
Genetic Programming to Improve Software

W. B. Langdon
Centre for Research on Evolution, Search and Testing

Computer Science, UCL, London

GISMOE: Genetic Improvement of Software for Multiple Objectives

18.5.2013

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.ucl.ac.uk/staff/W.Langdon/gismo/

Genetic Improvement Programming

• Why

• Background

– What is Genetic Programming

– GP to improve human written programs

• Examples

– Demonstration systems, automatic bug fixing

– Evolving code for a new environment (gzip)

– Improving non-functional properties RN/12/09

• Implications

W. B. Langdon, UCL 2

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/RN_12_09.pdf

When to Automatically

Improve Software
• When to use GP to create source code

– Small. E.g. glue between systems “mashup”

– Hard problems. Many skills needed.

– Multiple conflicting ill specified non-functional

requirements

• Genetic programming as tool. GP tries

many possible options. Leave software

designer to choose between best.

W. B. Langdon, UCL 3

Genetic Programming

 • A population of randomly created programs
– whose fitness is determined by running them

– Better programs are selected to be parents

– New generation of programs are created by
randomly combining above average parents or by
mutation.

– Repeat generations until solution found.

Free Free

PDF E-book

http://www.gp-field-guide.org.uk/

GP Generational Cycle

5

Some applications of

Genetic Programming

• Most GP generates solutions, e.g.:

– data modelling,

– chemical industry: soft sensors,

– design (circuits, lenses, NASA satellite aerial),

– image processing,

– predicting steel hardness,

– cinema “boids”, Cliff hanger, Batman returns

Predict breast cancer survival

Pfeiffer

http://www.cs.ucl.ac.uk/staff/W.Langdon/pfeiffer_local.html

Genetic Programming to Improve

Human written Programs

• Gluing together existing programs to

create new functionality

– combining web services, mashup

• Tailoring for specific use

– domain specific hash functions

– cache management

– heap management, garbage collection

– evolving communications protocols

W. B. Langdon, UCL 7

GP to Improve

human written programs
• Finch: evolve Java byte code

– no compilation errors, 6 benchmarks

• Improving GPU shaders

• Functionality v speed or battery life

Factorial source code,

87% reduction in instructions, [white,2011]

int Factorial(int a)

{

 if (a <= 0)

 return 1;

 else

 return (a * Factorial(a-1));

}

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White_2011_ieeeTEC.html

Improving GPU code

Sitthi-amorn, SIGGRAPH Asia 2011

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tog_Sitthi-amornMWL11.html

GP Evolving Pareto Trade-Off

Movie to tradeoff between 2 objectives 10

http://www.cs.ucl.ac.uk/staff/W.Langdon/mogp/RE_gp.syn10k_video.gif

GP Automatic Bug Fixing

• Run code: example to reproduce bug, a

few tests to show fixed code still works.

• Search for replacement C statement within

program which fixes bug.

• Real bugs in real C programs.

– 1st prize Human-Competitive GECCO 2009

W. B. Langdon, UCL 11

GP Automatic Coding

• Show a machine optimising existing human

written code to trade-off functional and non-

functional properties.

– E.g. performance versus:

– Speed or memory or battery life.

• Trade off may be specific to particular use.

For another use case re-optimise

• Use existing code as test “Oracle”.

(Program is its own functional specification)

12 W. B. Langdon, UCL

GP Automatic Coding 2

• Target non-trivial open source system:

– Bowtie2 modern DNA lookup tool

• Tailor existing system for specific use:

– nextgen DNA from 1000 genome project

• Use existing system as test “Oracle”

– Smith-Waterman exact algorithm (slow)

• Use inputs & answer to train GP.

• Clean up new code

13 W. B. Langdon, UCL

Problems with BLAST
• BLAST contains biologists heuristics and

approximations for mutation rates. It is the

“gold standard” answer.

– A few minutes per look up

• “Next Gen” DNA sequencing machines

generate 100s millions short noisy DNA

sequences in about a day.

• BLAST originally designed for longer

sequences. Expects perfect data. Human

genome database too big for PC memory.

Human Generated Solutions

• More than 140 sequence tools

• All human generated (man years)

• Many inspired by BLAST but tailored to

– DNA or Proteins

– Short or long sequences. Any species v man.

– Noise tolerance. Etc. etc.

• Manual trade-off lose accuracy for speed

– Bowtie 35million matches/hour but no indels

– Bowtie2 more BLAST functionality but slower

15 W. B. Langdon, UCL

Why Bowtie 2 ?

