 GP evolves a program which classifies sequences of bracketgjas bein
correctly orincorrectly nested. Section 7.2 evolves programs which glassjfiences

143

144 GENETIC PROGRAMMING AND DATA STRUCTURES

of multiple types of bracket as being correctly nested or not (a Dyck langaagke)
Section 7.3 evolves programs which evaluate Reverse Polish (pastfixgssions.
The structure of Sections 7.1, 7.2 and 7.3 is based on the structQhapfers 4, 5 and
6. For example Sections 7.1.1, 7.2.1 and 7.3.1 each contain the prabtement for

one of the three problems. Section 7.5 summarises this chapter.

7.1 BALANCED BRACKET PROBLEM

Other work on GP evolving language recognizers has concentrated uporGiitay
evolve tree based specifications for abstract machines, such as finite stataanachi
[Dunay et al., 1994; Longshaw, 1997; Slavov and Nikolaev, 1. 88terministic push-
down automat§Zomorodian, 1995 machines composed of simple Turing machines
[Dunay and Petry, 1995; Petry and Dunay, 1J985special memory nodes within the
tree[lbaetal., 1995 While[Falco etal., 199uses GP to generate a number of formal
languages. HowevdiKoza, 1992, page 442ecasts a simple language recognition
problem in terms of classifying DNA sequencesrisons or exonsand shows GP can
evolve a correct program for this task ajvlyard, 1991; Wyard, 1994; Lucas, 1994
use GAs operating on formal grammar rules of various types to inducengmesrfor

a number of regular and context free languages. In contrast we wish thassesk of
evolving a language recogniser to investigate the impact of proviktg structures
versus indexed memory, and so we follow normal GP practice and our GPtesecu
the GP tree directly i.e. treats it as a program.

In this section we show GP can solve the balanced bracket problem directly when
given an appropriate data structuiZqmorodian, 199Foreviously solved this problem
using GP to evolve a specification for a pushdown automatpard, 1991 used a
GA operating on formal grammar rules to induce a grammar for it[&adkhorst,

1995 used a fixed representation GA to specify a pushdown automaton, &hite

et al., 1990 solved it by training a neural network in combination with a stack). The
balanced bracket language is a context free language and so can be recognised by a
pushdown automaton (which implies use of a stack) and not a regulardgagwhich

could be recognised by a finite state machine. However a pushdown autosatid
required, the balanced bracket language can be recognised by an intermediate machine,
a finite state automaton with a counter. The solution found by GP Wwtssoform.

In a run where both index memory and register memory were availableytieed
solution used the register memory, NB GP selected the appropriatetdatiase for

the problem.

7.1.1 Problem Statement

The balanced bracket problem is to recognise sentences composed of sequences of two
symbols,(and) , which are correctly nested. E.§()) is correctly nested buyt))
is not. A limit of ten symbols per sentence was assumed.

7.1.2 Architecture

Two automatically defined functions (ADFs) (see Section 2.3.2 for aadattion to
ADFs) are available to assist the main result producing branch (or tig®).first,

PROBLEMS SOLVED USING DATA STRUCTURES 145

Table 7.1. Tableau for Balanced Bracket Problem

Objective Find a program that classifies sequence§ @epresented
by 1) and) (-1) as being correctly nested or not.

Architecture Main tree, adfl (no arguments) and adf2 (one argument)

Primitives (any tree)) ADD, SUB, PROG2, IFLTE, Ifeq, 0, 1, -1, max, forwhile,
i0

(rpb, adfl) | adf2, auxl, read, write, swap, S&tix1
(rpb, adf2) | argl
(rpb only) | adfl

Max prog size 4 x 50 = 200. Ininitial population each tree is limited {o
50 primitives.

Fitness case 175 fixed test examples, cf. Table 7.2

Fitness Scaling Number of test examples correctly classified (scalar).

Selection Tournament group size of 4 used for both parent selection

and selecting programs to be removed from the population.
Steady state population (elitist).

Hits Number test sentences correctly classified

Wrapper Zero represents False (i.e. notin language) otherwise True.

Parameters Pop = 10,000, G =50, ¥ 3 demes, no CPU penalty, no
aborts.

Success predicate | Fitness> 175

adfl, has no arguments and has the same terminal and function sets as theenain t
However as it does not have any arguments, it does not use the peianigt.

The second, adf2, has one argument but cannot contain terminals and famgtion
side effects. This allows a cache of previous values returned by it to In¢airegd, thus
reducing run time. (Caches of ADF values were also used in Chapter 5, cf. Table 5
(page 118). See also Section D.6).

7.1.3 Choice of Primitives

Table 7.1 shows the parameters used and the terminals and functiondepldVB
they include indexed memory but not stacks.

For ease of comparison the same sized indexed memory and stacks were used in all
three sets of experiments in this chapter. Both were deliberately genesimes to
avoid restricting the GP’s use of them. The indexed memory consi§te2il memory
cells, addressed as63 . .. + 63, and the stack allowed up to 99 32-bit signed integers
to be pushed. As in the previous chapters, memory primitives had défeteiour
which allows the GP to continue on errors (e.g. popping from an engati ®r writing
to a non-existent memory cell). All stored data within the programitglised to
zero before the start of each test sentence. Tables 7.9 and 7.10 (pages 16&€166) g
the actions of terminals and functions used in this chapter.

146 GENETIC PROGRAMMING AND DATA STRUCTURES

Table 7.2. Number of correctly nested and incorrectly nested bracket test sentences of
each length used in the nested bracket test case. Longer incorrect sentences were chosen at
random from all the possible incorrect sentences of the same length.

