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Genetic Improvement Programming 

• Why 

• Background 

– What is Genetic Programming 

– GP to improve human written programs  

• Examples 

– Demonstration systems, automatic bug fixing 

– Evolving code for a new environment (gzip) 

– Improving non-functional properties RN/12/09 

• Implications 
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When to Automatically  

Improve Software 
• When to use GP to create source code 

– Small. E.g. glue between systems “mashup” 

– Hard problems. Many skills needed. 

– Multiple conflicting ill specified non-functional 

requirements 

• Genetic programming as tool. GP tries 

many possible options. Leave software 

designer to choose between best. 
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Genetic Programming 

 • A population of randomly created programs 
– whose fitness is determined by running them 

– Better programs are selected to be parents 

– New generation of programs are created by 
randomly combining above average parents or by 
mutation. 

– Repeat generations until solution found. 
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GP  Generational  Cycle 
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Some applications of  

Genetic Programming 

• Most GP generates solutions, e.g.: 

– data modelling,  

– chemical industry: soft sensors,  

– design (circuits, lenses, NASA satellite aerial),  

– image processing,  

– predicting steel hardness,  

– cinema “boids”, Cliff hanger, Batman returns  

Predict breast cancer survival 

Pfeiffer 

http://www.cs.ucl.ac.uk/staff/W.Langdon/pfeiffer_local.html


Genetic Programming to Improve  

Human written Programs 

• Gluing together existing programs to 

create new functionality 

– combining web services, mashup 

• Tailoring for specific use 

– domain specific hash functions 

– cache management 

– heap management, garbage collection 

– evolving communications protocols 
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GP to Improve  

human written programs 
• Finch: evolve Java byte code 

– no compilation errors, 6 benchmarks 

• Improving GPU shaders 

• Functionality v speed or battery life 

Factorial source code,  

87% reduction in instructions, [white,2011] 

int Factorial(int a) 

{ 

  if  (a <= 0) 

      return  1; 

  else 

      return  (a * Factorial(a-1)); 

} 

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White_2011_ieeeTEC.html


Improving GPU code 

Sitthi-amorn, SIGGRAPH Asia 2011 

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html


GP Evolving Pareto Trade-Off 

Movie to tradeoff between 2 objectives 10 

http://www.cs.ucl.ac.uk/staff/W.Langdon/mogp/RE_gp.syn10k_video.gif


GP Automatic Bug Fixing 

• Run code: example to reproduce bug, a 

few tests to show fixed code still works. 

• Search for replacement C statement within 

program which fixes bug. 

• Real bugs in real C programs. 

– 1st prize Human-Competitive GECCO 2009  
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GP Automatic Coding 

• Show a machine optimising existing human 

written code to trade-off functional and non-

functional properties. 

– E.g. performance versus: 

– Speed or memory or battery life. 

• Trade off may be specific to particular use. 

For another use case re-optimise 

• Use existing code as test “Oracle”.       

(Program is its own functional specification) 
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GP Automatic Coding 2 

• Target non-trivial open source system: 

– Bowtie2 modern DNA lookup tool 

• Tailor existing system for specific use: 

–  nextgen DNA from 1000 genome project 

• Use existing system as test “Oracle” 

– Smith-Waterman exact algorithm (slow)  

• Use inputs & answer  to train GP. 

• Clean up new code 
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Problems with BLAST 
• BLAST contains biologists heuristics and 

approximations for mutation rates. It is the 

“gold standard” answer. 

– A few minutes per look up 

• “Next Gen” DNA sequencing machines 

generate 100s millions short noisy DNA 

sequences in about a day. 

• BLAST originally designed for longer 

sequences. Expects perfect data. Human 

genome database too big for PC memory. 



Human Generated Solutions 

• More than 140 sequence tools 

• All human generated (man years) 

• Many inspired by BLAST but tailored to 

– DNA or Proteins 

– Short or long sequences. Any species v man. 

– Noise tolerance. Etc. etc. 

• Manual trade-off lose accuracy for speed 

– Bowtie 35million matches/hour but no indels 

– Bowtie2 more BLAST functionality but slower 

15 W. B. Langdon, UCL 



Why Bowtie 2 ? 

