
Amaru - A Framework for Combining Genetic Improvement
with Pattern Mining

Oliver Krauss
oliver.krauss@fh-hagenberg.at

University of Applied Sciences Upper Austria
Hagenberg, Upper Austria, Austria

ABSTRACT
We present Amaru, a framework for Genetic Improvement utilizing
Abstract Syntax Trees directly at the interpreter and compiler level.
Amaru also enables the mining of frequent, discriminative patterns
from Genetic Improvement populations. These patterns in turn can
be used to improve the crossover andmutation operators to increase
population diversity, reduce the number of individuals failing at
run-time and increasing the amount of successful individuals in
the population.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering; Interpreters; • Theory of computation → Genetic
programming.

KEYWORDS
Genetic Improvement, Compiler, Interpreter, Framework
ACM Reference Format:
Oliver Krauss. 2022. Amaru - A Framework for Combining Genetic Improve-
ment with Pattern Mining. In Genetic and Evolutionary Computation Confer-
ence Companion (GECCO ’22 Companion), July 9–13, 2022, Boston, MA, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3520304.3534016

1 INTRODUCTION
Amaru[12] (http://amaru.dev) is a framework that enables research
in Genetic Improvement (GI), and learning from GI experiments
by mining frequent patterns that occur in the population of the
evolutionary experiments. These patterns can be applied to discover
novel optimization techniques, or to improve the genetic operators
in future GI experiments. In doing this, Amaru follows two core
goals, enabling GI at a level close to the compiler and identifying and
explaining recurring patterns in the source code.

Other frameworks in this domain exist, most notably GinTool
[5, 22] and PyGGI [1, 2]. Compared to Amaru, both of these frame-
works are lightweight, and easy to use. Amaru is less lightweight,
as it directly integrates with the Truffle[23] interpreter and the
Graal[19] compiler. This enables Amaru to directly access com-
pilation information not available in other frameworks, such as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9268-6/22/07. . . $15.00
https://doi.org/10.1145/3520304.3534016

the stack and heap information, as well as a rather fine granular
view of the source code, as the representation utilized in GI is
the Abstract Syntax Tree (AST) directly interpreted by Truffle and
compiled by Graal. This also comes at a disadvantage compared
to the other frameworks. While the fine granular representation
allows for smaller changes to the source code, the search space
is much larger, as even simple test-languages have hundreds of
different node types, with complete languages such as JavaScript
havingmore than 2,000, many of which need specific considerations
in the evolutionary operators, making Amaru more heavyweight.
Amaru is currently only extensible to programming languages im-
plemented in the Truffle framework, and these will execute on the
Java Virtual Machine (JVM).

In addition to enabling GI research, Amaru stores the informa-
tion generated during GI experiments in a knowledge base. This
enables mining these results, as well as producing reproducible
experiments that may be shared with fellow researchers. The focus
of this mining is on identifying frequent, discriminative patterns, i.e.
frequent patterns that occur more often in one part of a population
than in another. As an example, this allows identifying interesting
patterns, such as sub-ASTs that frequently occur in individuals of
the GI population that have a higher run-time performance com-
pared to the original source code, and does not occur in those ASTs
with a lower run-time performance, thus implying that the pattern
is responsible for the improvement. To validate such identified pat-
terns, Amaru provides a validation mechanism to prove or disprove
identified patterns. This shows a first step in the direction of ex-
plainable genetic improvement, which is an important topic in the
GI community [15].

The remainder of this publication is structured as follows. sec-
tion 2 gives a short overview of the underlying technologies of
Amaru, which is explained further in section 3. Details on how GI is
applied in Amaru is discussed in subsection 3.1, and pattern mining
and verification is explained in subsection 3.2. Finally an outlook is
provided in section 4.

2 BACKGROUND
In the following we shortly outline the Graal Compiler, as well as
the Truffle Interpreter, which are used as the basis for Amaru.

2.1 Graal
Graal is an aggressively optimizing just-in-time (JIT) compiler, writ-
ten in Java as part of the OpenJDK project [19]. It compiles Truffle
ASTs to efficient machine code. It features multiple optimizations,
such as inlining, loop unrolling and partial escape analysis. Some of
these optimizations are speculative, i.e. based on heuristics. These

https://orcid.org/0000-0002-8136-2606
https://doi.org/10.1145/3520304.3534016
http://amaru.dev
https://doi.org/10.1145/3520304.3534016

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Oliver Krauss

optimizations can be taken back, in a process called deoptimiza-
tion, and other optimizations are applied. This often happens if the
execution context changes, for example when different branches
become the hot paths. Graal uses an Intermediate Representation
(IR), which is a directed graph consisting of the control flow and
the data flow, and builds the basis for research in compiler opti-
mizations. Amaru does not modify the Graal IR, but rather only
modifies the ASTs that Truffle utilizes. The use of Graal necessi-
tates special consideration towards how non-functional features,
such as run-time performance, are measured for individuals in GI
populations, as its aggressively optimizing nature requires a high
warm up time of 100,000 iterations [8, 16, 20].

