
���������
	���������
�

In both natural evolution and human endeavour, complex problems are solved by
assembling solutions to parts of the problem into a complete solution. Whilst this is
highly successful, it requires limited interaction between components. The building
block hypothesis [Goldberg, 1989] states the same is true for artificial evolution.
While doubts concerning the building block hypothesis have been expressed in general
(e.g. [Beyer, 1995]) and for genetic programming (GP) in particular [O’Reilly and
Oppacher, 1995], if complex solutions are to be evolved then it must be possible
to assemble complete solutions from program fragments which solve parts of the
problem. Where program components have complex interactions progress is more
difficult, since improvement in one aspect will affect many others in an unpredictable
and so usually negative way. Global memory allows such complex interactions.
In software engineering complex interactions via global memory can be tackled by
controlling programmers use of memory with scoping rules and abstract data types,
such as stack, queues, files etc.

The thesis is that data structures can be used within the automatic production of
computer programs via artificial evolution and that appropriate data structures are
beneficial.

����� �������������! #"$ %�&��')(+*-,$�!*.�&/0/0�1"!�32
Genetic programming [Koza, 1992] is a technique which enables computers to solve
problems without being explicitly programmed. It works by using genetic algorithms
to automatically generate computer programs. 4

� �����������
	��	���������

Genetic algorithms (GAs) were devised by John Holland [Holland, 1992] as a way
of harnessing the power of Darwinian natural evolution for use within computers.
Natural evolution has seen the development of complex organisms (e.g. plants and
animals) from simpler single celled life forms. Holland’s GAs are simple models of
the essentials of natural evolution and inheritance.

The growth of plants and animals from seeds or eggs is primarily controlled by the
genes they inherited from their parents. The genes are stored on one or more strands of
DNA. In asexual reproduction the DNA is a copy of the parent’s DNA, possibly with
some random changes, known as mutations. In sexual reproduction, DNA from both
parents is inherited by the new individual. Often about half of each parent’s DNA is
copied to the child where it joins with DNA copied from the other parent. The child’s
DNA is usually different from that in either parent.

Natural evolution arises as only the fittest individuals survive to reproduce and so
pass on their DNA to subsequent generations. That is DNA which produces fitter
individuals is likely to increase in proportion in the population. As the DNA within
the population changes, the species as a whole changes, i.e. it evolves as a result of
selective survival of the individuals of which it is composed.

Genetic algorithms contain a “population” of trial solutions to a problem, typically
each individual in the population is modelled by a string representing its DNA. This
population is “evolved” by repeatedly selecting the “fitter” solutions and producing
new solutions from them (cf. “survival of the fittest”). The new solutions replace
existing solutions in the population. New individuals are created either asexually
(i.e. copying the string, possibly with random mutations) or sexually (i.e. creating a
new string from parts of two parent strings). The power of GAs (to find optimal or
near optimal solutions) is being demonstrated for an increasing range of applications;
financial, imaging, VLSI circuit layout, gas pipeline control and production scheduling
[Davis, 1991].

In genetic programming (GP) the individuals in the population are computer pro-
grams. To ease the process of creating new programs from two parent programs, the
programs are written as trees. New programs are produced by removing branches from
one tree and inserting them into another. This simple process, known as crossover,
ensures that the new program is also a tree and so is also syntactically valid (see Fig-
ure 1.1). Thus genetic programming is fundamentally different from simply shuffling
lines of Fortran or machine code.

The sequence of operations in genetic programming is given in Figure 1.2. It is
fundamentally the same as other genetic algorithms. While mutation can be used in
GP, see Section 2.4.6, often it is not. For example it is only used in Appendix C in this
book.

GP has demonstrated its potential by evolving programs in a wide range of appli-
cations including text classification or retrieval [Masand, 1994; Dunning and Davis,
1996], performing optical character recognition [Andre, 1994c], protein classification
[Handley, 1993], image processing [Daida et al., 1996], target identification [Tackett,
1993], electronic circuit design [Koza et al., 1996a] and car monitoring for pollution
control [Hampo et al., 1994]. At present published applications in everyday use remain
rare, however Oakley’s [Oakley, 1994] use of evolved medical signal filters and the
BioX modelling system [Bettenhausen et al., 1995] are practical applications.

����� �������	�� �
��� �

x x

+

x x

*

*

x

*

x x

x

Parents

Child

-

*

x x

+

+

x

*

+

+

xxx

��� ���	��
�����	� ����������� ����� �"!���#%$&$'� ��!)(*����+�+��-,����/.0 2 132 0 142 0657098�8 �"� ��+�+��;:=<>� �@? 2 0 2 �/�)A"� �%:�BC�;� 2 0 2 1 0ED

� �����������
	��	���������

Population
 of
 Programs

Test

Programs

x

-

x+

x

xx

x
*

*

-

x+

x *

x x

Create new Programs

Select Parents

in Proportion to

their Fitness

�	� �����
�	� � � ����������� � ��� ��!	��#%$&$'� ��!)(������ �

����� �������	�� �
��� �

����� / ,&�&���.���$��, "
There are three main goals of this work. Firstly to show that data structures, other
than simple random access indexed memory, can be used within genetic programming.
Secondly to show that appropriate data structures can be beneficial when evolving
programs and finally to show that appropriate data structures can be evolved as needed.
As we shall see, the first two goals have been achieved. While we shall show it is
is possible to evolve data structures on their own, and it is believed evolving them as
needed is achievable (Section 7.5 offers some support) this has yet to be demonstrated.

