
Fast Generation of Big Random Binary Trees
UCL Computer Science Research Note RN/20/01

13 January 2020 arXiv:2001.04505

W. B. Langdon

16.1.2020

Slides for Software Systems Engineering SSE Reading Group, 15 Jan 2020

random_tree() is a linear time and space C++ implementation able to create

trees of up to a billion nodes for genetic programming and genetic

improvement experiments. A 3.60GHz CPU can generate more than

18 million random nodes for GP program trees per second.

https://arxiv.org/abs/2001.04505
http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://sse.cs.ucl.ac.uk/reading_group/

Why do we care?

• Tree universal data structure

• Space of trees is huge but sampling it is

not simple

• Lessons

– Linear O(n) 1999 code fine for trees of 100

nodes not usable with trees of a million nodes

– Solving problem with real pseudo random

number generators (PRNGs)

• although we are in a state of sin (Von Neumann),

call it random from now on.

W. B. Langdon, UCL 2

Back Ground 1996-2000
• Genetic Programming needs random trees

– Random start to the population

– Subtree replacement mutation

• John Koza propose “ramped half and half”

• Walter Bohm and Andreas Geyer-Schulz

[FOGA 4] and Hitoshi Iba [PPSN 96]

suggest uniform random trees.

• 1997 I implement Iba’s in Andy Singleton’s

GPquick

• Sean Luke [2000] says not fast

– Who cares trees tiny trees, over head small.

http://gpbib.cs.ucl.ac.uk/gp-html/bohm_1996_eui.html
http://gpbib.cs.ucl.ac.uk/gp-html/iba_1996_rtgGP.html
http://gpbib.cs.ucl.ac.uk/gp-html/luke_2000_2ftcaGP.html

Back Ground 2019
• Applying Genetic Improvement to speed

up existing GP system: COW62

– To speed up eval of very bloated big 108 trees

• Only need binary trees (for now)

• Need lots of different big trees like those

evolved by Genetic Programming (GP)

• Want random trees since:

– Humungous GP trees take weeks to evolve

– Without compression gigabytes each

• Existing (linear code) takes far too long.

• Code rewritten

http://crest.cs.ucl.ac.uk/cow/62/

Evolved GP Trees

• Picture binary tree

• Picture GP population evolving

W. B. Langdon, UCL 5

Binary GP Trees

W. B. Langdon, UCL 6

Binary GP Trees

7101 nodes

Binary GP Tree

8

1001 nodes

Binary GP Tree

910001 nodes

GP population Evolving

W. B. Langdon, UCL 10

video

http://www.cs.ucl.ac.uk/staff/W.Langdon/gggp/bmux6_100_sizea.gif

Mathematics of Large Trees

Cominatorics of large trees hard but well

studied

Robert Sedgewick and Philippe Flajolet

[analysis of algorithms]

Number of binary trees

is Catalan number

N = (size-1)/2

Large N limit

≈ √(2π 𝑠𝑖𝑧𝑒)

https://www.cs.princeton.edu/~rs/
https://aofa.cs.princeton.edu/home/

Distribution of binary trees

W. B. Langdon, UCL 12

Exponential ≈2depth Parabola ≈depth2/2π

Linear 2depth+1

Number of possible binary trees

W. B. Langdon, UCL 13

Large Evolved GP Trees

• Genetic Programming trees not random

but random shape.

• Random trees good enough to test and

time each new mutated eval() function.

W. B. Langdon, UCL 14

Sampling Large Trees

• Sampling trees is hard

• Mathematical cheat: sample random

permutation of size n, translate chosen

permutation into tree

• Proof that sample permutation uniformly at

random, so have sampled random trees

uniformly at random.

W. B. Langdon, UCL 15

1997 (Small) random Trees

• Original implementation followed Iba’s

technical report ETL-TR-95-35 and

existing random permutation C code.

• Not efficient. Linear time O(n) but not fast.

Instead deal with hard maths by keeping

code modular.

• Also needed to deal with functions with up

to 4 arguments (arity 0..4)

W. B. Langdon, UCL 16

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/iba_1995_rtgTR.pdf

Sampling Permutation for Binary Tree

• Original code slow because general

• Simplify for binary tree

– n/2 functions, n/2+1 leafs

• Start with empty sequence int dyck[n]

• Deterministically load n/2 node(a=2) and

n/2+1 leafs (arity=0).

• Randomise sequence, dyck

• New: use Knuth shuffle

W. B. Langdon, UCL 17

Sampling Permutation for Binary Tree

• Use Knuth shuffle to randomise sequence

• Prove that Knuth shuffle samples

uniformly at random, hence have random

permutation, hence will have random tree

• With real PRNG, need to help Knuth?

• Alternate 0,2 initial sequence (don’t start

with all 0 at one end). Then shuffle.

• Number of random trees far bigger than

number of PRNG sequences.

W. B. Langdon, UCL 18

Randomising sequence for real

W. B. Langdon, UCL 19

Knuth shuffle uniform start

Knuth shuffle unbalanced start

Permutation into Tree via onedom()

• Sampling trees is hard

– Odd language dyck sequence, 1-dominated

• For binary trees, sequence in n/2+1 square

– Add leaf move horizontally.

