Information theory suggests software is not chaotic.

Instead in deeply nested programs most disruption fails to propagate to the output.

Exponential decay of failed disruption propagation says optimal test oracles are at the error, but next to the error is only 18% to 28% worse than optimal. Suggesting software being tested should not be more than about seven levels deep.
Information Theory and Experiments on Deep Genetic Programming Trees

- Information theory and failed disruption propagation
- Started with deep floating point polynomials
 - Injected errors lost mostly due to rounding error
- Evolve deep integer trees
 - Inject run time error everywhere, retest
 - 92% to 99.97% of errors have no effect
- Variation between programs
- Exponential decay with depth
 - Need to be close to error for tests to find them
 - On average <7 more than 50% errors detected
- Conclude by drawing lessons for programming

W. B. Langdon, UCL
Information Funnel

Computer operators are irreversible. Meaning input state cannot be inferred from outputs. Information is lost.

Two 32 bit inputs

Information funnel

More information enters than leaves

32 bit output

W. B. Langdon
Information flow in five nested functions

Potential information loss at each (irreversible) function

Disruption may fail to reach output.

(No side effects.)

Output

(often drawn at top of picture)
Evolve 10 Deep Integer GP Trees

- Most GP experiments use float or Boolean, choose Koza’s Fibonacci Problems.
 - Recursive program to generate Fibonacci sequence
 \[X_j = X_{j-1} + X_{j-2} \]
 \[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots \]
 - 0 1 2 3 J + - * SRF
 SRF(j,default) = jth value. default applies if j is invalid
 - Twenty tests J=0 … 19
 - Population 50000, 1000 generations
 - Ten runs
- Change at run time each point in tree on each of the 20 tests
 - Two run time disruptions: +1, replace with random int
 - +1 and RANDINT very similar
 - Almost all run time disruptions make no difference
+1 Disruption. Run 7, tree depth 33
red 16-20 test cases, blue 1 test cases

Only disruption near root node reaches output
Run 7, tree depth 33
Red 26-20 test cases, blue 1 test cases

Same tree, +1 left, RANDINT right.
Almost identical response to different disruptions

W. B. Langdon
Run 2, tree depth 160
Red 6-20 test cases, blue 1-2 test cases

Same tree, +1 left, RANDINT right.
Almost identical response to different disruptions

W. B. Langdon
Run 3, tree depth 220
Red 4-20 test cases, blue 1-3 test cases

Same tree, +1 left, RANDINT right.
Almost identical response to different disruptions

W. B. Langdon
Run 8, tree depth 425
Red 17-20 test cases, no blue

Same tree, +1 left, RANDINT right.
Almost identical response to different disruptions
W. B. Langdon
Run 10, tree depth 360

Red 10-20 test cases, no blue

Same tree, +1 left, RANDINT right.
Almost identical response to different disruptions

W. B. Langdon
Exponential fall in fraction of run time disruption changing program output with depth

Test case J=9

Fraction run time disruption changing output

Distance (depth) between location of +1 disruption and output

W. B. Langdon
Exponential fall in fraction of run time disruption changing program output with depth

RNDINT Run 1 Test case J=9

Fraction run time disruption changing output

Distance (depth) between location of RNDINT disruption and output

Best RMS fit to exponential

Data
Fraction disruption reaching output in deep Fibonacci trees

depth sum		error	+1	RANDINT	
663	20	0.114%	-0.31	0.092%	-0.31
160	10	1.449%	-0.30	1.449%	-0.33
220	184	3.010%	-0.27	3.053%	-0.27
449	130	0.127%	-0.28	0.121%	-0.29
454	632	0.253%	-0.20	0.256%	-0.20
626	0	0.056%	-0.27	0.056%	-0.27
33	0	7.523%	-0.21	7.523%	-0.22
425	0	0.073%	-0.30	0.073%	-0.30
485	0	0.032%	-0.33	0.032%	-0.33
360	0	0.137%	-0.26	0.137%	-0.26

Variation between trees but smallest +1 and large RANDINT %disruption and exponential regression (-0.33 to -0.20) are both similar
Effectiveness of whole test suite varies with depth
50% chance of detecting disruption depth 5 to 15
Conclusion: Deep nesting hides errors

1) More fitness test cases has only small effect, $\leq \log(n)$
 - 1000 test cases only marginally more effective than 48
 - Test value 0.0f can be least effective

2) Testing is hard. Need to place test probe near error
 - Problem dependent but next to 18 – 28% reduction
 - Try to minimise *depth* of software being tested.
 - Problem dependent but here on average 7 levels

3) Write testable code: ie write units which are ≤ 7 levels deep

4) Programs are not chaotic, tiny errors often have no effect. Instead programs are robust because most (large or small) errors fail to propagate.

W. B. Langdon, UCL
Genetic Programming

W. B. Langdon
The Genetic Programming Bibliography

14736 references, 13000 authors

Make sure it has all of your papers!
E.g. email W.Langdon@cs.ucl.ac.uk or use | Add to It | web link

Co-authorship community.
Downloads

A personalised list of every author’s GP publications.

blog

Googling GP bibliography, eg:
Evolutionary Medicine site:gpbib.cs.ucl.ac.uk
Best independent tests but test suite effectiveness only $\log(n)$

Number of functions disruption must pass through before reaching the root node before the chance of detection is less than 1% v. test suite size. (Vertical axis normalised by dividing by mean of geometric distribution.)
Side Effect Free: Disruption Falls Monotonically

Deeper disruption tends to have less impact on fitness

At each GP node: 32 bits + 32 bits => 32 bits
Information funnel. Information is lost.
Random (fun 4) sample 25001 nodes depth 491

Deeper disruption tends to have less impact on fitness

Changed code (red)

Blue nodes at least one test case is different. Change does not reach root node.
Most Difficult to Conceal Polynomial test case

For large random polynomials, most effective test cases $|X| \sim 1.3$