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ABSTRACT

Genetic Improvement is a search technique that aims to improve a
given acceptable solution to a problem. In this paper, we present
the novel use of genetic improvement to find problem-specific opti-
mized LLVM Pass sequences. We develop a Pass-level edit represen-
tation in the linear genetic programming framework, Shackleton,
to evolve the modifications to be applied to the default optimization
Pass sequences. Our Gl-evolved solution has a mean of 3.7% runtime
improvement compared to the default LLVM optimization level ‘-
O3’ which targets runtime. The proposed GI method provides an
automatic way to find a problem-specific optimization sequence
that improves upon a general solution without any expert domain
knowledge. In this paper, we discuss the advantages and limitations
of the GI feature in the Shackleton Framework and present our
results.
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1 INTRODUCTION

Genetic Improvement (GI) [6] automatically improves upon a given
solution using Genetic Programming (GP), a powerful search algo-
rithm that can efficiently find the near-optimal solution in a large
search space[1, 5]. This approach is inspired by the process of nat-
ural selection [3], in which fitness advantage guides the passing
of genetic information to the next generation[4]. Linear Genetic
Programming (LGP) [2] is a special application in which the ge-
netic information of each individual codes for active elements in
the population represented in a sequential order. The Shackleton
Framework! is a generalized LGP framework that allows the use of
GP on any user-defined object types and fitness metrics [9].

In the GI feature of the Shackleton Framework (Shackleton-GI),
each modification from the starting solution is represented as a
sequence of operations to be applied to that solution. The use-case
of interest in our experiments is the optimization of LLVM Com-
piler Optimization Pass (Pass) sequences [7]. LLVM? is a collection
of modular and reusable (language/target independent) compiler
technologies. Different compile-time optimizations can be specified
using Passes, which mutate the program in order to optimize some
metric (e.g. runtime)[10]; a sequence of Passes can be specified at
compilation to achieve a particular optimization goal. In LLVM,
there are a number of default optimization levels, -Ox, that contain
encoded sequences of 10 to 90 Passes. The default LLVM optimiza-
tion level -O3’ (-O3) enables optimizations that primarily target the
program runtime [7, 8]. Shackleton-GI evolves a series of insertion,
deletion, and replacement edit operations, which produces a more
powerful optimization Pass sequence when applied to a solution to
a general problem (the sequence of -O3 Passes in our case).

2 METHODS

Shackleton [9] is a flexible LGP framework, in which various types
of objects can be treated as genes and optimized using Genetic
Algorithm (GA). In Shackleton-GI, we develop a Pass-level edit
representation in which individuals consist of ‘genes’ that are edits.
An edit has a type field, a position field, and a value field. Given
the source code of a target program, Shackleton-GI generates a
sequence of edits that will be used to modify a starting sequence of
Passes.

!https://github.com/ARM- software/Shackleton- Framework
Zhttps://llvm.org
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Figure 1: Sample Edit Representation of GI. Three different
edits (left) are applied to a Pass sequence (right): insertion
(1), deletion (2), and replacement (3). Position field: relative
position between 0 and 1; value field: Pass name.

A demonstration of the process is shown in Figure 1. An ‘individ-
ual’ with three edits is applied to an initial sequence of five Passes.
The modified Pass sequence is used as the compiler optimization
arguments. A user-provided source program is compiled with these
arguments and the average runtime over 40 runs is recorded as the
fitness of the ‘individual’ of 3 edits. This minimizes the effect of
runtime inconsistency due to system fluctuations and any unusual
halting in the user-provided source program.

For more detail on the source program choice please see [9].
In our experiments, the source program used is the Backtrack Al-
gorithm for the Subset Sum Problem (SSP)3. The to-be-modified
sequence is -O3. There are a number of hyperparameters required
for Shackleton, and we used the optimal hyperparameter combina-
tion found in [9]. The experiments were conducted on HPCC nodes
running CentOS Linux version 7 and Clang version 8.0.0.

3 RESULTS AND DISCUSSION

Eight repeated trials were run with the same hyperparameter values.
Fitness across generations for two sample trials are plotted in Figure
2, with horizontal lines as the baseline runtime. Figure 2(a) shows
a converging pattern that starts at a high runtime then decreases;
Figure 2(b) shows a high quality initialization, and stays within the
same range during the entire evolutionary process. Both scenarios
outperforms the baselines. Shackleton-GI outperforms -O3 on the
SSP is 3.7% with a standard deviation of 0.8768. The p-value for
the left-tail test when the null hypothesis for the mean percent
improvement of 0 is 0.000012%. This shows the robustness of the
algorithm and its readiness to be experimented with in production.

The search space for Pass sequences is in the order of 10167 (using
120 different Passes in sequences of approximately 80 Passes long).
Therefore, finding the absolute optimum for a given source code is
computationally impossible with existing methods. -O3 is carefully
designed to reduce the runtime of a general target program. Hence,
it gives a good starting point for the search and significantly reduces
the size of the search space. The Pass-level edit representation in
Shackleton-GI effectively searches near this initial starting point
and is able to find a local minimum tailored to the specific source
program. The use of GI significantly increases the efficiency of the

3https://github.com/parthnan/SubsetSum-Backtrack Algorithm
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search compared to a run from random solutions [9] and is able to
provide a better solution than -O3 as-is.
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Figure 2: Runtime Improvement of Two Sample Trials
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4 CONCLUSION AND FUTURE WORK

The -03 sequence is hand-crafted with expert domain knowledge,
and does not contain problem-specific optimizations. Shackleton-GI
automatically produces a sequence of edits that generates a problem-
specific optimization solution to a user-provided source program.
We proposed a Pass-level edit representation for GI that can be
extended into different object types, and showed that our approach
is able to achieve substantial runtime improvements compared to a
strong compiler baseline.

Shackleton-GI is a novel application of GI and a first step in
exploring a flexible use case of Shackleton. Future directions in
the development of Shackleton-GI are: First, measuring fitness of
individuals with CPU time by altering the threading design to avoid
fluctuations caused by resource sharing on the same computing
cluster. Second, our experiments used the optimal hyperparameter
values found by [9] in a LGP (non-GI) environment; additional hy-
perparameter tuning might result in further runtime improvements
as this is a different use case. Further investigation into other opti-
mization objectives (e.g. peak memory consumption, I/O energy),
other GI algorithms, and a wider range of test problems would also
be interesting areas of future research.
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