Length | Positive Negative

1 all 2
2| all 1 all 3
3 all 8
4 | all 2 all 14
5 random 4
6 | all 5 | random 5
7 random 5
8 | all 14 | random 14
9 random 14

10 | all 42 | random 42

| Totals | 64 | 111 |

7.1.4 Fitness Function

The fitness of each trial program was evaluated on a fixed set of 175 exam plecsent
containing both correctly nested (positive tests) and incorrectly nestettdts (neg-
ative tests). The test case includes all the positive cases up to a lerigthsyfmbols
and all the negative examples up to a length of four. The number ofinegaamples
grows rapidly with sentence length and so above a length of four aelinmtimber
negative examples were chosen at random (see Table 7.2). The programrisedfor
each symbol in the sentence. Thus each programis run 1403 times (§74rfdr729
with an argument of). The value returned by the program on the last symbol of the
sentence gives its verdict as to whether the sequence is correctly nested, vauth
returned by the program is ignored, except on the last symbol of eacletdshse.

This test case and the test cases used in Sections 7.2.4 and 7.3.4 are available
anonymous ftp. Section D.9 gives the network addresses.

7.1.5 Parameters

The default values for parameters given in Section D.3 were used except tiatmp
size and the maximum program length. The parameters used are summarised in
Table 7.1.

Earlier work (cf. Chapter 5) had shown even a large population had a grdatign
to converge to partial solutions which effectively trapped the wholel[ation prevent-
ing further progress. In this (and the following section) the pajon was partitioned
into demes so crossover is restricted to near neighbours in order to reéwspeed of
convergence (see Section 3.8). As in Chapter 5 the population is treate@ asl®86
torus with two members of the population per square on its surface. Eaeathew
individual is created, a & 3 square neighbourhood on the torus (known as a deme) is
selected at random. Parents and the individual their offspring will replacselected
from this deme rather than from the whole populafidackett, 1994; Collins, 1992

PROBLEMS SOLVED USING DATA STRUCTURES 147

rpb
Set _JAuxl 0 ‘ 0
¢ Set_Auxl If forwhile | SUB PROG?
: O — " ;)R f A ; - =
i ADD ° 1 adflSet Auxlargl::i-Taux10 : -1 | max: forwhile 10
%,‘,'",r,g,l,"'/"A D ADD i 'Set Auxl argl Set auxl
adf2 jauxi argl ADD ~ ADD - ADD
-1 acﬂfz auxl arglA D argl ADD
-1 adf2 Ladfl: adf2 adfl
-1 SUB
read auxl
argl
adf adf2
- max forwhile
forwhile W PROG2
forwhile forwhile forwhile argl argl max forwhile
argl argl argargl argl arglPROG2 PROG2 ADD argl argl argll
PROG2 PROG2 argl argll argl
argl argl argl forwhile
argl argl argl
Figure 7.1. Solution to Bracket Problem

7.1.6 Results

In the first run a general solution was produced by generation 19, whi¢hioed 88
primitives. This is shown in Figure 7.1 and a simplified versioshiswn in Figure 7.2.

In contrast to earlier workZomorodian, 1995 where GP was obliged to evolve
pushdown automata, the evolved solution is effectively a finite statehine with
a counter (NB less powerful than a pushdown automaton). The evoletioso
(cf. Figure 7.2) only uses a single integer memory cell (aux1), irclwiticounts the
depth of nesting. At the end of a legal sentence this count must be zertheFu
should the brackets be unbalanced before the end is reached, this is recagwised
auxl is also used as a flag indicating this. This solution not only pafigés fitness
tests and is a general solution to the problem but (given suitable ritidefiof max)
is a solution for sequences of any length.

To find the solution given in Figure 7.1 requiredx 20, 000= 190, 000 individuals
to be processed. This s similar to that requirel@iomorodian, 199bwhere a solution
was found in generation 24 with a population of 3,000. ¥23, 000= 72, 000).

Given the readily found general solution did not exhibit stack likedvédur it was
decided not to repeat this problem with a GP that had stack primitives.

148 GENETIC PROGRAMMING AND DATA STRUCTURES

/HE‘Q\

Set Auxl O PROG2 O Set Auxl O SUB 0
A—TD Set A/iKO A—TD 1/K
et_Aux - max

1 auxl }Q -1 auxl

1 max

Figure 7.2. Solution to Bracket Problem (Simplified)

PROBLEMS SOLVED USING DATA STRUCTURES 149

7.2 DYCK LANGUAGE

In this section we apply genetic programming to a solve a new probileat, of
recognising a Dyck language. Two sets of experiments were conducted,sthe fir
provided the GP with primitives which implement a stack for it and #wad provided
indexed memory and other primitives like those from which it has beewsIGP can
evolve stack data structures, cf. Chapter 4. The same fitness functmrapon size
and other parameters were used in both sets of experiments. Solutionseadite
found when the GP was provided with a stack data structure but nasaiitave been
found when using indexed memory.

The Dyck problem was chosen as Dyck languages are context free languages and
require machines at least as powerful as pushdown automata (i.e. stacke? them.
Dyck languages are generalisations of the balanced bracket problem to niyitigde
of bracket.

7.2.1 Problem Statement

The problem is to recognise which sentences are correctly bracketed, howereer th
are now four types of bracket pairs,), [, 1. {, },*,’. E.g.{}[] is correctly
bracketed buf } is not. As with the nested brackets problem, a limit of ten symbols
per sentence was assumed.

7.2.2 Architecture

In the first experiments (stack given) no ADFs were used, whilst irsétoend there
are three ADFs, having 0, 1 and 0 arguments. It was hoped that these eolviel to
operate like pop, push and top. Each could be called from the main tredpadtit
the third (which it was hoped might evolve to act like top) could beechliy the first.

7.2.3 Terminals, Functions and Parameters

The terminals, functions and control parameters used in these two expésiare
as Section 7.1 except where given in Table 7.3. The differences between the two
experiments in this section are shown in the middle and right handerslof Table 7.3.

The five stack primitives are based on the definition of a stack given ire Zatl
(page 63), however they have been made more rugged by ensuring treaiichehs
defined in all circumstances, i.e. including errors such as popping from ay stapk.

Their behaviour is defined at the end of this chapter in Tables 7.9 and 7.10.

This problem is more complex than that in Section 7.1 and so the tessdasgér.
To constrain the increase in run time, forwhile loops were not used.

