
Using Genetic Improvement & Code
Transplants to Specialise a C++ Program

to a Problem Class

Justyna Petke1, Mark Harman1, William B. Langdon1 &
Westley Weimer2

1University College London
2University of Virginia

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Genetic Improvement

Seeks to automatically improve an existing program

Criteria can be non-functional properties of the system

Uses genetic programming

Relies on a set of test cases

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Contributions

Introduction of multi-donor software transplantation

Use of genetic improvement as means to specialise software

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Contributions

Introduction of multi-donor software transplantation

Use of genetic improvement as means to specialise software

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Genetic Improvement

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Program Representation

Changes at the level of lines of source code

Each individual is composed of a list of changes

Specialised grammar used to preserve syntax

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Example

<Solver_135> ::= " if" <IF_Solver_135> " return false;\n"

<IF_Solver_135> ::= "(!ok)"

<Solver_138> ::= "" <_Solver_138> "{Log_count64++;/*138*/}\n"

<_Solver_138> ::= "sort(ps);"

<Solver_139> ::= "Lit p; int i, j;\n"

<Solver_140> ::= "for(" <for1_Solver_140> ";" <for2_Solver_140> ";" <for3_Solver_140> ") {\n"

<for1_Solver_140> ::= "i = j = , p = lit_Undef"

<for2_Solver_140> ::= "i < ps.size()"

<for3_Solver_140> ::= "i++"

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Code Transplants

GP has access to both:

• the host program to be evolved

• the donor program(s)

code bank contains all lines of source code GP has access to

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Code Transplants

GP has access to both:

• the host program to be evolved

• the donor program(s)

code bank contains all lines of source code GP has access to

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Mutation

Addition of one of the following operations:

DELETE

COPY

REPLACE

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Example

<_Solver_135>

<_Solver_138>+<_Solver_140>

<for3_Solver_140><for3_Solver_836>

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Crossover

Concatenation of two individuals

by appending two lists of mutations

<_Solver_135>

<_Solver_138>+<_Solver_140>

-------------------------------------------

<_Solver_135> <_Solver_138>+<_Solver_140>

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Fitness

Based on solution quality and

Efficiency in terms of lines of source code

Avoids environmental bias

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Fitness

Test cases are sorted into groups

One test case is sampled uniformly from each group

Avoids overfitting

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Selection

Fixed number of generations

Fixed population size

Top-half selected for next generation

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Genetic Improvement

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Filtering

Mutations in best individuals are often independent

Greedy approach used to combine best individuals

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Motivation for choosing a SAT solver

Boolean satisfiability (SAT) example:

x1 ∨ x2 ∨ ¬x4

¬x2 ∨ ¬x3

• xi : a Boolean variable

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Motivation for choosing a SAT solver

Bounded Model Checking

Planning

Software Verification

Automatic Test Pattern Generation

Combinational Equivalence Checking

Combinatorial Interaction Testing

and many other applications..

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Motivation for choosing a SAT solver

MiniSAT-hack track in SAT solver competitions

- good source for software transplants

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Motivation for choosing a SAT solver

MiniSAT-hack track in SAT solver competitions

- good source for software transplants

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Experiments: Setup

Solvers used:

MiniSAT2-070721

Test cases used:

∼ 2.5% improvement when general benchmarks used (SSBSE’13)

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Experiments: Setup

Solvers used:

MiniSAT2-070721

Test cases used:

∼ 2.5% improvement when general benchmarks used (SSBSE’13)

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Experiments: Setup

Solvers used:

MiniSAT2-070721

Test cases used:

130 from Combinatorial Interaction Testing field

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Combinatorial Interaction Testing

Used for testing configurable systems

Use of SAT-solvers limited due to poor scalability

How long does it take to solve real-world instances?

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Combinatorial Interaction Testing

Used for testing configurable systems

Use of SAT-solvers limited due to poor scalability

How long does it take to solve a real-world problem?

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Combinatorial Interaction Testing

Used for testing configurable systems

Use of SAT-solvers limited due to poor scalability

How long does it take to solve a real-world problem?

