
The case for Grammatical Evolution in test generation
Aidan Murphy

aidan.murphy@ucd.ie
School of Computer Science,
University College Dublin

Dublin, Ireland

Thomas Laurent
thomas.laurent@ucd.ie

SFI Lero & School of Computer
Science, University College Dublin

Dublin, Ireland

Anthony Ventresque
anthony.ventresque@ucd.ie

SFI Lero & School of Computer
Science, University College Dublin

Dublin, Ireland

ABSTRACT
Generating tests for software is an important, but difficult, task.
Search-based test generation is promising, as it reduces the time
required from human experts, but suffers from many problems
and limitations. Namely, the inability to fully incorporate a tester’s
domain knowledge into the search, its difficulty in creating very
complex objects, and the problems associated with variable length
tests. This paper illustrates how Grammatical Evolution could ad-
dress and provide a possible solution to each of these concerns.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering; Software testing and debugging.

KEYWORDS
Automatic Test Generation, Search Based Software Testing, Gram-
matical Evolution

ACM Reference Format:
Aidan Murphy, Thomas Laurent, and Anthony Ventresque. 2022. The case
for Grammatical Evolution in test generation. In Genetic and Evolutionary
Computation Conference Companion (GECCO ’22 Companion), July 9–13,
2022, Boston, MA, USA. ACM, New York, NY, USA, 2 pages. https://doi.org/
10.1145/3520304.3534042

1 EVOLUTION OF TEST CASES
Software requires testing in order to identify bugs present in the
code and gain confidence in its correct behaviour. The creation
of these tests is a manual task which is both time consuming and
requires expertise of the System Under Test (SUT) and in test case
construction. It is also possible that the tests are poorly written and
do not fully test all the functionalities of the SUT, meaning that
buggy software gets released.

Search Based Software Testing (SBST) techniques have emerged
to lower the effort required by human testers. This area investi-
gates the use of heuristic-based optimisation techniques to auto-
matically generate tests, leading to a faster and more systematic
testing process. Evolutionary Testing is one such technique that
uses evolutionary computation as its heuristic.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9268-6/22/07.
https://doi.org/10.1145/3520304.3534042

Search based test generation has shown promising results in
different contexts. A prominent example is Evosuite [4], a power-
ful, open source tool which generates and optimises tests for Java
programs. It follows a hybrid approach which uses evolutionary
computation, specifically a Genetic Algorithm (GA), combined with
knowledge extracted from the classes under test. Its performance
has lead to its wide adoption, both in academia and in industry [1],
as well as to awards in search based software testing competi-
tions [8]. Evosuite has been extended with many search algorithms
and strategies, including multi objective search, and allows diverse
coverage criteria to be used to guide the search. Consequently, it
remains the state of the art for Java program unit test generation.

2 PROBLEMS OF SEARCHED BASED TESTING
Despite these successes and wide adoption, SBST still shows limita-
tions. Among them are:

Incorporating Human Expertise. Current SBST techniques,
particularly evolutionary methods, generally do not allow any hu-
man expertise to be easily incorporated into the test generation
process. It is possible a tester may want to generate many tests
containing a specific value or fragment of code. This would greatly
speed up the search, as it will only focus on areas the tester deems
fruitful, and may aid in the interpretability of the final tests found.

Creating Complex Objects. SBST can struggle to evolve com-
plex objects, the structure of which may or may not be known
to the tester. Shamshiri et al. [7] encountered this problem when
generating regression tests for the Closure project in the Defects4J
benchmark [5]. The tests they generated could not detect many
of the bugs in the dataset for this project. Detecting these bugs
requires tests that create a control-flow graph, an object which can
be easily created by a human tester. However, the task has proven
difficult for search based techniques, Evosuite included, as the data
format needed to generate a valid object (and even more so one
that is interesting for testing) is very precise and introduces many
dependencies 1.

Domain Flexibility. SBST tools are often domain specific. To
move from one domain to another may require augmenting of the
existing tools’ code. Custom functionality or operators must be
written in order to produce the desired tests.

3 GRAMMATICAL EVOLUTION
Grammatical Evolution (GE) [6] is an evolutionary computation
technique. It uses a grammar, often a context free grammar, to
create syntactically correct objects in any arbitrary language. GE’s
flexibility has seen it achieve great success in a variety of domains.

1See examples here

https://orcid.org/
https://orcid.org/0000-0002-0953-774X
https://orcid.org/0000-0003-2064-1238
https://doi.org/10.1145/3520304.3534042
https://doi.org/10.1145/3520304.3534042
https://doi.org/10.1145/3520304.3534042
https://github.com/Spirals-Team/defects4j-repair/blob/Closure14/test/com/google/javascript/jscomp/ControlFlowAnalysisTest.java

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Aidan Murphy, Thomas Laurent, and Anthony Ventresque

<cfg> ::= <try> | <try_catch>
<try> ::= <try_statement> | <try_recursion>
<try_statement> ::= try{<cond>

} finally {}
<try_recursion> ::= try{<cond>

<cfg>
} finally {}

<try_catch> ::=

Figure 1: Example grammar used to evolve a Control Flow
Graph, i.e. generate valid test cases for Closure-14 [5]

GE is often thought of as a variant of Genetic Programming (GP).
The key difference, however, lies in how the search takes place.
GE uses bit-strings, genotypes, and maps them onto computer pro-
grams via the grammar. The search operators are performed on the
strings, as in the regular GA, and not the actual structures which
are examined and given a fitness. If a GA is used as the search
technique, as in EvoSuite, crossover and mutation would occur on
bit-strings as it does in the regular GA and these newly evolved bit
stings would be mapped to executable programs. This separation
between the search space, at the genome level, and the program
space, on the phenotype level, is seen as one of GE’s many advan-
tages over regular GP as it greatly simplifies the search operation
and guarantees closure, among other characteristics. While guar-
anteeing semantically correct objects will be created, this standard
GE approach does lead to poor locality.