7.2.4 Fitness Function

The fitness of every trial program is determined by presenting it witlerges of
symbols from test sentences and counting how many times it correctly dassifch

150

GENETIC PROGRAMMING AND DATA STRUCTURES

Table 7.3. Tableau for Dyck Language Problem
Objective Find a program that classifies sequences of four types of bracket
(((represented as 5),(71), [(13),] (103), { (31), } (137),
‘ (43) and' (167)) as being correctly nested or not.
Primitives Common Stack Given Index Memory
All trees: | ADD, SUB, || Makenull, read,
PROG2, IFLTE, | Empty, Top, | write, inc.auxl,
Ifeq, 0, 1, max, auxl| Pop, Push decauxl
rpb: as all plus| ifopen, ifmatch, adfl, adf2, adf3
ARG1, SetAux1
adfl: as all plus adf3
adf2: as all plus argl, arg2
Max prog size Initial tree limit 50 50 4 x 50= 200

Fitness Case

286 fixed test examples, cf. Table 7.4

Fitness Scaling

Number of correct answers returned.

Selection Tournamentsize 4 (After first solution CPU penalty used giving
a two dimensional fithess value, fithess niching used with a
sample of up to 81 (% 9) nearest neighbours).

Hits Number test symbols correctly classified.

Wrapper Zero represents True (i.e. in language) and all other values
False.

Parameters Pop = 10,000, G =50, Pareto;<33 demes, CPU penalty only

after first solution found, Abort on first error in sentence.

Success predicat

e Hits > 1756, i.e. all answers correct.

PROBLEMS SOLVED USING DATA STRUCTURES 151

as to whether it is the last of a correctly balanced sequence. All memory adigad
to zero before the start of each test sentence.

Test Case. The number of possible test sentences of a particular length is much
larger than in Section 7.1 and so it was not practical to include sentences thager
eight symbols and even for lengths of six and eight symbols it was negéssaiect

(at random) positive test examples to include.

In a correctly matched sentence there will be equal numbers of opening amjclosi
brackets of each type but this is unlikely to be true in a random sequetcaakfets.

If the only negative examples are random sequences of symbols, a progtéan
correctly guess most answers just by considering if there are equal nuaflezrsh
pair of bracket. We anticipate that such programs can be readily evolvedgiopde

the program that evolved in Section 7.1 does this. However it may beiatéd
that evolving complete solutions from such partial solutions Wl very difficult.
(Chapter 8 suggests the evolution of correct stacks is made harder brettenpe of
“deceptive” partial solutions). To penalise such partial solutionsdbiedase included
examples where there are equal numbers but which are not correctly neste@drefer
to as “Balanced” in Table 7.4).

As before it was not practical to include all cases and so longer negative lsaamp
(both balanced and not balanced) were selected at random. Even so the fitness tests ar
much longer than that in Section 7.1 and so to keep run time manageable themum
of times each program must be run was reduced by:

= Only using the first half of the test case (i.e. tests up to length sikgwever if
a program passes all the shorter tests then it was also tested on test serftences o
length seven and eight. Thus most of the time the second half of theatssts not
used. Itis only used by programs that are nearly correct, which evolvanates
GP run.

= |n the first experiments in this chapter, each program is only tested at thefen
each test sentence. In these experiments the value returned for each symdmbl is us
If a wrong answer is returned the the rest of the sentence is ignoresl réthices
run time as in many cases only part of the test sentence is processed.

Some shorter sentences are identical to the start of longer ones and sed¢dey n
not be tested explicitly as the same actions will be performed as partoofge

test. Therefore such duplicates were removed from the test case. The testarase aft
removing such duplicates are summarised in the right hand side of Tdble 7

Symbol Coding. Initially brackets were coded atl, +£2,+3,+4 but general
solutions proved difficult to find. Instead, despite the use of “baldhnedative
examples, partial solutions based upon summing up symbol valuesdisti Since
the purpose of the experiment was to investigate learning correct gestsymbols
rather than learning which symbols match each other the problem was simplified
providing the GP with two new primitives (ifmatch and ifopen, cf. [EaB.10) which
say which symbols match each other. To further discourage partial sauigsed
on summing symbol values the symbols were recoded as prime valuesongiimple
relationships between them (cf. Table 7.3).

152 GENETIC PROGRAMMING AND DATA STRUCTURES

Table 7.4. Number of correctly and incorrectly nested test sentences in the Dyck language
test case. The incorrect test sentences are divided into those with the correct number of
each type of bracket but which are in the wrong order (referred to as “Balanced”) and others
(referred to as “Rand”). Longer sentences were chosen at random. The right hand side of
the table gives the number in each category actually used in the Dyck test case, i.e. after
removing duplicates.

Len- | Positive Negative After Removing Duplicates
gth Balanced| Rand|| Positive | Balanced| Rand| Score
1 all 8 0
2 al 4 all 60 9 18
3 16 10 30
4 all 32| all 24 16 27 16 172
5 16 16 80
6| rand 32| rand 32 32 32 32 32 576
7 16 16 112
8 | rand 32| rand 32 32 32 32 32 768
| Totals || 91 | 112] 83| 1756]

Evolving Improved Solutions. The combination of Pareto fithess, a CPU
penalty and fitness niches introduced in Chapter 6 (Section 6.5.3) was uthexbén
experiments. Briefly after an individual which passes all the tests isdfthe GP

run is allowed to continue using a modified fitness function which thetua CPU
penalty. Each program’s fithess now contains two orthogonal termstithead score

and the|mear] number of instructions run per program execution. Tournament se-
lection is still used for reproduction and deletion but now uses Paretpaason (see
Section 3.9), so passing tests and using little CPU are equally iemgorthe fithess
sharing scheme described in Section 6.5.3 was used. This introduces aasgcond
selection pressure to be different from the rest the population seiafidigh scoring

and high CPU programs to co-exist with programs with lower scoresiding less
CPU. This may reduced premature convergence.