2.2 Truffle
Truffle is an open-source framework and self-optimizing interpreter
for the prototyping of programming languages, called guest lan-
guages. It uses Abstract Syntax Trees (AST)s as a representation
form. Truffle itself is written in Java and can run on any JVM, but
directly integrates with Graal, enabling high performance compila-
tion of Truffle guest languages. Truffle itself contains additional op-
timizations such as node specialization and loop optimization. Lan-
guages implemented in Truffle have all advantages of the JVM, such
as garbage collection. Currently, there are several open-source lan-
guage implementations of Truffle, including JavaScript, C, Python
and Ruby. Truffle guest languages can also interface with each other.
For example, a JavaScript Truffle node can produce a call to a C
Truffle node [9, 23, 24].

Every node in a truffle AST represents a concept of the language,
such as "write int to stack", "double / double". In some cases, a
single node is not enough, and Truffle injects optimization nodes.
For example, the while loop consist of three nodes, "while", "loop"
and "repeating". In this case, the "repeating" and "while" nodes
are provided by the language developers, while the "loop" node is
provided by the Truffle framework, enabling truffle to analyze and
optimize the AST. A simplified example of a truffleAST representing
a recursive Fibonacci sequence is shown in Figure 1. It shows the
granularity that is enabled by directly manipulating such ASTs with
GI.

3 ARCHITECTURE OVERVIEW
The architecture of Amaru is shown in Figure 2. It is intended
to be run directly in the Graal Virtual Machine (VM), which is
a part of the OpenJDK, and can interface with Guest Languages
implemented in Truffle. A guest language is essentially a language
that was prototyped via the Truffle Framework. In the framework,
every operator or operand, e.g. loops, switches, variables, literals,
etc. is implemented as a node class. By using features from the
Truffle API, this enables Truffle to optimize generated ASTs, and
Graal to compile them natively in the JVM.

The framework consists of two essential parts. The first part
(top right of Figure 2) deals with GI experiments in a Truffle guest
language. The second part of the framework (bottom left in Figure 2)
enables mining patterns fromGI experiments and enables analyzing
these patterns further with additional experiments.

fn
fib()

{}
write
int n

if

||

==

read
int n

int
const
0

==

read
int n

int
const
1

+

call
fib()

call
fib()

-

read
int n

int
const

1

-

read
int n

int
const

2

return

return

read
int n

read
arg 0

Figure 1: AST representation of a recursive implementation
of the Fibonacci sequence.

Both of these are connected via a Knowledge Base, e.g. a Neo4J
graph database, which stores the Experiment Results generated dur-
ing the GI experiments. This includes every AST that was created as
well as observed run-time information, such as occurred exceptions
during different tests, or the run-time performance. Which genetic
operator created the ASTs, and via which parent ASTs, is also stored.
For example, in a crossover operation, both of the parent ASTs are
connected with the child AST. This enables tracing genealogies
during the experiments and analysis of the impact that different op-
erators have during the experiments. Truffle Language Information
on the Truffle guest language is also stored in the knowledge base,
such as which operators and operands are available, and assertions
about them, e.g. if they conduct a reading or writing access to stack
or heap, or if they are branching statements etc. This information
can in turn be used both by GI operators or considered whenmining
patterns.

The optimization side of the framework allows creating Experi-
ments. These experiments consist of a program that is run in the
Truffle guest language, and one function in the program that is
under optimization. Optimizing multiple functions at the same time
is currently not supported. The validation of these functions can be
done via unit tests, only testing the function directly, or integration
tests in which the entire program, or a benchmark function is run.
The tests and benchmark corpus currently need to be provided
by a researcher, although automated test generation is a future re-
search topic. Additional configuration of the experiments contains,
for example, the fitness function, selected genetic operators and
operands, or which patterns should be excluded or enforced during
a GI run.

The Optimizer is the part of the framework that conducts the
experiments, i.e. runs them. It supports using different algorithms
and operators to guide the search during the experiment, with the
primary algorithm being Knowledge-guided Genetic Improvement
(KGGI). It also allows the connection to other frameworks, to either

Amaru - A Framework for Combining Genetic Improvement with Pattern Mining GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

Pattern Framework & API

Execution Environment

Graal VM

Java HotSpot VM

Truffle API

Guest Language

Guest Application

Optimization Framework & API

Truffle Language
Information (TLI)

analyzes
produces

Truffle Language Analyzer
(TLA)

describes

source code &
AST

Experiment

Test Cases

Optimal AST Original AST

Configuration

Truffle Nodes

Terminals

Non-Terminals

Initialization
Mechanism

uses

produces

Optimizer

Connector to
other Frameworks

Experiment Results

Tested AST

Runtime ProfileTest Results

Optimization
Algorithms

Key:

