
Opportunities for Genetic Improvement of Cryptographic Code
Chitchanok Chuengsatiansup, Markus Wagner, Yuval Yarom

The University of Adelaide
Adelaide, Australia

ABSTRACT
Cryptography is one of themain tools underlying the securityworld.
Cryptographic code must achieve both high security requirements
and high performance. Both automatic generation and genetic im-
provement of such code are underexplored, making cryptographic
code a prime target for future research.

ACM Reference Format:
Chitchanok Chuengsatiansup, Markus Wagner, Yuval Yarom. 2022. Op-
portunities for Genetic Improvement of Cryptographic Code. In Genetic
and Evolutionary Computation Conference Companion (GECCO ’22 Compan-
ion), July 9–13, 2022, Boston, MA, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3520304.3534049

1 INTRODUCTION
With the proliferation of computers into all aspects of human life,
the amount of sensitive data being processed keeps increasing. As
cryptography is one of the main tools underlying the security of our
modern and connected world, cryptographic software must meet
not only high security requirements, but also exhibit excellent non-
functional properties, such as high performance and low energy
consumption. Hence, we see cryptography as a prime target domain
for single- and multi-objective code optimization.

Let us consider the hardening of code against implementation
attacks. Such attacks exploit the interaction of software with the
environment it executes in, and they pose a significant threat to
the security of cryptographic software. For example, side-channel
attacks [5, 10] observe effects such as power consumption, elec-
tromagnetic emanations, or even state change in the processor
microarchitecture, to leak sensitive information, completely under-
mining the security of the software. To mitigate the risk of side-
channel attacks, cryptographic engineers have developed a range
of techniques. These, typically, restrict software development to
only use safe constructs. For example, constant-time programming,
a programming paradigm that protects against microarchitectural
attacks, does not allow branches whose condition depends on secret
data. Another example is the use of masking to prevent leakage
through power consumption. With masking, each internal value of
the algorithm is represented by two or more variables, such that
observing subsets of these variables reveals no information on the
secret internal value. Multiple tools have been proposed to assist

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9268-6/22/07. . . $15.00
https://doi.org/10.1145/3520304.3534049

cryptographers in developing cryptographic software, validate it,
and verify that it meets the required security guarantees.

The net result of restricting programming constructs, using auto-
mated tools, and of the desire to support formal verification is that
modern cryptographic software tends to have a relatively simple
control-flow: conditional statements are often eliminated, loops
are unrolled, and functions are often implemented as a linear se-
quence of arithmetic operations. Similarly, implementations tend to
have simple memory access patterns, avoiding aliasing or excessive
pointer manipulations.

We believe that such lowered complexity creates opportunities
for using genetic improvement [13] in cryptographic software. In
this brief position statement, we outline a few ideas of how this can
be achieved: we focus on code that is resilient to power analysis
attacks in Section 3 and on optimizing performance in Section 4.

2 RELATEDWORK
Optimizing non-functional code properties encompasses many tech-
niques and is known under different names in different fields. For
example, software automatic tuning [11] deals with enabling soft-
ware adaptation to the problem or the computing environment.
Much of the development of the domain was in the context of
highly parallel supercomputers. Hence, significant effort has been
invested in tuning parameters for parallelization [7].

For generating optimized code, Frigo [4] combine short code
templates to generate tuned programs for performing the FFT. Al-
ternatively, Shackleton [12] uses genetic search to find the best
sequence of compiler optimization passes for a target program.

Kri and Feeley [9] use genetic search for compiling code. Specif-
ically, they model register allocation and instruction scheduling
as a search problem and use genetic algorithms to search for a
high performance solution. They demonstrate a performance im-
provement of 10–50% over the non-optimized version of the code.
Unfortunately, they do not compare against optimized code.

While this is by no means a comprehensive review, the automatic
generation of cryptographic code that performs well given multiple
criteria is underexplored. We aim to change this.