7.2.5 Results

In three runs given the stack primitives general solutions were evblyggneration
7 to 23 (in three identical runs but using simple non-demic (norp@bulations, two
runs produced solutions in generations 30 and 39). Evolution wasedlto continue
after the first individual to pass all the tests was found. Under theenéle of the
CPU penalty faster but still general solutions were found (see Fig8je Figure 7.4
shows the first solution to evolve in a run using demes and Figbrehows one of the
fastest solutions produced in the same run after 50 generations. As iorSedtthe
solutions are not only general solutions to the given problem,ikkehg deep enough
stack would work with any sentences of any length.
As all runs given stack primitives and using demes succeeded in findingtasolu

the best (i.e. most likely) estimate of the number of runs requiree taskured (with

PROBLEMS SOLVED USING DATA STRUCTURES 153

40000 T
35000 .
Fastest sol utions -+-
30000
c
S 25000
1%}
c
(=}
= 20000 -
o
= Ty .
= % Dyck Solution (22.6)
2 15000 | = -
= *\ L
10000 B P N s
> -3 T
7 H>H¢% 1
,,,,,,,,, ooy oy st VL .

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
Nunber of Individuals Created

Figure 7.3. Evolution of the number of primitives executed during fitness testing on the
Dyck problem, means of 3 runs using demes. Error bars indicate one standard deviation either
side of the population mean. The fastest solutions evolved in each run are also plotted. The
minimum number of instructions are executed by relatively unsuccessful programs as these
are run on few tests.

N ifmatch | |
'Pop ARGl _ifmatch’ |
T ESPIARGIALD Push _Push.

TPusht 0 Push IFLTE
IFTE)TE\ auxl 1 ARGl max
auxl 1 %Ptfshimaxauxlo ARGlﬁ
i Pop : Ptfsh 0

Argl

Figure 7.4. First Solution to the Dyck Problem. Evolved after 22.6 Generations

99% probability) of obtaining at least one solution is one. Thisld@aquire a total
of up to 23x 10* x 1 = 2.3 1P trial programs.

In contrast none of 15 runs using the indexed memory primitiveseplaat the
tests. (The probability of the difference between the two experimesitgldue to

chance is« 0.1%). Some of the more promising runs were extended beyond 50

generations up to 140 generations without finding a solution. Theresluced after
84 generations) still failed 3 tests (on sequences of up to six symiidepwed some
stack like behaviour which enables it to pass 13 of the tests of lengém sad eight

154 GENETIC PROGRAMMING AND DATA STRUCTURES

ifmatch
Pop ARG1 M Push
Pop Plfsh max Plfsh
Top ARG1

Figure 7.5. One of the Fastest Solutions to the Dyck Problem evolved after 50 Gener-
ations

but also showed some signs of over fitting to the specific test case ubed ttzéin
having learnt to solve the general problem.

A program which always returns zero (i.e. True) has a fitness of zero becaube it wi
always fail on the first symbol of each test sentence (a sentence of odd lengjthen
unbalanced). In contrast a program which never returns zero will always bector
on the first symbol of each sentence and so will get the opportunitytested on the
second symbol which it may also pass. For the actual test case used a progcam wh
never returns zero has a fitness of 714. While aborting a test senteneefoattarror
reduces the number of times programs are run, it may also make it mooeildlitdi
evolve a solution. In both experiments the GP population quieldyns not to return
zero, but when using indexed memory it appears to be more difficult than gikien
a stack to escape this local optima and learn to return zero at some points.

7.3 EVALUATING REVERSE POLISH EXPRESSIONS

In this section we describe the final comparison of appropriate datetistes and
indexed memory. Once again solutions are readily evolved when the ajgteaata
structure is provided but no solutions have been found when usitexéd memory.

Two sets of experiments were made, the first provided the GP withtpu@siwhich
implement a stack for it and the second provided primitives like thama fvhich it
has been shown GP can evolve stack data structures.

7.3.1 Problem Statement

In this section the GP evolves a four functiekp, (—, / andx) calculator, i.e. evaluates
integer arithmetic expression. The problem is simplified by presgtiie expression in
Reverse Polish Notation (postfix), which avoids consideratiorpefator precedence
and by avoiding expressions which include division by zero. Notlomithe length
of expressions was assumed, however the expressions tested were bbteeeamd
fifteen symbols long (see Table 7.6).

7.3.2 Architecture

The multi-tree architecture and multi-tree crossover described in Se8t®@and
employed in Chapters 4, 5 and 6 was used. This allows trees within eacldinalitd
evolve to specialise in solving one of the operations that form thepéete calculator
program. Each individual within the population consists of five sseatrees (num,

PROBLEMS SOLVED USING DATA STRUCTURES 155

plus, minus, times and div) plus either zero or two ADFs. As in Secfifohsand 7.2
each test sentence is presented a symbol at a time to the GP, however in ¢his cas
the appropriate tree is selected. E.g. if the symbol is an integer, ltleemuim tree is
executed with the integer as its argument. Each tree returns a value agém cailue
of the expression (num’s answer is ignored).

In the first experiments (stack given) no ADFs were used, whilst is¢lgend there
are two ADFs, having 0 and 1 arguments respectively. It was hoped thatdbiaise
evolve to operate like pop and push. Both ADFs could be called frorfiteenain
trees.

7.3.3 Terminals, Functions and Parameters

The terminals, functions and control parameters are as Section 7.2 excepgvaer
in Table 7.5.

Fears that run time might prove to be excessive led to the decision tiveesome
unnecessary primitives from the function and terminal sets. Sincemdbgancluding
the supplied stack is initialised before the evolved programs can,ube iMakenull
operation is not needed. Therefore the terminal set was simplified by clatling
Makenull and Empty (which is also not needed) in these experiments.

7.3.4 Fitness Function

In eachindividual in the population a separate score is maintained fvetgperations
(num, plus, minus, times and div) plus a CPU penalty. Each time thi@dual returns
the correct answer (and it is checked) the score for each of its operations thagmas
used since the last time its result was checked is incremented. As in Se@iitimeze
scores are not combined and each contributes as a separate objective in jaativ®b
Pareto selection tournaments.