Execution
Relation

Data
Relation

Logical
Group

Used
Framework

Language
Specific

Program
Specific

Data
Optional
Data

Knowledge Base

Language
Information

Original AST Optimized AST

Node
Information

Transformation
Patterns

analyzes

produces

Truffle Pattern
Detector (TPD)collects &

injects
transformed ASTs

uses

Truffle Pattern Injector
(TPI)

hierarchy
Pattern Detection

Algorithms

Pattern Application
Algorithms

collected
AST

transformed
AST

Figure 2: Architecture of the Amaru framework. It builds upon the Truffle and Graal execution environment, and consists
of functionality for optimization using GI. The experiment data is stored in a knowledge base, from which patterns can be
mined and verified [13].

outsource parts of the algorithm, such as a specific mutation or
crossover implementation, or to enable complete control of the
search from another framework, with Amaru only serving to com-
pose the ASTs and running them on the Graal compiler. The only
existing connector to another framework is to HeuristicLab [7, 11].
With this connection mechanism, Amaru can be a valuable addition
for other frameworks and can serve as an intermediary, as it also
contains mechanisms to automatically analyze and prepare Truffle
Languages for use in machine learning.

The Truffle Language Analyzer serves to analyze Truffle lan-
guages and provide the Truffle Language Information via various
mechanisms. Static code analysis, via Java reflection, is used to ex-
tract Truffle API specific information from nodes. Dynamic analysis
is primarily conducted via brute force operations, that, for example,
identify which variable write operations need to be in which order
and which data types are interoperable. For example, in an untyped
language writing a string to a variable and then reading it as an
integer may be allowed, but in a statically typed language this will
fail at runtime. Similarly, one language may require arrays to be
allocated with a size, while another will dynamically allocate the
array with the write operation, not requiring an allocation before-
hand. The resulting information provides a generic representation,

independent of the actual language, that enables the instantiation
of AST nodes, and having information available about which nodes
influence the control or data flow, and call other functions. Without
this automated analysis, utilizing Truffle languages would be an
overwhelming overhead for developers of a Truffle language, or
those wanting to utilize it for GI, especially frameworks not written
directly in Java.

Amaru features several options of running the different ASTs
during the GI experiments, as shown in Figure 3. The simplest im-
plementation is the internal executor, which simply injects the AST
provided by a genetic operator in the context of the program and
runs the given test suite. Other operators simply exist to load addi-
tional information from the ASTs. For example, the trace executor,
automatically injects tracing information into the Truffle languages
via byte code manipulation. This can be used to identify exactly
which nodes of an AST are executed for a specific test case, or to
measure the run time of single nodes or branches, thus identifying
the hot paths for a single test, or test suite.

Due to the fine granularity, of how ASTs are designed in Amaru,
ASTs that crash the JVM during their execution are a rare, yet reg-
ular, occurrence. Exceptions from which the JVM cannot recover,

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Oliver Krauss

for example, are when the garbage collector overhead limit is ex-
ceeded, or stack overflow exceptions. An even larger issue is the
valid measurement of non-functional properties, especially run-
time performance. It is widely known that the garbage collector
and other processes running on the operating system can influence
measuring runtime [4]. In a similar manner, the same code may be-
have differently on other hardware architectures, operating systems
or just compiler version or flags used during the compilation.

A unique, and lesser known challenge when using an aggres-
sively optimizing compiler, like Graal, and possibly affecting mul-
tiple modern compilers is code caching [20, 21]. In essence, code
caching identifies code snippets that are executed often and caches
them, including their optimizations. Modern compilers also have a
warm-up time (for Graal the first 100,000 iterations) in which code
is analyzed and (re-)optimized multiple times. However, in GI it is
not unusual to conduct only 10 repetitions [6] when measuring run-
time performance, due to the high cost of compiling and executing
large code bases. In addition, individuals in a GI population are
often very similar, primarily as GI deals with improving existing
code instead of synthesizing new one, but partly because of the
popular code grafting operators utilize [3].

Individually these three considerations, code caching, warm up,
and a low amount of repetitions, may be less problematic. When
considering them in combination, these individual ingredients be-
come a recipe for disaster when attempting run-time performance
measurements. Since GI features highly similar code, it is likely
that the compiler caches it. Since the compiler also does not finish
its warm up with the few iterations the code is run, it may appear
that the GI algorithm is producing faster and faster individuals over
several generations, while what is actually happening, is that the
compiler continuously improves recurring snippets.

To enable accurate measurement of non-functional features of
software, Amaru primarily applies remote execution, meaning that
the program steering the search only generates the ASTs but never
executes them. In Figure 3 the AST is run by remote runners (right).
These connect with the Optimizer via a Broker (center), using the
Message Queue protocol. The Broker takes the initial configura-
tion of an experiment from the optimizer, i.e. the source code, and
which features should be measured, and then distributes generated
ASTs to the remote runners. Each of the remote runners is in their
own JVM. Whenever runtime performance is measured, the runner
shuts itself down after running just a single AST, with one single
test case, to ensure that there is no bleed-over-effect between AST
measurements. A control plane checks in regular intervals if the
runner process still exists, and starts a new process if it does not.
The control plane also monitors crashes, and can report the reason
a runner stopped to the Broker. This makes Amaru resistant to hard
crashes, and allows identifying which AST leads to such a type
of crash. Via this mechanism, Amaru also allows for distributed
execution, as multiple control planes can connect from different
PCs to one broker. In the case of run-time performance, the broker
instructs each control plane to only have one runner active, other-
wise the control plane automatically spawns one runner per CPU
thread.