3 DEFENSES FOR POWER ANALYSIS
The power consumption of a computing device correlates with the
values it processes. To protect against power analysis attacks [8]
software can mask intermediate values. For example, in order-𝑝
Boolean masking, an internal value 𝑣 is represented using 𝑝 + 1
values, 𝑣0, . . . , 𝑣𝑝 . The values 𝑣0, . . . , 𝑣𝑝−1 are chosen uniformly and
independently at random, whereas 𝑣𝑝 is computed using 𝑣𝑝 =

𝑣0 ⊕ · · · ⊕ 𝑣𝑝−1 ⊕ 𝑣 . Observing any combination of 𝑝 values out of
𝑣0, . . . , 𝑣𝑝 does not reveal information on the value of 𝑣 [6].

Although theoretically secure, masking can fail in practice due
to unintended interactions between values in the processor [1]. To
protect against such leakage, Rosita [15] automatically identifies

https://doi.org/10.1145/3520304.3534049
https://doi.org/10.1145/3520304.3534049

GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Chitchanok Chuengsatiansup, Markus Wagner, Yuval Yarom

leaky instructions and applies code transformations to prevent the
leakage. While effective at eliminating leakage, the security Rosita
offers comes at a performance cost. Protecting code can add up to
190% to the code running time [14].

One of the reasons for the slowdown that code protected by
Rosita incurs is that Rosita considers each leak in isolation rather
than looking at the problem in a holistic way. As a result, it misses
options to apply countermeasures that prevent multiple leakage
points, opting instead for local fixes. To improve the performance
of protected code, we propose to view the problem of which trans-
formations to apply as a multi-objective combinatorial optimization
problem that aims to reduce both leakage and running time.

4 CRYPTOGRAPHIC CODE OPTIMIZATION
Optimizing cryptographic code requires both skill in implementa-
tion and knowledge in cryptography. Most speed records in the
past have been achieved by experts who manually implemented the
schemes. Nonetheless, we believe genetic algorithms are suitable
for optimizing cryptographic code. The reason is that cryptographic
code tends to display a lower complexity than general programs,
where significant parts of the code are in basic blocks without any
control flow. Mainstream compilers tend to use windowing meth-
ods that are less effective for long basic blocks. At the same time the
simplicity of control flow reduces the analysis efforts and simplifies
searching the space of possible implementations.

Bosamiya et al. [2] apply GI to optimizing cryptographic code.
Specifically, they start from assembly code that implements a cryp-
tographic primitive. They use a genetic algorithm to apply transfor-
mations to the code in the search for a fast implementation. Finally,
they prove that the resulting code is equivalent to the original code.
They report performance improvement of up to 27% over the origi-
nal code. Starting from assembly code makes it difficult to change
register allocation and spill decision, limiting of their approach.

𝑎0

�� !!
𝑏0

}} ""
𝑏1

|| $$
𝑎1

��zz
×1

��

×2

""
×3

��
×4
��

+5
��

×𝑅2
6

uu+7
��

×𝑅8

{{
+9

Figure 1: Data Flow
Graph of School-
book Multiplication

Our approach to improve the per-
formance of cryptographic code gen-
eration is similar in the sense that we
adapt combinatorial optimization and
treat code generation as a search prob-
lem. However, our strategy eliminates
their limitation by starting the opti-
mization process directly from the in-
termediate representation instead of
assembly code. This way, we can di-
rectly optimize register allocation and
memory spills.

An outline of our strategy is as follows. We start with an abstract
representation of the code as a data flow graph, with nodes be-
ing operations and edges representing values. This representation
could, for example, be obtained from a developer, extracted from
an existing implementation, or generated by a tool such as Fiat
cryptography [3]. Figure 1 shows an example of such a graph that
implements a 2-digit by 2-digit schoolbook multiplication. Numbers
are represented as digits in some radix 𝑅, and we want to multiply
𝑎 = 𝑎0 + 𝑅𝑎1 by 𝑏 = 𝑏0 + 𝑅𝑏1.