Test Case. The fixed test case was created before the GP was run. Part of the test
case was devised by hand and the remainder was selected at random. However ran-
domly selected data values (from the rarg® ... + 99) proved to be unsatisfactory
for expressions containing “/” because division of two randomly seldoteders has
a high chance of yielding zero or an integer near it and therefore data values were
changed by hand. (Less than one in eight divisions of randomly chosessvaill
yield a value of 4 or more or4 or less).

The following rules were used to create the test case:

m [twas expected thatas minus and divide are not commutative they wotkld beost
difficult operations to evolve and therefore the test case include @hggbportion
of minus and divide than the other two arithmetic operations (cf. TAe

m The test case was designed to include deeply nested expressions (cf. Spateif7.
was anticipated otherwise non-general partial solutions only able toateadimple
expressions, which could be evaluated without using a stack, woedtbprinate.

= To avoid consideration of exception handling, and its associated coitypiixide
by zero was deliberately excluded from the test case.

156

GENETIC PROGRAMMING AND DATA STRUCTURES

Table 7.5. Tableau for Reverse Polish Notation (RPN) Expression Evaluation Problem
Objective Find a program that evaluates integer Reverse Polish (pos
arithmetic expressions.
Primitives Common Stack Given Index Memory
+ — x/ trees:| ADD, SUB, MUL, || Top, Pop,| read, write, incaux1,
DIV, PROG2, 0, 1,|| Push decauxl, adfl, adf2
auxl, SetAux1
num: as ops plus argl
adfl: as ops bu no adfs
adf2: as ops bu no adfs and add argl
adf3: as ops bu no adfs and add arg1
arg2
Max prog size Initial tree limit 50 5x50=250| 7 x 50 =350

Fitness Case

127 fixed test expressions, cf. Tables 7.6, 7.7 and 7.8.

Fitness Scaling

Number of correct answers returned.

Selection Pareto tournament size 4, CPU penalty (initial threshold 50
operation), fitness niching used with a sample of up to 81 0
members of the population.

Hits Number of correct answers returned.

Wrapper Value on num ignored. No wrapper on other trees.

Parameters Pop = 10,000, G = 100, Pareto, no demes, CPU penalty|

creased after®i solution found), abort on first wrong answ:
given in expression.

Success predicat

eFitness> 194, i.e. a program passes all tests.

5tfix)

per

ther

(in-

er

PROBLEMS SOLVED USING DATA STRUCTURES 157

Table 7.6. Length of reverse polish expressions at each point where answers are checked
in the fitness test case.

N
()]
(o]
]
o)
(o]

length 1123 10| 11(12| 13| 14| 15|| Total
No. of cases 10| 3 |55|27|44| 2 (36| 1|5 8 3 194

m Randomly generated data values were manually changed so that only a feardivisi
yield valuesintherange3 ... + 3.

m To avoid problems with overflow, randomly generated expressionsatidltow:
arguments to addition or subtraction outside the ran@ . .. +10° or arguments
to multiplication or division outside the range65535... + 65535.

= Also to avoid overflow problems, data values set by hand were chosenlserribé
product of two arguments of divide nor the square of the second argexeseded
2,147,483,647.

m Most test expressions were well formed, with exactly the right nunobefata
values for the number of operators (and vice-versa). (Since all four opee®
binary this means there is one more data value than the number of opéarator
the expression). However, to test generality, one expression avitbrfarithmetic
operations was included. In this case there should be multiple datesJeft after
evaluating the expression.

As before itwas necessary to constrain run time. This was done by checkimgrans
during the evaluation of each expression and aborting evaluatiomfobiothe first
error detected and removing test examples which essentially duplicated othéss.
left 127 test expressions which include 194 points where the trgram’s answer is
checked.

CPU Penalty. The long run times encountered with these experiments led to
the decision to include a CPU penalty [ghearj number of primitives executed per
program run. Unlike the previous section, this CPU penalty waseghfriom the start

of each run. However initially only programs with long run times aregtisad (by
ignoring the penalty where it was 50. This was implemented by setting the penalty
is zero for such fast programs). Should a program be evolved which ghssghole
fitness test case then the CPU penalty is increased by applying it to alapmegr

7.3.5 Results

In eleven runs using stack primitives, six produced solutions whasked all the tests,
these were found between generations 11 and 23 (see Figure 7.6). In fesitltas
first programs to pass all the tests were also general solutions todblkepr. In the
other two the first solutions failed special cases such-a% &ndz/y = 0 (which were
notincluded in the test case), however in both runs general solutioesswelved less
than 12 generations later (before 34 generations).

158 GENETIC PROGRAMMING AND DATA STRUCTURES

Table 7.7. Number of times each tree occurs in reverse polish expression (RPN) test case
and the score it has when the whole test case is passed.

Operation]| No. | Max Score |

num 550 163
plus 67 58
minus 103 85
times 85 64
divide 156 127
420
| Totals | 970 | 497 |

Table 7.8. Number of symbols (i.e. operators or numbers) used in the RPN test case for
each level of expression nesting. (Depth of nesting calculated after the symbol has been
processed).

depth 1 2 3 4 5 6 Total
No. of cases| 387 | 390 | 149 | 31 12 1 970

Under the action of the increased CPU penalty, solutions which took aheuhird
of the CPU time of the first solution found were evolved. Figuieshows one of the
first general solutions to be evolved and Figure 7.8 shows one dshest solutions
evolved at the end of the same run.

In 59 runs with stack primitives replaced by indexed memory (see righd biale
of Table 7.5) no program passed all the tests. (NB the probabilithefitfference
between the two experiments being due to chance i$%). The highest number
of tests passed (148 of 194) was achieved by a program which used thelffF<ioA
implement DIVR (i.e. standard divide but with the arguments in recder, see
Table 7.9) and the second to approximate both push and pop on a theketésk.
Other unsuccessful trials included adding a third ADF (with two argus)en the
hope that this might evolve the DIVR functionality leaving théeat ADFs free to
implement push and pop (best 102 in 33 runs, of which 16 ran out oftigfare 50
generations) and supplying SUBR and DIVR functions (in place of SUBEM)
where the best score was 116, in 38 runs.