The pattern mining side of the framework (Figure 2 bottom) can
load data from one or multiple Experiments, and utilize the informa-
tion obtained from the Truffle language. The Truffle Pattern Detector

contains some algorithms to mine patterns. The primary implemen-
tation being a novel mining algorithm, Independent Growth of
Ordered Relationships (IGOR), and a reporting tool to view the
resulting patterns found in the ASTs. The Truffle Pattern Injector
can then later inject patterns into the GI operators for future ex-
periments, to either enforce that anti-patterns will not be mutated
or crossed into the population anymore, or enforces the inclusion
of patterns that should occur in the population. This concept is
comparable to grafting [3], with the primary difference being that
instead of grafting specific source code, more generic structures
are injected, and often mutated to complete them, or crossed with
various sub ASTs.

3.1 Genetic Improvement in Amaru
Genetic Improvement in Amaru is done at the AST level of Truffle.
The Truffle guest languages are analyzed by Amaru, and processed
into generic constructors, with meta information on how the nodes
can be combined into an AST, e.g. which child nodes are valid.
In addition, how nodes need to interact is also documented. For
example, the Amaru framework detects which nodes initialize a
variable correctly to be read by another node. In addition, the func-
tion registry, stack and heap variables and their assigned types are
available for the genetic operators. This allows Amaru to guarantee
in most cases that only such ASTs can be constructed, that they will
always be able to compile. Some edge cases still exist, for example
if the Truffle guest language is designed in a way where child node
types cannot be inferred via static analysis.

Amaru uses Knowledge-guided Genetic Improvement (KGGI) as
base algorithm [14]. KGGI is a combination of Grammar-guided
Genetic Programming (GGGP) [18] since it adheres to the valid
structure of the language, and Tree Genetic Programming (TGP)
[10], as it uses the Truffle AST as representation.

At the core of KGGI stand two concepts. Knowledge about the
language being optimized, and the syntax graph, an example of
which is shown in Figure 4. The syntax graph is a graph consisting
of strategies that can be applied in all major genetic operators,
crossover, mutation and selection. The core concept of this graph
is based on requirements engineering. Each (sub)-AST is seen as a
set of requirements.

Consider the AST from Figure 1 being applied in the mutation
operation. If the mutation operation were to decide that the write
int n node needs to be removed, the syntax graph traverses the rest
of the AST, and collects unsatisfied requirements. In this case, each
of the read int n nodes will register that no corresponding node
exists to initialize the stack variable, thus leading to an unsatis-
fied requirement. This unsatisfied requirement is then used when
generating a new sub-AST, to enforce that the variable n must be
initialized with any node able to write an integer value. This does
not guarantee that no run time exception may occur. If, for exam-
ple, the replacement sub-AST would initialize n with any negative
integer, this would lead to a stack overflow exception, crashing the
JVM.

The second concept of KGGI is the knowledge about the lan-
guage, as is shown in the white boxes in Figure 4. Due to the
language analysis by Amaru, it is known for each node, what their
minimal requirements are concerning depth and width, e.g. how

Amaru - A Framework for Combining Genetic Improvement with Pattern Mining GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

Broker

Remote Runner

Optimizer

Internal Executor

Trace Executor

Remote Executor

... Executor

Control Plane A (C,
Javascript)

Internal Executor

Control
Plane B

(C,
JavaScript)

Remote Runner

Internal Executor

Remote Runner

Internal Executor

Command
Plane (C)

Configuration

Exception Handling

Message Distribution

Discovery

Figure 3: Available execution mechanisms for AST individuals in the population, enabling failure free, distributed execution
and accurate measurement.

Root strategy
references all operators in language

IntLiteral
depth: 1

width: 1

complex.: none

run-time: 1

...

condition

then / else
branch

If
depth: 2..*

width: 2-3

complex.: branch

run-time: 15

...

body

While
depth: 2..*

width: 1..*

complex.: loop

run-time: 30

...

BoolOp.

...

VarRead

...

condition

VarRead

...

...

...

Entry point strategy
(defines concepts valid in context)

Repeating strategy
produces 0..n objects

Root strategy
restricted to valid

operators

Figure 4: Syntax graph for a given Truffle guest language.
Operators (gray) represent the grammar and contain knowl-
edge about their non-functional properties (white), and
edges to valid relationships according to the grammar. [13]

many child nodes must be created as a minimum valid AST. This
lets the syntax graph control the search space and prevent code
bloat. This also works with assertions about non-functional fea-
tures, as is shown with run-time. The Truffle Language Analyzer,
allows measuring the average cost of a node, to approximate the
total cost of a generated AST. For branches and loops, assertions are
made which branch is likely to be taken, or how often a loop will
be executed. While this is by no means an accurate measurement,
as it is highly dependent if these assertions hold true, and which

optimizations the compiler will apply during run-time, it still serves
to restrict the search space in the GI populations.