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Combinatorial Interaction Testing

Used for testing configurable systems

Use of SAT-solvers limited due to poor scalability

It takes hours to days to solve a simple real-world problem

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Experiments: Setup

Host program:

MiniSAT2-070721 (478 lines in main algorithm)

Donor programs:

MiniSAT-best09 (winner of ’09 MiniSAT-hack competition)

MiniSAT-bestCIT (best for CIT from ’09 competition)

- total of 104 new lines in code bank

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Experiments: Setup

Host program:

MiniSAT2-070721 (478 lines in main algorithm)

Donor programs:

MiniSAT-best09 (winner of ’09 MiniSAT-hack competition)

MiniSAT-bestCIT (best for CIT from ’09 competition)

- total of 104 new lines in code bank

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Question

Can we evolve a version of the MiniSAT solver that is faster

than any of the human-improved versions of the solver?

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Results

Solver Donor Lines Time

MiniSAT (original) — 1.00 1.00

MiniSAT-best09 — 1.46 1.76

MiniSAT-bestCIT — 0.72 0.87

MiniSAT-best09+bestCIT — 1.26 1.63

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Results

Solver Donor Lines Time

MiniSAT (original) — 1.00 1.00

MiniSAT-best09 — 1.46 1.76

MiniSAT-bestCIT — 0.72 0.87

MiniSAT-best09+bestCIT — 1.26 1.63

MiniSAT-gp best09 0.93 0.95

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Results

Donor: best09

13 delete, 9 replace, 1 copy

Among changes:

3 assertions removed

1 deletion on variable used for statistics

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Results

Mainly IF and FOR statements switched off

Decreased iteration count in FOR loops

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Results

Solver Donor Lines Time

MiniSAT (original) — 1.00 1.00

MiniSAT-best09 — 1.46 1.76

MiniSAT-bestCIT — 0.72 0.87

MiniSAT-best09+bestCIT — 1.26 1.63

MiniSAT-gp best09 0.93 0.95

MiniSAT-gp bestCIT 0.72 0.87

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Results

Donor: bestCIT

1 delete, 1 replace

Among changes:

1 assertion deletion

1 replace operation triggers 95% of donor code

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Results

Solver Donor Lines Time

MiniSAT (original) — 1.00 1.00

MiniSAT-best09 — 1.46 1.76

MiniSAT-bestCIT — 0.72 0.87

MiniSAT-best09+bestCIT — 1.26 1.63

MiniSAT-gp best09 0.93 0.95

MiniSAT-gp bestCIT 0.72 0.87

MiniSAT-gp best09+bestCIT 0.94 0.96

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Results

Donor: best09+bestCIT

50 delete, 20 replace, 5 copy

Among changes:

5 assertions removed

∼ half of the mutations remove dead code

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Results

Solver Donor Lines Time

MiniSAT (original) — 1.00 1.00

MiniSAT-best09 — 1.46 1.76

MiniSAT-bestCIT — 0.72 0.87

MiniSAT-best09+bestCIT — 1.26 1.63

MiniSAT-gp best09 0.93 0.95

MiniSAT-gp bestCIT 0.72 0.87

MiniSAT-gp best09+bestCIT 0.94 0.96

MiniSAT-gp-combined best09+bestCIT 0.54 0.83

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Results

Combining results:

37 delete, 15 replace, 4 copy

56 out of 100 mutations used

Among changes:

8 assertion removed

95% of the bestCIT donor code executed

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Conclusions

Introduced multi-donor software transplantation

Used genetic improvement as means to specialise software

Achieved 17% runtime improvement on MiniSAT

for the Combinatorial Interaction Testing domain

by combining best individuals

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Conclusions

Introduced multi-donor software transplantation

Used genetic improvement as means to specialise software

Achieved 17% runtime improvement on MiniSAT

for the Combinatorial Interaction Testing domain

by combining best individuals

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class



Conclusions

Introduced multi-donor software transplantation

Used genetic improvement as means to specialise software

Achieved 17% runtime improvement on MiniSAT

for the Combinatorial Interaction Testing domain

by combining best individuals

Justyna Petke Using Genetic Improvement & Code Transplants to Specialise a C++ Program to a Problem Class