As GE traditionally uses a GA as its search engine, the same as
many SBST tools and techniques such as Evosuite, it means GE is
compatible with their architecture. The remainder of this section
explains how integrating GE in this architecture could help alleviate
the limitations of SBST highlighted in Section 2.

3.1 Incorporating Human Expertise into the
Search

By specifying a grammar, a user defines the search space they want
their tests to be created from. Grammars can be general, create
a wide variety of tests, or specific to a particular problem. A In
addition to this, a grammar allows for edge cases to be seeded into
the search without editing the search algorithms code, a difficult
task given the complexity of test generation algorithms. If utilis-
ing GE, all that is required is a simple grammar modification. A
GE implementation to generate test cases for procedure programs
has recently been introduced, achieving vastly improved results
in both fitness and computational cost to earlier GA based tech-
niques [2]. It allowed the user to provide seeded constants and
exploited variable interdependencies to efficiently generate test
data. Extending GE use for Object Oriented programs with more
complicated interdependencies is the next step for such a system.

3.2 Creating Complex Objects in Tests
Creating complex objects is a difficult task for SBST, and evolution-
ary computation in general. It is often necessary to create these
objects as the SUT may exhibit subtle, complex or unique behaviour
which cannot be fully assessed by simple tests.

GE can alleviate this concern by allowing the tester to specify
the structure of the desired solution in the grammar, or to list key

modules a solution must contain. This is done by altering the gram-
mar meaning no altering of the code base is necessary. Rather than
spending computation time searching for the structure of solutions,
the search can instead focus on optimising the content contained
within that structure. The search space can be dramatically reduced
and needless exploration of fruitless areas avoided. The tester has
more control over the types of tests the search creates.

Figure 1 shows an example of a grammar which can be used to
create a Control Flow Graph. Constructing a Control Flow Graph
with two consecutive connected finally blocks on its edge is re-
quired to cover the Closure-14 fault. While this grammar is spe-
cialised to this particular fault, extending it to other faults or gen-
eralising it to create a wider variety of Control Flow Graphs is
straightforward. There is no necessity to change the underlying
search code.

3.3 Flexibility of Grammars
The separation between GE’s search space and program space of-
fers great flexibility. To move from one domain to another requires
a simple modification to, or replacement, of the grammar. A GE
based SBST tool would not need to be extended with custom func-
tions or operators to deal with modified tests. For context aware
tests, which depend on previous actions undertaken, an attribute
grammar could be specified. Indeed, a recent work for evolving test
suites for Scratch programs used GE as the engine to create the
tests for this reason [3].

4 CONCLUSION
This work highlights current limitations of automated search based
test generation and puts Grammatical Evolution forward as a tool
to address them. Namely, it contends that GE can help incorpo-
rate testers’ expertise into the search; can enable search based
techniques to create tests that instantiate complex objects requir-
ing precise, dependency-laden call sequences; and can be flexible
enough to be easily applied to different contexts.

ACKNOWLEDGMENTS
This work was supported, in part, by Science Foundation Ireland
grants 20/FFP-P/8818 and 13/RC/2094_P2.

REFERENCES
[1] M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis Bene-

felds. 2017. An industrial evaluation of unit test generation: Finding real faults in
a financial application. In ICSE-SEIP. IEEE.

[2] Muhammad Sheraz Anjum and Conor Ryan. 2021. Seeding Grammars in Gram-
matical Evolution to Improve Search-Based Software Testing. SN Computer Science
2, 4 (2021).

[3] Adina Deiner, Christoph Frädrich, Gordon Fraser, Sophia Geserer, and Niklas
Zantner. 2020. Search-Based Testing for Scratch Programs. In SSBSE. Springer.

[4] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In ESEC/FSE.

[5] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of
existing faults to enable controlled testing studies for Java programs. In ISSTA.

[6] Conor Ryan, John James Collins, andMichael ONeill. 1998. Grammatical Evolution:
Evolving programs for an arbitrary language. In EuroGP. Springer.

[7] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do automatically generated unit tests find real faults? an
empirical study of effectiveness and challenges (t). In ASE. IEEE, 201–211.

[8] Sebastian Vogl, Sebastian Schweikl, Gordon Fraser, Andrea Arcuri, Jose Campos,
and Annibale Panichella. 2021. EVOSUITE at the SBST 2021 Tool Competition. In
SBST. IEEE.

	Abstract
	1 Evolution of Test Cases
	2 Problems of Searched Based Testing
	3 Grammatical Evolution
	3.1 Incorporating Human Expertise into the Search
	3.2 Creating Complex Objects in Tests
	3.3 Flexibility of Grammars

	4 Conclusion
	Acknowledgments
	References