The entry point strategy serves the purpose of guaranteeing that
the Grammar is upheld in the operations. For example, during the
mutation operation, if this strategy is given the condition of an
if statement, it will only generate a new sub-AST that returns a
boolean value.

The root strategy serves purely as a selection mechanism for
all other strategies. It recursively queries all strategies with the
given requirements, for example that a variable must be written to,
or that a maximum depth must not be exceeded. Strategies either
fulfill requirements, or add new requirements, which in turn must
be fulfilled by other child or sibling nodes.

All other strategies are more specialized, such as specific strate-
gies for the stack or heap access, or strategies that deal with repe-
titions, such as multiple statements that may be created within a
block statement. Most of these strategies are automatically gener-
ated from the information inferred from the Truffle guest language.
Some others are provided by Amaru and automatically injected
when flags exist, such as specialized strategies for stack or heap
access, or strategies dealing with invocations of functions. Amaru
allows the injection of manually created strategies as well, to han-
dle edge cases, or for example support grafting via such a strategy,
to still ensure that the graft only occurs at places allowed by the
languages’ grammar.

The syntax graph has the distinct advantage that it allows a
fine granular control of the search space, and can guarantee that
generated ASTs will contain nodes that are indispensable for the
AST’s functionality. This allows to significantly reduce the rate
of run-time exceptions that will occur during execution. This can
be even further reduced, since anti-patterns and patterns are also
injected as requirements. For example, an anti-pattern may be that
the Fibonacci call provides the wrong argument datatype, which

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Oliver Krauss

would lead to a run-time exception (see Figure 5). Such an anti-
pattern can be introduced as a requirement, where if the function
being called is "fib" then there must be an int argument provided.
This in turn may still produce a run-time exception as the int vari-
able must also not be negative, which is easily modeled for literals,
but hardly possible to guarantee for every possible sub-AST that
may produce an integer as the argument node. This rather simple
example shows that patterns do help to improve overall quality of
the GI populations, but cannot guarantee a runtime exception free
population.

Amaru provides much tooling for the syntax graph, and enables
the automated injection of patterns and anti-patterns which can
simply be modeled as ASTs. Wildcards, allow these patterns to be
fairly expressive, to also model the requirement that a node must
(not) be there, or that nodes can be skipped. However, all of this
also comes with a disadvantage. The evaluation of the syntax graph
is a fairly expensive operation, since queries must be recursively it-
erated until either an AST is found, or the search space is exhausted
as the (potential) AST becomes too large. While Amaru mitigates
this issue with caching, and different selection strategies, the KGGI
crossover and mutation operations are much slower than other
operators known from literature.

3.2 Mining Patterns from Experiments
The Amaru framework provides functionality to mine ASTs pro-
duced from GI experiments via frequent and discriminative pattern
mining. Mining frequent patterns enables the identification of sub-
structures that occur frequently overall. E.g. patterns are not identi-
fied in one single AST, but rather patterns are identified occurring
in a large percentage of ASTs of the entire GI population, making
them significant. Discriminative pattern mining on the other hand
compares two or more groups and attempts to find patterns that
occur more in one group than in the other(s) making them dis-
criminative. For example, frequent pattern mining is the process of
discovering patterns over an entire GI experiment. Discriminative
pattern mining occurs if the ASTs produced in the experiment are
grouped into those succeeding all tests, those failing tests, and those
producing run-time exceptions, which would allow a mining of bug
patterns.

An example of amined anti-pattern that is responsible for a bug is
shown in Figure 5. The figure shows an invocation of the Fibonacci
function with a char literal on the left, which will fail as no such
function exists to be invoked. On the right is the corresponding
correct pattern which will not fail as an int literal is provided. The
invoke node and function literal node on both sides would not
be discriminative, as they occur in both search spaces of failing
and succeeding ASTs. However, the third node makes the pattern
discriminative when they only occur in one group, or at least far
more often.

Pattern mining deals with a search space 2n , where n is the
amount of relationships available in an AST. This is because each
component of a tree, e.g. any subset of nodes with corresponding
relationships between them, must be analyzed. As this search space
is virtually unmanageable for larger ASTs multiple growth metrics
exist [17], and a multitude of algorithms to apply these metrics
exists as well. Metrics are applied to filter and rank patterns, and

function arguments

invoke
fn

fn_lit
fib

char
lit

function arguments

invoke
fn

fn_lit
fib

int
lit

Antipattern
Runtime Exception

Pattern
Correct Invocation

Figure 5: Example of an identified anti-pattern leading to
a run-time exception as the Fibonacci function "fib" is in-
vokedwith thewrong type, and the corresponding identified
pattern where the invocation correctly provides an integer.

only the top n patterns are analyzed for additional relationships.
Amaru provides several reference implementations of such metrics,
although primarily the contrast metric is used for discriminative
mining. This metric prioritizes the difference in frequence between
discriminative groups, e.g. patterns that occur more often in one
than in the other, by absolute difference.