• Target Bowtie2 DNA sequencing tool 

• 50000 line C++, 50 .cpp  67 .h files, scripts, makefile, 

data files, examples, documentation 

• SourceForge 

• New rewrite by author of successful C Bowtie 

• Aim to tailor existing system for specific 

(important data source)  

• 1000 genome project 

– Project aims to map all human mutations 

– 100s millions of short human DNA sequences 

– Download raw data via FTP 16 



Evolving Bowtie2 

• Convert code to grammar 

• Grammar used to both instrument code 

and control modifications to code 

• Genetic programming manipulates patches 

• Small 

• New code is syntactically correct 

• Compilation errors mostly variable out-of-

scope 
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GP Evolving Patches to Bowtie2 

W. B. Langdon, UCL 18 



BNF Grammar 

 vhi = _mm_cmpeq_epi16(vhi, vhi); // all elts = 0xffff 

 vlo = _mm_xor_si128(vlo, vlo);   // all elts = 0 

 vmax = vlo; 

Lines 363-365 aligner_swsse_ee_u8.cpp 

Fragment of Grammar (Total 28765 rules) 

<aligner_swsse_ee_u8_363> ::="" <_aligner_swsse_ee_u8_363>                 

.                               "{Log_count64++;/*28575*/}\n" 

<_aligner_swsse_ee_u8_363> ::="vhi = _mm_cmpeq_epi16(vhi, vhi);" 

 

<aligner_swsse_ee_u8_364> ::="" <_aligner_swsse_ee_u8_364>      

.                               "{Log_count64++;/*28576*/}\n" 

<_aligner_swsse_ee_u8_364> ::="vlo = _mm_xor_si128(vlo, vlo);" 

 

<aligner_swsse_ee_u8_365> ::="" <_aligner_swsse_ee_u8_365>      

.                               "{Log_count64++;/*28577*/}\n" 

<_aligner_swsse_ee_u8_365> ::="vmax = vlo;" 



7 Types of grammar rule 
• Type indicated by rule name 

• Replace rule only by another of same type 

• 5792 statement (eg assignment, Not declaration) 

• 2252 IF 
• <pe_118> ::= "{Log_count64++;/*20254*/} if" <IF_pe_118> "  {\n" 

• <IF_pe_118> ::= "(!olap)" 

• 272 for1, for, for3  
• <sam_36>     ::=     "for(" <for1_sam_36> ";" <for2_sam_36> ";" <for3_sam_36> ")  {\n" 

• 106 WHILE 
• <pat_731> ::= "while" <WHILE_pat_731> "  {\n" 

• <WHILE_pat_731> ::= "(true)" 

• 24 ELSE 
• <aln_sink_951> ::= "else {" <ELSE_aln_sink_951> " {Log_count64++;/*21439*/}};\n" 

• <ELSE_aln_sink_951> ::= "met.nunp_0++;" 



Representation 

• GP evolves patches. Patches are lists of changes 

to the grammar. 

• Append crossover adds one list to another 

• Mutation adds one randomly chosen change 

• 3 possible changes: 

• Delete    line of source code (or replace by “”, 0) 

• Replace with line of Bowtie2 (same type) 

• Insert      a copy of another Bowtie2 line 
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Example Mutating Grammar 

<_aligner_swsse_ee_u8_707> ::= "vh = _mm_max_epu8(vh, vf);" 

<_aligner_swsse_ee_u8_365> ::= "vmax = vlo;" 

2 lines from grammar 

<_aligner_swsse_ee_u8_707><_aligner_swsse_ee_u8_365> 

Fragment of list of mutations 

Says replace line 707 of file aligner_swsse_ee_u8.cpp by line 365 

vmax = vlo;{Log_count64++;/*28919*/} 

vh = _mm_max_epu8(vh, vf);{Log_count64++;/*28919*/} 

New code 

Instrumented original code 



Compilation Errors 
• Use grammar to replace random line, only 15% 

compile. But if move <100 lines 82% compile. 

• Restrict moves to same file, 45% compile 
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Reducing Compilation Errors 

W. B. Langdon, UCL 24 



C++ is not fragile 

Trading performance v speed 

25 



Zipf’s Law 

Distribution of exactly repeated Bowtie2 C++ lines 

of code after macro expansion, follows Zipf’s law, 

which predicts straight line with slope -1. 26 



Recap 

• Representation 

– List of changes (delete, replace, insert). New 

rule must be of same type 

• Genetic operations 

– Mutation (append one random change) 

– Crossover (append other parent) 

• Apply change to grammar then use it to 

generate new C++ source code. 
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Which Parts of Bowtie2 are Used 
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Histogram of Bowtie2 lines used 
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Scaling of Parts of Bowtie2 

4 Heavily used Bowtie2 lines which scale differently 



Focusing Search 

31 W. B. Langdon, UCL 

C++ 

Lines 

Files Bowtie2 

50745 50 .cpp, 

67 .h 

All C++ source files 

19908 40 .cpp no conditional compilation 

no header files. 