• Target Bowtie2 DNA sequencing tool

• 50000 line C++, 50 .cpp 67 .h files, scripts, makefile,

data files, examples, documentation

• SourceForge

• New rewrite by author of successful C Bowtie

• Aim to tailor existing system for specific

(important data source)

• 1000 genome project

– Project aims to map all human mutations

– 100s millions of short human DNA sequences

– Download raw data via FTP 16

Evolving Bowtie2

• Convert code to grammar

• Grammar used to both instrument code

and control modifications to code

• Genetic programming manipulates patches

• Small

• New code is syntactically correct

• Compilation errors mostly variable out-of-

scope

17 W. B. Langdon, UCL

GP Evolving Patches to Bowtie2

W. B. Langdon, UCL 18

BNF Grammar

 vhi = _mm_cmpeq_epi16(vhi, vhi); // all elts = 0xffff

 vlo = _mm_xor_si128(vlo, vlo); // all elts = 0

 vmax = vlo;

Lines 363-365 aligner_swsse_ee_u8.cpp

Fragment of Grammar (Total 28765 rules)

<aligner_swsse_ee_u8_363> ::="" <_aligner_swsse_ee_u8_363>

. "{Log_count64++;/*28575*/}\n"

<_aligner_swsse_ee_u8_363> ::="vhi = _mm_cmpeq_epi16(vhi, vhi);"

<aligner_swsse_ee_u8_364> ::="" <_aligner_swsse_ee_u8_364>

. "{Log_count64++;/*28576*/}\n"

<_aligner_swsse_ee_u8_364> ::="vlo = _mm_xor_si128(vlo, vlo);"

<aligner_swsse_ee_u8_365> ::="" <_aligner_swsse_ee_u8_365>

. "{Log_count64++;/*28577*/}\n"

<_aligner_swsse_ee_u8_365> ::="vmax = vlo;"

7 Types of grammar rule
• Type indicated by rule name

• Replace rule only by another of same type

• 5792 statement (eg assignment, Not declaration)

• 2252 IF
• <pe_118> ::= "{Log_count64++;/*20254*/} if" <IF_pe_118> " {\n"

• <IF_pe_118> ::= "(!olap)"

• 272 for1, for, for3
• <sam_36> ::= "for(" <for1_sam_36> ";" <for2_sam_36> ";" <for3_sam_36> ") {\n"

• 106 WHILE
• <pat_731> ::= "while" <WHILE_pat_731> " {\n"

• <WHILE_pat_731> ::= "(true)"

• 24 ELSE
• <aln_sink_951> ::= "else {" <ELSE_aln_sink_951> " {Log_count64++;/*21439*/}};\n"

• <ELSE_aln_sink_951> ::= "met.nunp_0++;"

Representation

• GP evolves patches. Patches are lists of changes

to the grammar.

• Append crossover adds one list to another

• Mutation adds one randomly chosen change

• 3 possible changes:

• Delete line of source code (or replace by “”, 0)

• Replace with line of Bowtie2 (same type)

• Insert a copy of another Bowtie2 line

W. B. Langdon, UCL 21

Example Mutating Grammar

<_aligner_swsse_ee_u8_707> ::= "vh = _mm_max_epu8(vh, vf);"

<_aligner_swsse_ee_u8_365> ::= "vmax = vlo;"

2 lines from grammar

<_aligner_swsse_ee_u8_707><_aligner_swsse_ee_u8_365>

Fragment of list of mutations

Says replace line 707 of file aligner_swsse_ee_u8.cpp by line 365

vmax = vlo;{Log_count64++;/*28919*/}

vh = _mm_max_epu8(vh, vf);{Log_count64++;/*28919*/}

New code

Instrumented original code

Compilation Errors
• Use grammar to replace random line, only 15%

compile. But if move <100 lines 82% compile.

• Restrict moves to same file, 45% compile

23

Reducing Compilation Errors

W. B. Langdon, UCL 24

C++ is not fragile

Trading performance v speed

25

Zipf’s Law

Distribution of exactly repeated Bowtie2 C++ lines

of code after macro expansion, follows Zipf’s law,

which predicts straight line with slope -1. 26

Recap

• Representation

– List of changes (delete, replace, insert). New

rule must be of same type

• Genetic operations

– Mutation (append one random change)

– Crossover (append other parent)

• Apply change to grammar then use it to

generate new C++ source code.

W. B. Langdon, UCL 27

Which Parts of Bowtie2 are Used

28 W. B. Langdon, UCL

Histogram of Bowtie2 lines used

29 W. B. Langdon, UCL

Scaling of Parts of Bowtie2

4 Heavily used Bowtie2 lines which scale differently

Focusing Search

31 W. B. Langdon, UCL

C++

Lines

Files Bowtie2

50745 50 .cpp,

67 .h

All C++ source files

19908 40 .cpp no conditional compilation

no header files.