Amaru uses the Independent Growth of Ordered Relationships
(IGOR) algorithm [13], which was developed to mine ordered rela-
tionships in ASTs. In mining ordered means that the relationships
order is considered, as some algorithms will consider the pattern
(A) ← (B) → (C) identical to (C) ← (B) → (A) as B is the parent
node, and both A and C occur as child nodes. Another concept to
be considered is induced vs. embedded. Induced patterns are such
patterns where all nodes must be directly connected. Embedded
patterns can skip nodes, only enforcing a direct connection, such
as A and C would have.

IGOR provides only ordered mining, as the execution order of
statements, and often even partial statements, such as boolean
expressions which are short-circuit evaluated, is relevant in source
code. It allows both induced mining, to identify larger connected
patterns, as well as embedded mining to enable identifying patterns
that may be distributed over the entire AST. This is done via a
pattern growth approach. E.g. all patterns of size 1 are evaluated,
and ranked according to the selected metric. From this point on
only the top n patterns are checked, and only grown if an additional
relationship and corresponding node would remain discriminative
enoughwith appropriate support, e.g. the pattern also still occurring
often enough in at least one group.

The IGOR algorithm also allows utilizing the Truffle guest lan-
guages’ information in the mining process, by introducing the
concept of hierarchies, e.g. generalizing observed nodes. In the
example shown in Figure 5 the correct pattern could be an argu-
ment of any "int" instead of just int literals. As another relevant
example, mining algorithms other than IGOR would not be able to
consider for and while loops as the same pattern. IGOR can apply
the natural hierarchy of truffle languages to automatically general-
ize patterns. Alternatively a hierarchy can be provided instead that
targets specific use cases, such as hierarchies prioritizing the data

Amaru - A Framework for Combining Genetic Improvement with Pattern Mining GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

types of nodes, or hierarchies prioritizing the data flow, for example
generalizing "read int", and "read double" to a "read" and further
generalizing "read" and "write" to "data access". This provides two
advantages. Firstly, generalized patterns have more options for their
application. Secondly, it allows mining general patterns combined
from a multitude of specialized patterns that may not occur often
enough to be discriminative on their own, but are significant and
discriminative when combined.

Amaru provides functionality to verify or disprove identified
patterns. This is done via using the mutation operator of KGGI and
enforcing the pattern in multiple mutants of one or more ASTs. The
effects of the AST are then measured, e.g. tests are run and metrics
are observed. From this, a confidence score is calculated that relays
in percent if the expected hypothesis holds true, or not.

As an example, the anti-pattern from Figure 5 is assumed to
be responsible for leading to a run-time exception. If this pattern
is injected 100 times into different ASTs, the confidence score is
calculated by how often the AST fails during run time (ex. 95%).
Due to the complexity of code, patterns can rarely be proven to
be 100% correct, as the pattern may be injected in a branch that is
not executed with the given test suite, or it may be injected at un-
reachable positions, for example after a return statement. However,
this method enables the verification of patterns and fixes for these
patterns. Patterns that have been verified, can then be applied in
future GI runs to exclude patterns leading to runtime exceptions,
or alternatively to introduce well performing genomes.

4 CONCLUSION AND FUTUREWORK
Genetic Improvement is a research field that is still growing. One
of the current challenges in this domain is building trust in GI, and
making the generated results, explainable [15]. Amaru provides a
first step in this direction by utilizing the data generated during GI
runs, and applying discriminative pattern mining on the results.

Amaru runs via Truffle on the JVM, enabling the use of any
language developed as a Truffle guest language. This enables re-
search on GI on a fine granular level, and utilizing information
from interpreter and compiler, such as stack and heap information.
Compared to other GI frameworks, such as Gin and PyGGI, Amaru
is less lightweight due to its integration with Truffle.

Amaru is quite successful in combining GI with pattern mining,
and we hope that this success can be replicated by the community.
Krauss[13] provide a case study consisting of 25 algorithms from
three different domains (math, sort and neural networks). They ap-
ply pattern mining to these experiments, and identify several bugs
that cause most of the GI populations to lead to run-time exceptions.
They prove that these bugs are responsible for their corresponding
exceptions with an average confidence of 90.1%, and when applying
these highly confident patterns in a further experiment series. In
their results they manage to double the population diversity, as the
large number of failed ASTs reduced that diversity significantly,
and reduce the number of individuals failing at runtime to 36.9 %
over all experiments. Additionally, they find improvements for 22
out of the 25 selected algorithms, with an average run-time speedup
of 33.5%.

The source code of Amaru is publicly available at https://github.
com/oliver-krauss/amaru. The connector to Heuristic Lab is avail-
able at https://github.com/oliver-krauss/heuristiclabconnector. Both
are licensed under the Mozilla Public License 2.0. It also enables
the integration with other frameworks, and extensibility for addi-
tional algorithms, and operators for both GI and pattern mining.
Participation is welcomed, and encouraged, be it in the form of
feature-request and bug reports or contribution to the code base.