2744 21 .cpp no unused lines 

Weights target high usage 

39 6 .cpp evolve 

7 3 .cpp clean up 



Testing Bowtie2 variants 

• Apply patch generated by GP to 

instrumented version of Bowtie2 

• “make” only compiles patched code 

– precompile headers, no gcc optimise 

• Run on small but diverse random sample of 

test cases from 1000 genome project 

• Calculate fitness 

• Each generation select best from 

population of patched Bowtie2 

32 W. B. Langdon, UCL 



Fitness 

• Multiple objective fitness 

• Compiles? No→no children 

• Run patched Bowtie2 on 5 example DNA sequences 

(selected from 1000 genome FTP site, see RN/12/09) 

• Compare results with ideal answer (Smith-Waterman) 

• Sort population by 

– Number of DNA which don’t fail or timeout 

– Average Smith-Waterman score 

– Number of instrumented C++ lines executed (minimise) 

• Select top half of population. 

• Mutate, crossover to give 2 children per parent. 

• Repeat 200 generations 
33 



Run time errors 

• During evolution 74% compile 

• 6% fail at run time 

• 3% segfault 

• 2% cpulimit expired 

• 0.6% heap corruption, floating point (e.g. divide by 

zero) or Bowtie2 internal checks 

• 68% run ok 
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GP Evolution Parameters 

• Pop 10, 200 generations 

• 50% append crossover 

• 50% mutation (3 types delete, replace, insert) 

• Truncation selection 

• 5 test examples, reselected every generation 

• ≈25 hours 

35 W. B. Langdon, UCL 



Clean up evolved patch 

• Allowed GP solution to grow big 

• Use fixed subset (441 DNA sequences) of 

training data 

• Remove each part of evolved patch one at time 

• If makes new bowtie2 (more than a little) worse 

restore it else remove it permanently 

• 39 changes reduced to 7 

• Took just over an hour (1:08:38) 

36 W. B. Langdon, UCL 



Patch 

37 

Wei

ght 

Mutati

on 

Source 

file 

line type Original Code New Code 

999 replaced bt2_io.cpp 622 for2 i < offsLenSampled i < this->_nPat 

1000 replaced sa_rescomb

.cpp 

50 for2 i < satup_->offs.size() 0 

1000 disabled 69 for2 j < satup_->offs.size() 

100 replaced  

 

 

aligner_sws

se_ee 

_u8.cpp 

707 vh = _mm_max_epu8(vh, vf); vmax = vlo; 

1000 

 

deleted 766 pvFStore += 4; 

1000 

 

replaced 772 _mm_store_si128(pvHStore, vh); vh = _mm_max_epu8(vh, vf); 

1000 

 

deleted 778 ve = _mm_max_epu8(ve, vh); 

• Evolved patch 39 changes in 6 .cpp files 

• Cleaned up 7 changes in 3 .cpp files 

• 70+ times faster 



Results 

• Patched code (no instrument) run on 200 

DNA sequences (randomly chosen from 

same scanner but different people) 

• Runtime 3:56:01 v 12.2 days 

• Quality of output 

– 89% identical 

– 9% output better (higher mean Smith-

Waterman score). Median improvement 0.1 

– 0.5% same 

– 1.5% worse (in 4th and 6th decimal place). 
38 



Results 

• Wanted to trade-off performance v. speed: 

– On “1000 genome” nextgen DNA sequences 

– 70+ faster on average  

– Very small improvement in Bowtie2 results 

• Trade off specific to particular use. For 

another use case re-optimise 
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Conclusions 

• Genetic programming can automatically  
re-engineer source code. E.g. 

– hash algorithm 

– Random numbers which take less power, etc. 

– mini-SAT 

• fix bugs (>106 lines of code, 16 programs)  

• create new code in a new environment 
(graphics card) for existing program,  

   gzip. 

• speed up 50000 lines of code 

WCCI 2010 
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Creating new programs - 

Crossover 

Movie 

http://www.genetic-programming.com/crossover.gif


Where does Bowtie2GP improvement arise 

Mostly identical. Improvement with DNA which 

makes Bowtie2 work hard. NB nonlinear Y-scale 



Instrumented Bowtie2 

45 

counter increments added to instrument Bowtie2 



What my favourite number? 
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“Moore’s Law” in Sequences 

47 



The Genetic Programming Bibliography 

 
http://www.cs.bham.ac.uk/~wbl/biblio/ 

8601 references and 8197 online publications 

RSS Support available through the 

Collection of CS Bibliographies. 

 

A web form for adding your entries. 

Co-authorship community. Downloads  

 

A personalised list of every author’s 

GP publications. 

 

blog.html 

Search the GP Bibliography at 

http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html 

 

http://www.cs.bham.ac.uk/~wbl/biblio/
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