– Add function move vertically.

– All random permutations move from start to End

(albeit by different routes, next slide).

• Exactly one rotation makes route a valid tree.

• Routine onedom (1-dominated) converts random

permutation into corresponding random tree.

W. B. Langdon, UCL 20

Onedom() permutation into tree

21

Add leaf move horizontally.

Add function move vertically.

All random permutations

move from start to end

(albeit by different routes).

Below diagonal.

Not a valid tree.

More functions than leafs.

More pops than pushes.

Onedom scans sequence.

For each (x,y) find

distance below diagonal.

Keep last max.

Reorder sequence to start

at max.

Permutation into Tree

22

• It turns out to be easier to trace route backwards

• From end: Add E,6,D,C,5,B,A,4,3,2,1

W. B. Langdon, UCL
video

http://www.cs.ucl.ac.uk/staff/W.Langdon/gggp/bigtree/tree_square.gif

Permutation into Tree

23

• It turns out to be easier to trace route backwards

• From end: Add E,6,D,C,5,B,A,4,3,2,1

Tree into GP Program

• Label tree with GP functions and leafs

– If function (2) chose random function

– If leaf (0) chose leaf at random

• Return GP tree and its depth

W. B. Langdon, UCL 24

Depth an additional benefit
• Some data structures in eval() depend on

depth of tree

• The distribution of random trees is known

in advance so can conservatively set tree

depth from known size of tree.

o depth < mean + multiple of standard deviation

o depth < 10×√(size)+100

• Estimated tree depth much smaller than

worst case (size/2) but still wasteful.

• New code returns exact depth.
25

Does it work

W. B. Langdon, UCL 26

Large Random Trees

W. B. Langdon, UCL 27

Speed of Large Random Trees

W. B. Langdon, UCL 28

UCL Computer Science

Research Notes

• UCL CS RN more than 20 years history

W. B. Langdon, UCL 29

Conclusions

• Can generate large trees quickly

– up to 2 billion

• Original system was linear O(n), still O(n)

but now usable for big trees

– big O notation only gets you so far

• Applied to do fitness testing of genetic

programming system GPquick

– next week COW62

• Scope for further speed up if wanted

• C++ code available via www

• depth ≈ √(2π 𝑠𝑖𝑧𝑒) W. B. Langdon, UCL

http://crest.cs.ucl.ac.uk/cow/62/
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/

http://www.epsrc.ac.uk/

Humies

http://www.human-competitive.org/

Awards for Human-Competitive results

$10,000 prizes

Presentation at GECCO-2020 in Cancun, Mexico

send email before 29 May to goodman@msu.edu

Genetic Improvement of Software

http://www.human-competitive.org/

Workshop at ICSE 2020

• Position papers (1 or 2 pages)

• Research papers (up to 8 pages)

Submissions due 22 January

https://icse20-gi8.hotcrp.com/

http://www.epsrc.ac.uk/
https://en.wikipedia.org/wiki/Genetic_improvement_(computer_science)
http://www.human-competitive.org/
http://www.human-competitive.org/
https://icse20-gi8.hotcrp.com/
https://icse20-gi8.hotcrp.com/

W. B. Langdon, UCL 3232

END

http://www.cs.ucl.ac.uk/staff/W.Langdon/ http://www.epsrc.ac.uk/

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.epsrc.ac.uk/

Discussion

Dr. David Clark suggested reference [1]

[1] Robert Feldt and Simon M. Poulding,

Finding test data with specific properties via

metaheuristic search, in International

Symposium on Software Reliability

Engineering (ISSRE 2013), 350-359. doi:

W. B. Langdon, UCL 33

https://dblp.uni-trier.de/rec/bibtex/conf/issre/FeldtP13
https://doi.org/10.1109/ISSRE.2013.6698888

Genetic Programming

W. B. Langdon

CREST

Department of Computer Science

http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.amazon.com/exec/obidos/ASIN/0792381351/qid=916137667/sr=1-8/002-9548421-2413020
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-42451-2?cm_mmc=sgw-_-ps-_-book-_-3-540-42451-2
http://www.gp-field-guide.org.uk/

http://gpbib.cs.ucl.ac.uk/

Make sure it has all of your papers!

E.g. email W.Langdon@cs.ucl.ac.uk or use | Add to It | web link

The Genetic Programming Bibliography

RSS Support available through the

Collection of CS Bibliographies.

A web form for adding your entries.

Co-authorship community. Downloads

A personalised list of every author’s

GP publications.

blog

Search the GP Bibliography at

http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

13435 references, 12000 authors

Downloads by day

Your papers

http://gpbib.cs.ucl.ac.uk/
http://www.cs.ucl.ac.uk/cgi-bin/staff/W.Langdon/WBT.cgi
http://gpbib.cs.ucl.ac.uk/blog.html
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html
http://gpbib.cs.ac.uk/gp-coauthors/index.html
http://gpbib.cs.ucl.ac.uk/gp-html/index.html
http://gpbib.cs.ucl.ac.uk/blog2019.html
http://gpbib.cs.ucl.ac.uk/download/download.html