In the near future, we plan to improve and extend Amaru. This
primarily concerns rewrites to ease the set-up and allow users to
quickly start their own experiments. Both the GI and patternmining
algorithms currently allow reporting in the form of generated static
HTML or Markdown reports after the experiments have finished.
No UI is available for configuring experiments or viewing interim
results as of yet. We also plan to extend support for more algorithms
from search based software engineering.

REFERENCES
[1] Gabin An, Aymeric Blot, Justyna Petke, and Shin Yoo. 2019. PyGGI 2.0: Language

Independent Genetic Improvement Framework. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ACM, Tallinn, Estonia, 1100–1104.
https://doi.org/10.1145/3338906.3341184

[2] Gabin An, Jinhan Kim, Seongmin Lee, and Shin Yoo. 2017. PyGGI: Python General
framework for Genetic Improvement. In Proceedings of Korea Software Congress
(KSC 2017). Busan, South Korea, 536–538. https://coinse.kaist.ac.kr/publications/
pdfs/An2017aa.pdf.

[3] Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica Sarro.
[n. d.]. The Plastic Surgery Hypothesis. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (New York, NY,
USA, 2014-11-11) (FSE 2014). ACM, 306–317. https://doi.org/10.1145/2635868.
2635898

[4] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and
Laurence Tratt. [n. d.]. Virtual MachineWarmup Blows Hot and Cold. Proceedings
of the ACM on Programming Languages 1 ([n. d.]), 52:1–52:27. Issue OOPSLA.
https://doi.org/10.1145/3133876

[5] Alexander E. I. Brownlee, Justyna Petke, Brad Alexander, Earl T. Barr, Markus
Wagner, and David R. White. 2019. Gin: Genetic Improvement Research Made
Easy. In Proceedings of the Genetic and Evolutionary Computation Conference. ACM,
Prague, Czech Republic, 985–993. https://doi.org/10.1145/3321707.3321841

[6] Alexander E. I. Brownlee, Justyna Petke, and Anna F. Rasburn. [n. d.]. Injecting
Shortcuts for Faster Running Java Code. In 2020 IEEE Congress on Evolutionary
Computation (CEC) (Glasgow, United Kingdom, 2020-07). IEEE, 1–8. https:
//doi.org/10.1109/CEC48606.2020.9185708

[7] Daniel Dorfmeister and Oliver Krauss. [n. d.]. Integrating HeuristicLab with
Compilers and Interpreters for Non-Functional Code Optimization. In Proceedings
of the 2020 Genetic and Evolutionary Computation Conference (Cancun, Mexico,
2020-07). ACM. https://doi.org/10.1145/3377929.3398103

[8] Gilles Duboscq, Lukas Stadler, Thomas Würthinger, Doug Simon, Christian Wim-
mer, and Hanspeter Mössenböck. 2013. Graal IR: An Extensible Declarative
Intermediate Representation. In 2nd Asia-Pacific Programming Languages and
Compilers Workshop (APPLC’13), as Part of the 10th Annual International Sympo-
sium on Code Generation and Optimization. 9.

[9] Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Würthinger, and
Hanspeter Mössenböck. [n. d.]. High-Performance Cross-Language Interop-
erability in a Multi-Language Runtime. In Proceedings of the 11th Symposium on
Dynamic Languages (Pittsburgh, Pennsylvania, USA, 2015-10-21). ACM, 78–90.
https://doi.org/10.1145/2816707.2816714

[10] Nguyen Xuan Hoai and Robert I. McKay. [n. d.]. A Framework For Tree-Adjunct
Grammar Guided Genetic Programming. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.79.4037&rep=rep1&type=pdf

[11] Michael Kommenda, Gabriel Kronberger, Stefan Wagner, Stephan Winkler, and
Michael Affenzeller. 2012. On the Architecture and Implementation of Tree-
based Genetic Programming in HeuristicLab. In Proceedings of the 14th Annual
Conference Companion on Genetic and Evolutionary Computation (Philadelphia,
Pennsylvania, USA) (GECCO ’12). ACM, New York, NY, USA, 101–108. https:
//doi.org/10.1145/2330784.2330801

[12] Oliver Krauss. 2021. Amaru - The Amaru Framework for Genetic Improvement and
Pattern Mining in Graal and Truffle. https://doi.org/10.5281/zenodo.6104384

[13] Oliver Krauss. 2022. Pattern Mining and Genetic Improvement in Compilers and
Interpreters. Ph. D. Dissertation.

https://github.com/oliver-krauss/amaru
https://github.com/oliver-krauss/amaru
https://github.com/oliver-krauss/heuristiclabconnector
https://doi.org/10.1145/3338906.3341184
https://coinse.kaist.ac.kr/publications/pdfs/An2017aa.pdf
https://coinse.kaist.ac.kr/publications/pdfs/An2017aa.pdf
https://doi.org/10.1145/2635868.2635898
https://doi.org/10.1145/2635868.2635898
https://doi.org/10.1145/3133876
https://doi.org/10.1145/3321707.3321841
https://doi.org/10.1109/CEC48606.2020.9185708
https://doi.org/10.1109/CEC48606.2020.9185708
https://doi.org/10.1145/3377929.3398103
https://doi.org/10.1145/2816707.2816714
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.4037&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.4037&rep=rep1&type=pdf
https://doi.org/10.1145/2330784.2330801
https://doi.org/10.1145/2330784.2330801
https://doi.org/10.5281/zenodo.6104384

