
CREST Open Workshop COW62, 21st January 2020

Genetic Improvement of Genetic Programming

W. B. Langdon
Computer Science, University College London

22.10.2019

Humies
http://www.human-competitive.org/

Human-Competitive results

$10,000 prizes

GECCO-2020 in Cancun, Mexico

Email 29 May goodman@msu.edu

http://www.cs.ucl.ac.uk/staff/W.Langdon/
https://en.wikipedia.org/wiki/Genetic_improvement_(computer_science)
http://www.human-competitive.org/

Genetic Improvement of Genetic Programming

• Applying Genetic Improvement to own

parallel C++ Genetic Programming system

• Intel AVX-512 parallel vector instructions

– AVX does 16 float operations in parallel

• GPavx[1] written as part of existing C++

GP system, Singleton’s GPquick [1993].

– 6900 lines of code.

• GPavx can evolve trees of 100 million[2]

• Takes weeks. Overhead is AVX interpreter

• Can GI on interpreter do better?
W. B. Langdon, UCL 2

http://gpbib.cs.ucl.ac.uk/gp-html/langdon_2019_gpquick.html
http://gpbib.cs.ucl.ac.uk/gp-html/Langdon_2019_alife.html

Alternative Fast GPs

• GPavx fastest tree interpreter

• Avoid trees: Linear GP, Cartesian GP

• Avoid interpreting

– Compile tree to machine code[1]

– Evolve machine code: Discipulus

• Avoid interpreting whole tree, changes only

– evolving population of trees as evolving

directed acyclic graph holding partial fitness.

Eval O(depth) not O(size) (no side effects)[2,3]

• Avoid interpreting dead code (introns)

3

http://gpbib.cs.ucl.ac.uk/gp-html/fukunaga_1998_gchpGP.html
http://gpbib.cs.ucl.ac.uk/gp-html/Handley_1994_DAGpcp.html
http://gpbib.cs.ucl.ac.uk/gp-html/mcphee_1998_sutherland.html

Typical Genetic Programming

• Random initial population of trees

1. Test each tree, give it fitness score

2. Select better trees to be parents

3. Create next population from parents

• Loop (1.) until done

• Most time is taken by fitness evaluation

Often use multiple fitness cases.

• Parallel: multiple trees, multiple(48) fitness

cases

4

Extreme GP

• Demo problem: match curve at 48 points

• Population up to 4000

• No tree size limit

• Run up to 1 million generations

• Trees evolve greater 100 million

(GP continues to find improvements)

• Run on 46GB multiple core Intel server

• Parallel

– multiple trees: one pthread per core

– multiple fitness cases: 3×AVX = 48 eval in para

Extreme GP

Problem: match curve at 48 points

(48 chosen since multiple of 16)
6

GI on avx.cc

• avx.cc 448 lines of C++ code (eval 98 lines)

• Written in style of GPquick interpreters

– OPDEF EVAL EVAL2 BINEVAL macros

• Supports + - × / (protected division) x -0.99

– DivEval recursively EVAL both arguments

• dodiv if(arg2==0) return 1.0f else return arg1/arg2

• Use AVX to do 16 float operations in parallel

• Tight code (not good for evolution?)

• Six OPDEF(function)

7W. B. Langdon, UCL

EVAL

• EVAL (Evalfunc[(++IP)->op])(ip,sp)

• GPquick stores tree in linear array[IP]

• GPquick uses array indexed by op code to

call interpreter code for op code.

– Not switch.

• Tree 1 byte per node

• Up to 255 opcodes, Evalfunc[256]

addresses = 256×8bytes = 2048 bytes =

32 cache lines

8W. B. Langdon, UCL

EVAL (Evalfunc[(++IP)->op])(ip,sp)

9

Evalfunc[256] array of function addresses

Re-entrant EVAL(ip,sp)

• To support reentrant multi-threading,

replaced original global instruction pointer

(i.e. point to active tree node) by passing IP

as (hidden) argument to EVAL.

• Similarly pass stack pointer as EVAL arg sp

• Explicit stack

• Each thread has own IP and stack

10W. B. Langdon, UCL

Recursive Evaluation of 48 floats

• Each function recursively calls EVAL2.

