Long-Term Evolution in Genetic Programming
Computer Science, Aston University
2pm 7th March 2017

W. B. Langdon
Department of Computer Science

GI 2017, Berlin
deadline 29th March
GECCO workshop

Humies
$10000 Human-Competitive Results
Long-Term Evolution in Genetic Programming

W. B. Langdon

Computer Science. University College, London

GI 2017, Berlin
deadline 29th March
GECCO workshop

500 trees after 2000 generations
Genetic Programming and Long-Term Evolution Experiments

• Evolving Bacteria 60,000 generations v. evolving programs 100,000 generations
• LTEE continuous innovation v convergence
• Intro what is genetic programming:
 – GP is artificial evolution of functions
• Results
 – Increase in code (bloat), end of bloat
 – Theory some true, some less so
Long-Term Evolution Experiment

Mean fitness of nine E. coli populations from the LTEE

Evolving Bacteria 60,000 generations
Even after 60,000 gens fitness still improving

Richard Lenski pulls frozen bacteria cultures out of a freezer 15 Oct 2009

Artificial Evolution of Programs

The Genetic Programming Cycle.
From [GP and Data Structures](https://example.com).

- **Biological fitness** = average number of children
- **GP fitness** = score on 6-mux problem
Creating new child programs: crossover

Crossover is symmetric.
That is, on average size after crossover = size before crossover
Genetic Programming and Long-Term Evolution Experiments

• GP system able to run thousands of generations. (Do not stop when solved)
 – Expect bloat (tree growth)
 – Compact representation of trees
 – Fast fitness evaluation

• Submachine code genetic programming
GPquick

- GPquick C++, written by Andy Singleton
 ≈ two bytes per tree node
- **Submachine code GP**
 - Boolean (bit) problems.
 - AND, NAND, OR, NOR operate simultaneously in parallel on bits in word (e.g. 32 or 64 bits)
 - 64 bit computer can do 64 test cases in parallel

W. B. Langdon, UCL
6 Multiplexor

- GP bench mark.
- Six inputs:
 - Use two (D4 D5) as binary number to connect corresponding data lines (D0-D3) to the output
- Test on all $2^6 = 64$ possible combinations
- Fitness score (0-64) is number correct
Genetic Programming to solve 6-Mux

- Terminals (tree leafs)
 - D0, D1, D2, D3, D4, D5
- Function set: 2 input gates \rightarrow binary trees
 - AND, NAND, OR, NOR. No side effects
- Generational population of 500 trees
- Tournament selection: choose best of 7
- 100% subtree crossover
- Initially hard limit on tree size (10^6)
Impact of Subtrees

- Subtree like whole tree.
- Output of subtree is via its root node
- **Intron**: subtree which has no effect on overall fitness. I.e. its output does not impact on root node of whole tree.
- **Constant** subtree always has same output, i.e. same output on all 64 test cases.
- Remaining **effective code** has an impact on root node. Typically it is next root node
Example Intron: AND Function

Left: two input AND node.
Right: same but input B is always 0.
So output always 0. Input A has no effect.
Subtree A is always ignored, even in child.
(NB no side effects)
Constants

- Two constants: always 0 and always 1 (FFFFFFFFFFFFFFFFFFFFFFF).
- E.g. evolve by negating input and ANDing with same input
 \[(\text{AND } D0 \ (\text{NOR } D0 \ D0)) = 0\]
- Constants help form introns but may be disrupted by crossover.
- However large subtrees which always output either 0 or 1 tend to be resilient to crossover.
Note evolution continues after 1st solution found in generation 22 and even after 1st population where everyone has maximum fitness (generation 312).
LTEE evolution of size

Note evolution continues even after 1st population where everyone has maximum fitness (generation 312) but falls as well as rises.
6-Mux Fitness Convergence

Theory \(y = 2 \) popsize \((1-(1-x/popsize)^7)\) matches experiment
6-Mux Fitness Convergence