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Oliver Krauss

[14] Oliver Krauss, Hanspeter Mössenböck, and Michael Affenzeller. [n. d.]. Towards
Knowledge Guided Genetic Improvement. In 2020 IEEE/ACM International Work-
shop on Genetic Improvement (GI) (2020-10). https://doi.org/10.1145/3387940.
3392172

[15] William B. Langdon, Westley Weimer, Justyna Petke, Erik Fredericks, Seongmin
Lee, Emily Winter, Michail Basios, Myra B. Cohen, Aymeric Blot, Markus Wagner,
Bobby R. Bruce, Shin Yoo, Simos Gerasimou, Oliver Krauss, Yu Huang, and
Michael Gerten. [n. d.]. Genetic Improvement @ ICSE 2020. 45, 4 ([n. d.]), 24–30.
https://doi.org/10.1145/3417564.3417575

[16] David Leopoldseder, Lukas Stadler, Manuel Rigger, Thomas Würthinger, and
Hanspeter Mössenböck. [n. d.]. A Cost Model for a Graph-Based Intermediate-
Representation in a Dynamic Compiler. In Proceedings of the 10th ACM SIGPLAN
International Workshop on Virtual Machines and Intermediate Languages (New
York, NY, USA, 2018-11-04) (VMIL ’18). ACM, 26–35. https://doi.org/10.1145/
3281287.3281290

[17] Lucia Lucia, David Lo, Lingxiao Jiang, Ferdian Thung, and Aditya Budi. [n. d.].
Extended Comprehensive Study of Association Measures for Fault Localization.
Journal of Software: Evolution and Process 26, 2 ([n. d.]), 172–219. https://doi.org/
10.1002/smr.1616

[18] Daniel Manrique, Juan RÃŋos, and Alfonso RodrÃŋguez-PatÃşn. [n. d.].
Grammar-Guided Genetic Programming. Encyclopedia of Artificial Intelligence.
https://doi.org/10.4018/978-1-59904-849-9.ch114

[19] OpenJDK. 2022. Graal Project. http://openjdk.java.net/projects/graal/

[20] Doug Simon, Christian Wimmer, Bernhard Urban, Gilles Duboscq, Lukas Stadler,
and Thomas Würthinger. [n. d.]. Snippets: Taking the High Road to a Low
Level. ACM Transactions on Architecture and Code Optimization 12, 2 ([n. d.]),
20:20:1–20:20:25. https://doi.org/10.1145/2764907

[21] Lukas Stadler, Gilles Duboscq, Hanspeter Mössenböck, and Thomas Würthinger.
[n. d.]. Compilation Queuing and Graph Caching for Dynamic Compilers. In
Proceedings of the Sixth ACM Workshop on Virtual Machines and Intermediate
Languages (New York, NY, USA, 2012-10-21) (VMIL ’12). ACM, 49–58. https:
//doi.org/10.1145/2414740.2414750

[22] David R. White. [n. d.]. GI in No Time. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (New York, NY, USA, 2017-07-15) (GECCO ’17).
ACM, 1549–1550. https://doi.org/10.1145/3067695.3082515

[23] Christian Wimmer and Thomas W"̆rthinger. 2012. Truffle: A Self-optimizing
Runtime System. In Proceedings of the 3rd Annual Conference on Systems, Program-
ming, and Applications: Software for Humanity (Tucson, Arizona, USA). ACM,
New York, NY, USA, 13–14. https://doi.org/10.1145/2384716.2384723

[24] Thomas Würthinger, Christian Wimmer, Andreas WöÃ§, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
[n. d.]. One VM to Rule Them All. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (New York, NY, USA, 2013-10-29) (Onward! 2013). ACM, 187–204. https:
//doi.org/10.1145/2509578.2509581

https://doi.org/10.1145/3387940.3392172
https://doi.org/10.1145/3387940.3392172
https://doi.org/10.1145/3417564.3417575
https://doi.org/10.1145/3281287.3281290
https://doi.org/10.1145/3281287.3281290
https://doi.org/10.1002/smr.1616
https://doi.org/10.1002/smr.1616
https://doi.org/10.4018/978-1-59904-849-9.ch114
http://openjdk.java.net/projects/graal/
https://doi.org/10.1145/2764907
https://doi.org/10.1145/2414740.2414750
https://doi.org/10.1145/2414740.2414750
https://doi.org/10.1145/3067695.3082515
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581

	Abstract
	1 Introduction
	2 Background
	2.1 Graal
	2.2 Truffle

	3 Architecture Overview
	3.1 Genetic Improvement in Amaru
	3.2 Mining Patterns from Experiments

	4 Conclusion and Future Work
	References