The probability of a general solution being found by generation 23 vghem the
stack primitives is best estimated atl4. Using Equation 4.1 (page 75) the number
of GP runs required to be assured (with 99% probability) of obtgi@nleast one
solution is 11. This would require a total of up to 2310* x 11 = 2.53 10 trial
programs.

Discussion. The non-commutative functions-(and/) appear to be more difficult
to evolve than commutative ones because the arguments on the stack amgpakite
order to that used by the SUB and DIV functions. (The problem can be yesadied,

PROBLEMS SOLVED USING DATA STRUCTURES 159

50000 T
Max —
45000 | Mean e f
Fastest solutions (general) -+-
Fastest solutions (other runs) -8-
40000 - Mean CPU threshold —
Threshol d
35000 B
c
=]
= 30000 B
(%]
=4
o
= 25000 -
o
=]
% 20000 | -
f=4
15000 B
10000 B
5000 B

0 L L L L
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
Nunber of Individuals Created

Figure 7.6. Evolution of the number of primitives executed during fitness testing on the
calculator problem, means of 11 runs. (Average data is not plotted after generation 70
as several runs run out of time by this point). Error bars indicate one standard deviation
either side of the population mean. The fastest solutions evolved during the six successful
runs and the population mean of the threshold above which the CPU penalty is applied are
also shown. The minimum number of instructions are executed by relatively unsuccessful
programs as these are run on few tests.

num
SUB__
ADD Set_Auxl:

/MQE\Eamﬂ PROG2 PROG?2

‘aux, 1 Top Pop PROG2 0

Top Auxl
__plus minus
Set_aux1 : . Set_Aux1 |
T 5 f 1 5
AD - sle
'Pop auxi ‘Pop auxi

Figure 7.7. First Solution to the RPN Problem. Evolved after 11.0 generations (12240
instructions to complete test case)

160 GENETIC PROGRAMMING AND DATA STRUCTURES

num plus minus times div
% Set_auxl Set_Aux1 Set_Aux1 Set_auxl
PﬁjshSet Auxl ADD ADD MUL DIV

auxl argl Pop auxl}% }{ Pop Auxl Pop auxl
1 auxl Pop 1

Figure 7.8. One of the Fastest Solutions to the RPN Problem evolved after 76 genera-
tions (4842 instructions to complete test case)

when given the stack primitives, by replacing SUB and DIV by SUBR and DIVR
which process their arguments in the opposite order, i.e. the ordbéeatack). The
div tree has to use some storage (i.e. aux1) to reverse the orderstéthearguments
(sub can simply negate the result of performing the operation in thegwrder to get
the right answer). The need to use aux1 makes the problem deceptive, inatiyat m
programs can obtain high scores using aux1 as the top of the stack andibtdgts
which require deeper use of the stack.

Some of the difficulty the GP with indexed memory found may have beenal
trying to use auxl both as stack pointer (for which_auex1 and de@ux1 make it
suitable) and as the top of stack (as evolved in many cases where the statkesimi
were given). Ifthisis case better results might be obtained by addeapad auxiliary
variable (aux2) so these two uses could be split between two variables.

The top curve on Figure 7.6 shows the initial CPU penalty thresheldbefore a
solution has been found. This shows on average the CPU threshadghés than the
average maximum CPU used by any individual in the population. Whigerheans
the CPU penalty has a small effect, the effect need not be negligible sinpecgmam
which does exceed the threshold automatically has poor fithess and so ystdikel
be removed quickly from the population (and so not be included in thiadistics).
I.e. the penalty may still be effective in constraining growth in elajpse and program
size (often described as “bloat”).

Contrasting Figure 7.6 with a similar plot for the list probldrigure 6.3, page 132)
we see in the list the CPU penalty is much more constraining, des$gitthteshold
being set at 120 per test rather than 50. This is probably simply due fréisence of
the forwhile primitive in the function set but may also be due int pathe problem
requiring more primitives to solve it (fastest evolved soluti®@l12per test versus 7.0
for the calculator).

7.4 WORK BY OTHERS ON SOLVING PROBLEMS WITH MEMORY

This section briefly reviews published work on solving problemisgi$GP which
includes memory primitives. In most successful cases data structurepeapfado
the problem have been used although the term “data structure” may ndid¢wveThe
principle exception is Teller’s signal processing system PADO. Tédtian groups
publications according to memory structure, starting with the simhled finishes
with consideration of PADO.

PROBLEMS SOLVED USING DATA STRUCTURES 161

7.4.1 Scalars

[Cramer, 198bshowed programs which use simple scalar memory could be evolved,
however the paper concentrates upon program representation not use ofymemor
[Huelsbergen, 199&olved the same problem, albeit with different primitives etc., but
also uses simple scalar memory. Huelsbergen also shows the problem cdwebe so
by random search in a practical time.

[Koza, 1992, page 41(resents an example where a single variable is used to
maintain a running total during execution of a loop. WhildKwmza, 1994, page 512
a small number of variables are used in a protein classification problem wieere
program processes proteins sequentially, a residue at a time. The vapiaviels the
ability to store information about previous parts of the protefiicl is expected to be
useful in this classification problem. NB in both cases programs wergaolsing
memory appropriate to the problem.

7.4.2 One Indexed Memory

Most of the published work on using GP where use of memory is @xplevolved
follows [Teller, 1993; Teller, 1994avhich introduced “indexed memory”, i.e. a single
multiple celled directly addressable memory, to GP. For exaifffdék and Browne,
1994 use indexed memory to show that on a reactive task, GP with explicit myemo
performs better than GP with implicit memory. Indexed memory, as itali@ndom
access, provides little “structure” and could be problem independent,vieovire
[Andre, 1994b; Andre, 1995b; Andre, 1993he indexed memory is made problem
specific by treating it as two dimensional and sizing it so that it is ispimio to a small
problem “world”. That is the memory is given a structure appropriateégroblem.
A similar approach is taken ifBrave, 1996k where memory is isomorphic to a full
binary tree “world”.