Plot smoothed by taking running average over 30 generations
Runts Drive Evolution

Don't plot ratio if less than 5 data
Importance of Mothers

Size of poor fitness children closely related to parent who they inherit root from (mum).
A few runts drive size increase

- Many mothers of runts are smaller than average (blue)
- Selection removes all low fitness children (runts)
- Since these are smaller than average
- Although there is noise, on average size increases
• Theory assumes crossover only (no selection). In earlier work distribution of sizes converged to limit rapidly.
• Selection caused by a few runts modifies size distribution
Testing Theory

6-Mux 500 binary trees (run 100 up to Gen 2500)

- Same as testing theory plot but do every generation
- Colour only part of histogram \(\geq 3\sigma \)
- Small tree and large tree tails ok (not coloured)
Convergence in Genetic Programming

• GP genotypes typically do not converge. Even after many generations every tree in the population is different, BUT…

• Every (or almost all) trees give the same answers (phenotypic convergence)

• Effective code, i.e. code to solve problem, does converge.

 Effective code other runs converges differently
Convergence of typical Effective Code

Gen 400
Only 111 instructions of 15,495 are effective

Gen 500
Only 141 instructions of 16,831 are effective

Tree drawing code lisp2dot.awk
Convergence of Effective Code

Effective code only. Yellow highly converged. Black unique code

Circular lattice code gp2lattice.awk
Shapes of Evolved Trees

6-Mux 500 binary trees (run 100 Gen 2500)

Both whole trees × and subtrees lie near FlajoletDepth \(\approx 2 \left(\frac{\pi \text{size}}{2} \right)^{1/2} \) limit for random trees

W. B. Langdon, UCL
Bloat limited by Gambler’s ruin

- Tiny fraction of disrupted (low fitness) children sufficient to drive evolution towards every bigger trees.
- As trees get bigger chance of hitting protected effective code near root node falls.
- In a finite population eventually no child will be disrupted.
- Size, without fitness, difference just wanders at random.
- Crossover cannot escape from population of tiny trees.
- So we have a lower limit on the random fluctuation.

 I.e. a Gambler’s ruin.
- But wondering towards lower limit will re-establish the conditions for bloat.
- Very approximate limit on tree size:

 \[
 \text{tree size} \approx \text{number of trees} \times \text{core code size}
 \]
Bloat limited by Gambler’s ruin

- tree size \approx number of trees \times core code size
- tree size $\approx 50 \times 497 \approx 25000$
- Across ten runs and 100,000 generation, median mean size 42,507 (smallest tree in pop size=10,513)

In all ten runs the whole population repeatedly collapses towards smaller trees
Conclusions

• Studied long term evolution (>>any other GP)
• 100s gens where everyone has same fitness
• No selection to drive size increase
• Gambler’s ruin with size falling as well as rising
• Evolved effective code surrounded by ring of sacrificial constants and introns
• Trees and subtrees resemble random trees
• But still differences from crossover only limit
END

http://www.cs.ucl.ac.uk/staff/W.Langdon/ http://www.epsrc.ac.uk/
GECCO-2017 15th-19th July 2017 in Berlin

• Genetic Improvement workshop at Submissions by 29th March
 http://geneticimprovementofsoftware.com/

• Total $10 000 prizes for human competitive results. Entries by 7th June
 http://www.human-competitive.org/call-for-entries
Genetic Programming

W. B. Langdon

CREST

Department of Computer Science
Although many runts are smaller than their mum,
many mothers of runts are smaller than average.
Selection removes all low fitness children,
Since these are smaller than average, the average size increases.
The Genetic Programming Bibliography

http://www.cs.bham.ac.uk/~wbl/biblio/

11322 references

RSS Support available through the Collection of CS Bibliographies.

A web form for adding your entries. Co-authorship community. Downloads

A personalised list of every author’s GP publications.

blog

Search the GP Bibliography at
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html