We will show:

1. that abstract data types (stacks (Chapter 4), queues (Chapter 5) and lists (Chapter 6))
can be evolved using genetic programming,

2. on a number of different problems, an appropriate abstract data type is beneficial
(Chapter 7),

3. GP can evolve general programs which solve the nested brackets problem (Sec-
tion 7.1), recognise a Dyck context free language (Section 7.2) and evaluate Re-
verse Polish Notation (RPN) expressions (i.e. evolve a four function calculator,
Section 7.3).

4. Chapter 2 contains a survey of GP, while a critical review of experiments with
evolving memory is presented in Section 7.4).

5. Finally Appendix C describes investigations of real world electrical network main-
tenance scheduling problems that demonstrate that Genetic Algorithms can find low
cost viable solutions to such problems.

����� ,�� ��� � "$
Following this introductory chapter, Chapter 2 describes in general terms the ge-
netic programming technique and then Chapter 3 covers in some detail the specific
techniques used in the remainder of the book. The next four chapters describe ex-
periments. The knowledgeable reader may wish to commence with the experimental
chapters, i.e. Chapter 4, and follow the references back to sections within Chapters 2
or 3 as necessary.

Chapter 4 describes in detail an experiment which shows it is possible to automat-
ically generate programs which implement general stack data structures for integers.
The programs are evolved using genetic programming guided only by how well can-
didate solutions perform. NB no knowledge of the internal operation of the programs
or comparison with an ideal implementation is used. The two trees per individual in
the population introduced by [Koza, 1992, Sections 19.7 and 19.8] is extended to five
trees, one per stack operation. Chapters 6 further extends it to ten trees plus shared
automatically defined functions (ADFs). Chapter 4 concludes by considering the size
of the test case (in terms of its information content in the [Shannon and Weaver, 1964]
sense) and the size of the evolved programs. The general solutions evolved are smaller
than the test case, i.e. they have compressed the test case.

� �����������
	��	���������

Chapter 5 describes a series of experiments which show genetic programming can
similarly automatically evolve programs which implement a circular “First-In First-
Out” (FIFO) queue. Initially memory hungry general solutions evolved but later
experiments show that adding resource consumption as a component of the fitness
function enables memory efficient solutions to be evolved. The final set of experiments
show FIFO queues can be evolved from basic primitives but considerably more machine
resources are required. Mechanisms are also introduced to constrain the GP search by
requiring evolving functions (ADFs) to obey what a software engineer would consider
sensible rules.

In Chapter 6 the last data structure, an integer list, is evolved. A list is a generalisa-
tion of both a stack and a queue but more complex than either. A controlled iteration
loop and syntax rules are introduced. The evolution of the list proves to be the most
machine resource intensive of the successful experiments in our book. Chapter 6 also
describes a model for the automatic maintenance of software produced by GP. In one
experiment considerable saving of machine resources is shown.

Chapter 7 is the crux of the book. It shows in three cases GP can beneficially use
appropriate data structures in comparison to using random access memory. The three
problems are the balanced bracket problem, a Dyck language (i.e. balanced bracket
problem but with multiple types of brackets) and evolving a reverse polish expression
calculator.

Chapter 8 stands back from the experiments and considers in some detail the dy-
namics of GP populations using the runs from Chapter 4 as an example. Chapter 8
starts by considering the application of results from theoretical biology. It concludes
Price’s theorem of selection and covariance can, in general, be applied to genetic
algorithms and genetic programming but the standard interpretation of Fisher’s funda-
mental theorem of natural selection cannot. The remainder of Chapter 8 investigates
the reasons behind the small proportion of successful runs in the stack problem. It
concludes the presence of easily found “deceptive” partial solutions acts in many cases
via fitness based selection to prevent the discovery of complete solutions. Partial so-
lutions based upon use of memory are readily disrupted by language primitives which
act via side-effects on the same memory. This leads to selection acting against these
primitives, which in most cases causes their complete removal from the population.
However where complete solutions are found, they require these primitives and thus
in most runs complete solutions are prevented from evolving by the loss of essential
primitives from the population. While the details of the mechanism are specific to the
stack problem, the problem of “deceptive” fitness functions and language primitives
with side-effects may be general.

The stack populations are also at variance with published GP results which show
variety in GP populations is usually high (in contrast to bit string genetic algorithm
populations which often show convergence). With the stack populations in many cases
there are multiple identical copies within the population. This is due to the discovery
of high fitness individuals early in the GP run which contain short trees. With short
trees many crossover operations produce offspring which are identical to their parents
and these tend to dominate the population so reducing variety. This effect may be
expected in any GP population where high fitness solutions contain short trees but are
fragile, in that most of their offspring have a lower fitness. The presence of code within

����� �������	�� �
��� �

the trees which does not affect the trees performance (variously called “fluff”, “bloat”
or “introns”) may conceal this effect as trees need not be short and many offspring
may be functionally identical to their parents (and so have the same fitness) but not
be genetically identical. Should these dominate the population then it will have high
variety even though many individuals within it are functionally the same.

The concluding chapter, Chapter 9, is followed by an extensive bibliography and
then appendices. Appendix A tabulates the resources consumed in terms of number of
trial solutions processed by the previous experiments. Appendix B contains a glossary
of evolutionary computation terms. This is followed by Appendix C which details
experiments using a permutation based genetic algorithm and others using genetic
programming, to produce low cost schedules for preventive maintenance of the high
voltage electrical power transmission network in England and Wales (the National
Grid). The final appendix contains notes on the code implementation and network
addresses from which it may be obtained.