The simple indexed memory used[i@repeau, 1995is not obviously structured
in a problem specific manner. The author suggests the success of GP atgweolv
“Hello.World” program by manipulating (a subset of) Z80 machine codg in part
be due to initialising memory with random 8 bit values. Thus it igtily probable”
[Crepeau, 1995, page 13that the needed ascii values are initially in the indexed
memory.

Another GP system which evolves machine code, based this time on the BIN R
architecture, allows large amounts of directly addressable memory, holidmetin
and Banzhaf, 1995does not describe experiments using iNordin and Banzhaf,
1994 describes experiments using the system for sound compression wiexedn
memory and structured memory (a stack) were tried. In these experimeotgsdprs
took longer time to evolve and performed worse in fithess but had tarssdund
with less overtones” than experiments without memory. However otlarggs were
simultaneously made which may have made the task more difficult. Theriéfis
difficult to draw any conclusions regarding the benefits or otherwiisiaia structures
from this paper.

[Jannink, 199Kincludes 16 memory cells in one experiment to evolve programs
which generate “random” numbers. This is said to give “the best averagkatiah
score”, i.e. better than when the programs were not given access to memorys Detail

162 GENETIC PROGRAMMING AND DATA STRUCTURES

of how the evolved programs use memory are not given and no compairitsootier
memory sizes or structures is provided.

7.4.3 Case Base

[Spector and Alpern, 199%resents a system which attempts to evolve music-making
programs, specifically producing jazz improvisation responses to isdpfgingle-
measure calls”. “While we (Spector and Alpern) have not yet succeeded in igducin
and recapitulating the deep structure of jazz melody” promising musiergéng
programs have been evolved and the authors “believe that our framegidsiftomise
for the eventual achievement of this goal.”

While the authors refer to their memory system as “indexed memory” ibislem
dependent. Consisting of 31 identical data structures, each of whichgnddgd hold
a melody (expressed as 96 MIDI values). One data structure holdspihie amother
the output (i.e. the program’s jazz “response”) and the rest form a onengdional
array of 29 elements containing a case base of human written music. Onlytthé o
structure may be written to. Various problem dependent functions akeded for
cutting and splicing segments of melodies but data values within tlzestiatctures
cannot be directly manipulated.

7.4.4 Strongly Typed Genetic Programming

[Montana, 199bpresents two examples where GP is provided with local variables
which it uses to solve problems (the two other examples don't allguligkuse of
evolvable memory). The use of the strong typing framework meaneatiables must

be typed. In both examples the variables are lists, which are either sdthe type as
the input or the same type as the output. That is with stronglytypP data structures
appropriate to the problem are readily chosen (STGP also prevents sainekabuse

of the data structures).

7.4.5 Graph Data Structures

[Brave, 1995; Brave, 199bahows GP using a graph data structure which provides
primitives to connect nodes and follow connections. Using this daiatste the GP
was able to solve a navigation problem which requires it to form a memdke! of

its world. This builds ofAndre, 1994b but replaces a predetermined isomorphism
between indexed memory and the problem “world” by a more complex daiztste

that is appropriate to the problem.

7.4.6 Linked List Data Structure

[Haynes and Wainwright, 199%equires GP to evolve control programs for agents
which have to survive in a simulated world containing mines. The &er@mory

is a dynamically allocated linked list, with a new list element represeiiagurrent
location being automatically allocated each time the agent enters a new locéatien in
world. Read and write access is with respect to the current location, e.g.rtieatcu
memory cell, the cell representing the location north of here, the cell+eaighof that

PROBLEMS SOLVED USING DATA STRUCTURES 163

and so on. The list keeps track of the agent’s path allowing it to backtraok &
path. (Since its path lies in a minefield a safe option is always for thet émestrace
its steps). NB the memory is structured in an appropriate fashiohégprtoblem.

7.4.7 Tree Structured Memory for Temporal Data Processing

[Iba et al., 199bintroduces “special ‘memory terminals’, which point at any nonter-
minal node within the tree.” The value given by a memory terminal izvéthee at the
indicated point in the tree on the previous time step. While thisstre is applicable

to a range of signal processing problem, once again memory has been ceudivain
the GP into a structure appropriate to the problem.

[Sharman et al., 1995; Esparcia-Alcazar and Sharman] 5@8iarly use memory
terminals to hold values previously calculated at nodes within the anogree, how-
ever the mechanism for connecting terminals to inner nodes is differgiigiespsh”
functions within the program tree save the value at that point inré®eby pushing it
onto a stack. The stack is non-standard as “psh” writes to the current skeckas
“stkn” terminals provide a mechanism to read the stack created on the previaus tim
step. The stack is also non-standard in that thet"séminals non-destructively read
data inside the stack (rather than from just the top of stack).

7.4.8 Object Oriented Programming

Some confirmation of the experimental results of Chapters 4 and 5 isdptbby
[Bruce, 1995; Bruce, 1996Although Bruce casts his work in an object oriented light
rather than in terms of data structures there is much that is similargevtiik. The
details of the data objects in Bruce’s experiments on evolving stack agukqiata
objects are similar to the stack and queue data structures in Chapters 4 @hdy5.
differ principally by the inclusion of aFul | ?” object method and the lack of top or
front operations. Bruce also considers the evolution of a “priayitgue”. While this
has some similarities with the list data structure evolved in Ch#&pates significantly
simpler with only five data methods rather than the ten simultaneouslyes in
Chapter 6.

The details of the genetic programming system Bruce uses are simifers® tised
in Chapters 4, 5 and 6. For example one tree per data method (making af totel
trees per individual, see Section 3.6), separating pointers from mardddnemory
(cf. Section 3.5), and use of tournament selection (cf. Section 3.2) vsithaaly state
population (cf. Section 3.3). However a population size of 1,00&é&luhroughout
rather than increasing to 10,000 for the more difficult problems.

