
Genetic improvement of software:
a case study

Justyna Petke

Centre for Research on Evolution, Search and Testing
Department of Computer Science, UCL, London



Genetic Improvement Programming

I Automatically improving a system’s behaviour with respect to
some desired criteria using Genetic Programming

I The criteria for improvement can be non-functional properties
of the system, such as execution time

I Relies on a set of test cases, obtained from running the
original system

I Genetic Programming tries many possible options, leave
software designer to choose between best



Bowtie2

Bowtie2 is one of the tools used in processing DNA sequences
generated by next-generation DNA sequencing machines.

I 50 000 lines of C++

I over 50 main system modules and 67 header files

I focused GP search on 2744 heavily used lines



Results

I Wanted to trade-off performance v. speed:
I On “1000 genome” nextgen DNA sequences
I 70+ faster on average
I Very small improvement in Bowtie2 results

I Only 7 lines of code changed in 3 C++ files



Motivation

Try another example

I Easy to analyse

I Popular

I (Competition)



Software chosen

Example well-known SAT solver: MiniSAT

Boolean satisfiability problem (SAT)
is the problem of deciding whether there is a variable assignment
that satisfies a given propositional formula.



SAT solver Applications

I Bounded Model Checking

I Planning

I Software Verification

I Automatic Test Pattern Generation

I Combinational Equivalence Checking

I Combinatorial Interaction Testing

I and many others..



Representation of the System to be Evolved

I Source code
I Grammar used to constrain changes (syntactically valid)

I more chance of compiling
I thus high chance of running
I timeouts to force termination



Representation: Move operations

I Change code by re-using existing human written code
I Copy a line
I Replace a line with another line from the program
I Delete a line

I Evolve a list of changes

I Grammar rule: a line of code or a part of loop/condition (for,
if, while, else)



BNF grammar

<Solver_135> ::= "{Log_count64++;/*135*/} if" <IF_Solver_135> " return false;\n"

<IF_Solver_135> ::= "(!ok)"

<Solver_138> ::= "" <_Solver_138> "{Log_count64++;/*138*/}\n"

<_Solver_138> ::= "sort(ps);"

<Solver_139> ::= "Lit p; int i, j;\n"

<Solver_140> ::= "for(" <for1_Solver_140> ";" <for2_Solver_140> ";" <for3_Solver_140> ") {\n"

<for1_Solver_140> ::= "i = j = , p = lit_Undef"

<for2_Solver_140> ::= "i < ps.size()"

<for3_Solver_140> ::= "i++"



Representation: Combining moves

I Mutation: append another random change to the list

I Crossover: append lists from two parents

I Only creating a new individual shortens the list



Fitness function

I Run program and count lines used
I 2 measures:

I Quality of answers produced (right/wrong, automatic oracle)
I Resources used (number of lines used)



GP Improvement



MiniSAT

I SAT solver

I 16 header files, 6 C++ files (core solving algorithm in
Solver.cc)

I of the 582 lines of C++ code in Solver.cc file, BNF produces
321 lines that genetic programming can manipulate (delete,
replace, insert)



GP evolution parameters

I training data set size: 71

I population size: 20

I generations: 100

I 50% crossover

I 50% mutation (delete,replace,insert)

I selection (top half)

I 5 test examples, reselected every generation



Results

I around 14 hours

I around 73% compiled

I no clear winner so far..

I mainly stats and optimisations removed



SAT example

x1 ∨ x2 ∨ ¬x4
¬x2 ∨ ¬x3

I xi : a Boolean variable

I xi , ¬xi : a literal

I ¬x2 ∨ ¬x3 : a clause



Example

bool Solver::satisfied(const Clause& c) const {

for (int i = 0; i < c.size(); i++){

if (value(c[i]) == l_True){

return true;

}

}

return false;

}



Example

bool Solver::satisfied(const Clause& c) const {

for (int i = 0; ; i++){

if (value(c[i]) == l_True){

return true;

}

}

return false;

}



Research directions

I specialise test sets for GP

I include pre-processing

I change population and generation size

I try to discover historical changes using an older version of the
solver



Summary

I Genetic Improvement Programming automatically improves
system behaviour according to some desired critaria using GP

I Bowtie2 : 70+ runtime improvement

I MiniSAT : ?