• EVAL2 calls EVAL twice.

• Each EVAL leaves its answer on the

(explicit) stack.

• Function, e.g. AddEval, pops twice, doAdd

adds values, AddEval pushes result.

• XEval push value of x onto stack

• ConstEval pushes 48 copies of const

• Outermost Eval returns vector 48 floats

11W. B. Langdon, UCL

Multiple Test Cases Evaluate 48 in parallel

• Typically tree evaluated once per test case

• AVX do 16 test cases simultaneously.

• By making stack 48 floats wide, can eval

whole tree in one pass by doing three AVX

(sequentially).

• Eval returns vector 48 floats

• Fitness = for(i=0;i<48;i++) sum += |errori|

(not reduction, GPavx gives identical answers)

12W. B. Langdon, UCL

Applying Genetic Improvement to avx.cc

• Paper has lots of experiments,

concentrate on last one.

• Want to evolve fast mutant for random

tree of ≈twenty million

• Show it generalises to trees of size 3 to

100 million

W. B. Langdon, UCL 13

Applying GI to avx.cc

• Automatically convert C++ to grammar

• Evolve grammar: mutation + crossover

• Fitness:

– Does mutant compile, run, return right answers

– Test on random tree (change each generation)

– Compare with original code

• All 48 answers the same?

• Run time?

• Select better half of population as parents

W. B. Langdon, UCL 14

Fitness Function, wall clock time

• Each mutation run independently (own exe)

• Run on multi-user AVX-512 server

– Load varies with other users

– Server dynamically changes each CPU core’s

clock frequency (1.00-3.00 GHz nominal 2.30)

– OS sometimes moves process between cores

• Noise!

(less with unix perf stat instruction:u ?)

W. B. Langdon, UCL 15

Combating Fitness Noise

• Use single core

• Performance relative to original code

– small fast (≈0.1μS) trees usually on same core

– usually same clock frequency

• 11 small runs. Difference in quartile time

• Only run fast mutants on big trees(≈1/2sec)

• Noise proportionately less, so run once

W. B. Langdon, UCL 16

Use Quartile to combat runtime noise

Example of using quartile difference in run time. Reference

code in red. Effectively only use faster half of runs, then take

robust average (median). Fitness = 472

Mean not used as dominated by outliers.

3 conditional compilation –D macros

• New switch code v. jump table

• Internal v. External stack

• (if internal) interpret tree 3 times or return 48

floats

Gives 6 options

Six EVAL environments

W. B. Langdon, UCL 18

000 001 010 100 101 110

Line 43 45 58 43 45 58

Others 6 12 28 6 12 28

Total 49 57 86 49 57 86

Six avx.cc EVAL grammars

• Each option has own grammar

• 5694 functions from Intel Intrinsics library

• Most variable rules are type line

• Few other types

• Concentrate upon option 010 (switch and

explicit stack) as most successful.

• All six run ok

avx.cc EVAL with switch macro

Swap mutation, eg <CASE_32>x<CASE_34>, allows easy

re-ordering of case and default statements.

avx.cc Eval Leafs const, x

Can not mutate: declarations, for and }

Comments removed.

W. B. Langdon, UCL 21

avx.cc switch ConstEval grammar

Variable rules <type_etc>, e.g. type line, float*

Mutate rules of same type <line_92>x<line_84>

veci rules depend on GI vecsize (4,8 or 16)
22

avx.cc Eval functions

Tightly written code only allows

mutations in Eval2, dodiv, binEval.

Also zeroupper can be copied into

them

Multiple ways to set

zero, mask, one, to

allow –O2 compiler

and evolution to

choose best.

Cf slide 9.

avx.cc switch Eval2 grammar

• All variable rules for Eval2 are of type line

• Can be deleted, inserted, replaced or swapped

with any other grammar rule of type line

• Variable e0 left over from earlier debug version

6 runs

• Population 100, up to generation 100.

• Takes ≈11 hours (3.8 seconds per mutant)

W. B. Langdon, UCL 25

Number of mutants which fail at each generation

Overall 57% give pass3 speedup, 27% fail to compile, 9%

segfault in pass1.