Bruce conducts six experiments per object type in which he investigageamth
pact of, evolving the data methods one at a time rather than simultdyediosving the
inspection of the internal operation of the programs and the impacing sgongly
typed genetic programming. As might be expected, evolving one thiregtime,
including a comparison of evolved program behaviour with a prescidesal imple-
mentation in the fitness function, and ensuring the evolved progrypesorrect, all
make the GP’s task easier. If all three are avoided (as in our experimehtsh he
labels experiments “3a”, then his GP was unable to evolve the data s&ut0 runs.
(Typically the experiments in Chapters 4 to 6 involve about 60 indep@ndns).

164 GENETIC PROGRAMMING AND DATA STRUCTURES

7.4.9 PADO

PADO [Teller and Veloso, 1995c; Teller and Veloso, 1995d; Teller and Veloso,;1996
Teller and Veloso, 1995b; Teller, 1995a; Teller, 1995b; Teller and Velk®@ha; Teller,
1994 is a GP based learning architecture for object recognition and has been shown
to be able to correctly classify real world images and sounds far better thdonnan
guessing (albeit with less than 100% accuracy). PADO is a complex sysi#m w
many non-standard GP features. For example the classification systeitt feobu
a hierarchy of individual programs which may use libraries of evolviode as well
as ADFs similar to Koza’s, repeated execution of programs within a fixed ggacu
time, programs are represented by a directed graph of execution nodes rathas th
trees and the genetic operators used to create new program are themselves, evolv
cf. Section 2.4.1. The programs it generates are large and their operagioarly
understood.

PADO was deliberately designed not to use domain knowledge and so @nly th
simplest memory structure (indexed memory) is used. It has been appliediplex
ill behaved problems where there is no obvious data structure. GP icopitahciple
build problem specific structures on top of indexed memory which theodty and
size of the evolved programs might conceal, however there is no evideaichis is
happening. The better than random performance of PADO may be due to ifs man
other features rather than its simple memory structure.

7.5 SUMMARY

The experiments described in Sections 7.1 to 7.3 (which were reportealrtinnp
[Langdon, 19960 have shown GP can solve two new problems. In Section 7.2
we showed GP can induce programs which correctly classify test sentences as to
whether they are in a Dyck language or not and in Section 7.3 we showedo&ihgv
code which evaluates Reverse Polish Notation (RPN) expressiongctioi$s 7.1 we
showed GP can solve the nested bracket problem without requiring an @uiee
step generating an abstract machine.

All three examples were solved by GP using the appropriate data sedotuthe
problem. The two more complex examples (Dyck language and RPN) proves t
more difficult for GP when provided with indexed memory rather than wirerided
with a stack. Despite indexed memory being more powerful than stackisnptes
scalars, none of the three problems has been solved using indexed memory.

Section 7.4 reviewed the current GP literature where problems have bled s
using evolvable memory. It shows many cases where appropriate dattustsu
have been used to solve problems. The principle counter example, windlem
specific data structures have not been provided, is PADO, where betteratidom
performance has been achieved on classification problems with no obvioctsi st

It has often been argued, e[¢innear, Jr., 1994c, page I, 2hat functional prim-
itives used with GP should be as powerful as possible, in these examplbave
shown appropriate data structures are advantageous, that is GP can banaditso
abstraction.

These experiments have not provided evidence that existing GP can pcatel u
tackle larger problems. If they had shown GP solving problems bywmglthe

PROBLEMS SOLVED USING DATA STRUCTURES 165

Table 7.9. Actions Performed by Terminals and Functions
Primitive Purpose
Dl V(x.y) if y# Oreturn x/y
elsereturn 1

SUBR(x,y) DI VR(x,y)

As SUB andDl V except yieldy—x andy/x, i.e. operands
reversed.

max
PROR(t,u)

ARGL, argl, arg2
aux1

Set _Aux1(x)

constant 10% max input size).

evaluate; return u

arguments of current operation or ADF

an auxiliary variable (i.e. in addition to indexed memory).
auxl =x; returnauxl

forwhil e(sel)

fori0o=si10<egi0++

if timeout (128)xit loop

if | returns zerexit loop
returni O
Yields value of loop control variable of most deeply nested
loop or zeroif notin aloop in current tree. NB loop control
variable in one tree cannot be accessed in another (e.g. an
ADF).

| FLTE(xy,t1,t2)

if x<yreturntl
elsereturn t2

I f eq(x,y,t1,t2)

if x=yreturntl
elsereturn t2

required data structures “on the fly” as it needed them this would have beemfpb
evidence. However this was not demonstrated. The failure of GP totb@peoblems
when provided with the more general (i.e. more powerful) directly addide memory
data structure shows that data structures should be chosen with cateraydiot be
sufficient to simply over provide, with more powerful structures themneeded.

166 GENETIC PROGRAMMING AND DATA STRUCTURES

Table 7.10.

Actions Performed by Terminals and Functions (cont)

i f open(x,tl,t2)

i f mat ch(xy,t1,t2)

if x=05, 13, 31 or 43 eturn t1//i.e. opening symbol
elsereturnt2
if x=05, 13, 31 or 43 evaluatg//i.e. opening symbol
if (xy) =(5,71), (13,103), (31,137) or (43,16&urntl
elsereturnt2 /Ix andy don’t match
elsereturnt2

Makenul |
Enpty
Top

Pop

Push(x)

clear stackreturn 0

if stack is emptyeturn O; elsereturn 1

if stack is emptyeturn O; else return top of stack

if stack is emptyeturn O; else pop stack andeturn popped
value

Evaluatex;

if <99 items on stack push return x

elsereturn0

Indexed memory is held in storefl ... +1], wherel = 63, i.e. a total of 127 cells.

read(x) if |x| < return storei]
elsereturn0

wri t e(x,d) if |x| < storek] = d; return original contents of storg]
else evaluated; return 0

swap(x,y) if x| <land|y| <exchange contents of stoxgaind storey]

if x| >land |yl <Istorely]=0

if x| <land|y| >1[storek] =0
returnl