2744 21 .cpp no unused lines

Weights target high usage

39 6 .cpp evolve

7 3 .cpp clean up

Testing Bowtie2 variants

• Apply patch generated by GP to

instrumented version of Bowtie2

• “make” only compiles patched code

– precompile headers, no gcc optimise

• Run on small but diverse random sample of

test cases from 1000 genome project

• Calculate fitness

• Each generation select best from

population of patched Bowtie2

32 W. B. Langdon, UCL

Fitness

• Multiple objective fitness

• Compiles? No→no children

• Run patched Bowtie2 on 5 example DNA sequences

(selected from 1000 genome FTP site, see RN/12/09)

• Compare results with ideal answer (Smith-Waterman)

• Sort population by

– Number of DNA which don’t fail or timeout

– Average Smith-Waterman score

– Number of instrumented C++ lines executed (minimise)

• Select top half of population.

• Mutate, crossover to give 2 children per parent.

• Repeat 200 generations
33

Run time errors

• During evolution 74% compile

• 6% fail at run time

• 3% segfault

• 2% cpulimit expired

• 0.6% heap corruption, floating point (e.g. divide by

zero) or Bowtie2 internal checks

• 68% run ok

34 W. B. Langdon, UCL

GP Evolution Parameters

• Pop 10, 200 generations

• 50% append crossover

• 50% mutation (3 types delete, replace, insert)

• Truncation selection

• 5 test examples, reselected every generation

• ≈25 hours

35 W. B. Langdon, UCL

Clean up evolved patch

• Allowed GP solution to grow big

• Use fixed subset (441 DNA sequences) of

training data

• Remove each part of evolved patch one at time

• If makes new bowtie2 (more than a little) worse

restore it else remove it permanently

• 39 changes reduced to 7

• Took just over an hour (1:08:38)

36 W. B. Langdon, UCL

Patch

37

Wei

ght

Mutati

on

Source

file

line type Original Code New Code

999 replaced bt2_io.cpp 622 for2 i < offsLenSampled i < this->_nPat

1000 replaced sa_rescomb

.cpp

50 for2 i < satup_->offs.size() 0

1000 disabled 69 for2 j < satup_->offs.size()

100 replaced

aligner_sws

se_ee

_u8.cpp

707 vh = _mm_max_epu8(vh, vf); vmax = vlo;

1000

deleted 766 pvFStore += 4;

1000

replaced 772 _mm_store_si128(pvHStore, vh); vh = _mm_max_epu8(vh, vf);

1000

deleted 778 ve = _mm_max_epu8(ve, vh);

• Evolved patch 39 changes in 6 .cpp files

• Cleaned up 7 changes in 3 .cpp files

• 70+ times faster

Results

• Patched code (no instrument) run on 200

DNA sequences (randomly chosen from

same scanner but different people)

• Runtime 3:56:01 v 12.2 days

• Quality of output

– 89% identical

– 9% output better (higher mean Smith-

Waterman score). Median improvement 0.1

– 0.5% same

– 1.5% worse (in 4th and 6th decimal place).
38

Results

• Wanted to trade-off performance v. speed:

– On “1000 genome” nextgen DNA sequences

– 70+ faster on average

– Very small improvement in Bowtie2 results

• Trade off specific to particular use. For

another use case re-optimise

39 W. B. Langdon, UCL

Conclusions

• Genetic programming can automatically
re-engineer source code. E.g.

– hash algorithm

– Random numbers which take less power, etc.

– mini-SAT

• fix bugs (>106 lines of code, 16 programs)

• create new code in a new environment
(graphics card) for existing program,

 gzip.

• speed up 50000 lines of code

WCCI 2010

W. B. Langdon, UCL 40

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html

W. B. Langdon, UCL 41 41

END

http://www.cs.ucl.ac.uk/staff/W.Langdon/ http://www.epsrc.ac.uk/

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.epsrc.ac.uk/

Genetic Improvement Programming

W. B. Langdon

CREST

Department of Computer Science

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.amazon.com/exec/obidos/ASIN/0792381351/qid=916137667/sr=1-8/002-9548421-2413020
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-42451-2?cm_mmc=sgw-_-ps-_-book-_-3-540-42451-2
http://www.gp-field-guide.org.uk/

43

Creating new programs -

Crossover

Movie

http://www.genetic-programming.com/crossover.gif

Where does Bowtie2GP improvement arise

Mostly identical. Improvement with DNA which

makes Bowtie2 work hard. NB nonlinear Y-scale

Instrumented Bowtie2

45

counter increments added to instrument Bowtie2

What my favourite number?

W. B. Langdon, UCL 46

“Moore’s Law” in Sequences

47

The Genetic Programming Bibliography

http://www.cs.bham.ac.uk/~wbl/biblio/

8601 references and 8197 online publications

RSS Support available through the

Collection of CS Bibliographies.

A web form for adding your entries.

Co-authorship community. Downloads

A personalised list of every author’s

GP publications.

blog.html

Search the GP Bibliography at

http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

http://www.cs.bham.ac.uk/~wbl/biblio/
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