Pass 2+3 errors < 1%
26

Evolution of Fitness

27W. B. Langdon, UCL

Mutant Clean Up

• Use best in last generation.

• Typically bloated (i.e. BNF changes with no

external impact)

• Compile as far as assembler g++ -S

• Scan whole mutant.

• Remove each BNF gene one at a time

• Iff .s different restore else remove permanently

• Scan again, in case can now remove more

W. B. Langdon, UCL 28

Mutant Clean Up

• Only 6 of 16 genes impact assembler

code generated by g++ compiler

• No speed up in other three runs 000,

001, 100

W. B. Langdon, UCL 29

Switch Mutant

W. B. Langdon, UCL 30

Switch Mutant code changes

W. B. Langdon, UCL 31

vecsize=16

forces use of

AVX-512

Swapping lines

139 and 139

probably no

effect

3 CASE swap

reorder switch

< Original

> Mutated code

After clean up: Out of Sample Generalisation

32W. B. Langdon, UCL

After clean up: Out of Sample Generalisation

33W. B. Langdon, UCL

Conclusions

• Have applied GI to my own code.

• GI has found mutants to fastest tree based

genetic programming interpreter which

speed it up (up to 2.1×)

• 20+ years established wisdom overturned

– Jump table forced out of cache so switch faster

• Performance of large trees limited by cache

• Can use real runtime as fitness even on

noisy time sharing cluster with dynamic

power management.

W. B. Langdon, UCL 34

http://www.epsrc.ac.uk/

Humies

http://www.human-competitive.org/

Awards for Human-Competitive results

$10,000 prizes

Presentation at GECCO-2020 in Cancun, Mexico

send email before 29 May to goodman@msu.edu

Genetic Improvement of Software

geneticimprovementofsoftware.com

Workshop at ICSE 2020

• Position papers (1 or 2 pages)

• Research papers (up to 8 pages)

Submissions due 22 January

https://icse20-gi8.hotcrp.com/

http://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/M025853/1
http://www.epsrc.ac.uk/
https://en.wikipedia.org/wiki/Genetic_improvement_(computer_science)
http://www.human-competitive.org/
http://geneticimprovementofsoftware.com/gi2020icse.html
https://icse20-gi8.hotcrp.com/
https://icse20-gi8.hotcrp.com/

W. B. Langdon, UCL 3636

END

http://www.cs.ucl.ac.uk/staff/W.Langdon/ http://www.epsrc.ac.uk/

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.epsrc.ac.uk/

Genetic Programming

W. B. Langdon

CREST

Department of Computer Science

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.amazon.com/exec/obidos/ASIN/0792381351/qid=916137667/sr=1-8/002-9548421-2413020
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-42451-2?cm_mmc=sgw-_-ps-_-book-_-3-540-42451-2
http://www.gp-field-guide.org.uk/

Six impossible things before breakfast

• To have impact do something

considered impossible.

• If you believe software is

fragile you will not only be

wrong but shut out the

possibility of mutating it into

something better.

• Genetic Improvement has

repeatedly shown mutation

need not be disastrous and

can lead to great things.

W. B. Langdon, UCL 38

GI Parameters (6 experiments)

39

http://gpbib.cs.ucl.ac.uk/

Make sure it has all of your papers!

E.g. email W.Langdon@cs.ucl.ac.uk or use | Add to It | web link

The Genetic Programming Bibliography

RSS Support available through the

Collection of CS Bibliographies.

A web form for adding your entries.

Co-authorship community. Downloads

A personalised list of every author’s

GP publications.

blog

Search the GP Bibliography at

http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

13435 references, 12000 authors

Downloads by day

Your papers

http://gpbib.cs.ucl.ac.uk/
http://www.cs.ucl.ac.uk/cgi-bin/staff/W.Langdon/WBT.cgi
http://gpbib.cs.ucl.ac.uk/blog.html
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html
http://gpbib.cs.ucl.ac.uk/gp-coauthors/index.html
http://gpbib.cs.ucl.ac.uk/gp-html/index.html
http://gpbib.cs.ucl.ac.uk/blog2019.html
http://gpbib.cs.ucl.ac.uk/download/download.html