From this abstract representation we generate an initial arbitrary
implementation. Then, we “mutate” the code, measure its perfor-
mance, and keep a better version between the original and the

mutated ones. We repeat these processes for a certain pre-defined
computation budget. At the end of the process, we obtain a best-
performing implementation.

While the outline of the processes seems to be simple, there are
several challenges that we need to address. We need to transform
abstract operations into code. To do so, we define templates to
match operations with available instructions. Once we have an
initial implementation, we can now perform mutations to move to
an improved implementation.

We consider three types of mutations: using different available
instructions, rescheduling instruction sequences, and changing de-
cision of register to “spill” to memory. The first is achieved by using
multiple possible templates for each operation. A change of a tem-
plate is then a mutation. For the second, we move an operation
forward or backwards, while observing the implied dependencies
between operations. Finally, when the code uses more values than
the number of available registers, there is a need to store some val-
ues in memory. Thus, the third type of mutation chooses a different
register to store to memory. With this change, there is a need to fix
all future references to the spilled value.

5 CONCLUSIONS
To ensure security, cryptographic code tends to use simple con-
trol flow and memory access patterns. This simplicity creates an
opportunity for using GI for performance improvements.

REFERENCES
[1] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-

Xavier Standaert. 2015. On the Cost of Lazy Engineering for Masked Software
Implementations. In CARDIS. 64–81.

[2] Jay Bosamiya, Sydney Gibson, Yao Li, Bryan Parno, and Chris Hawblitzel. 2020.
Verified Transformations and Hoare Logic: Beautiful Proofs for Ugly Assembly
Language. In VSTTE. 106–123.

[3] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala.
2019. Simple High-Level Code for Cryptographic Arithmetic - With Proofs,
Without Compromises. In IEEE SP. 1202–1219.

[4] Matteo Frigo. 1999. A Fast Fourier Transform Compiler. In PLDI. 169–180.
[5] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A survey of mi-

croarchitectural timing attacks and countermeasures on contemporary hardware.
J. Cryptogr. Eng. 8, 1 (2018), 1–27.

[6] Yuval Ishai, Amit Sahai, and David A. Wagner. 2003. Private Circuits: Securing
Hardware against Probing Attacks. In CRYPTO. 463–481.

[7] Herbert Jordan, Peter Thoman, Juan Jose Durillo Barrionuevo, Simone Pellegrini,
Philipp Gschwandtner, Thomas Fahringer, and Hans Moritsch. 2012. A multi-
objective auto-tuning framework for parallel codes. In SC.

[8] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.
In CRYPTO. 388–397.

[9] Fernanda Kri and Marc Feeley. 2004. Genetic Instruction Scheduling and Register
Allocation. In SCCC. 76–83.

[10] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2007. Power analysis
attacks - revealing the secrets of smart cards. Springer.

[11] Ken Naono, Keita Teranishi, John Cavazos, and Reiji Suda (Eds.). 2010. Soft-
ware Automatic Tuning From Concepts to State-of-the-Art Results. Springer Sci-
ence+Business Media.

[12] Hannah Peeler, Shuyue Stella Li, Andrew N. Sloss, Kenneth N. Reid, Yuan Yuan,
and Wolfgang Banzhaf. 2022. Optimizing LLVM Pass Sequences with Shackleton:
A Linear Genetic Programming Framework. arXiv 2201.13305.

[13] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David R. White, and John R. Woodward. 2018. Genetic Improvement of Software:
A Comprehensive Survey. IEEE TEC 22, 3 (2018), 415–432.

[14] Madura A. Shelton, Lukasz Chmielewski, Niels Samwel, Markus Wagner, Lejla
Batina, and Yuval Yarom. 2021. Rosita++: Automatic Higher-Order Leakage
Elimination from Cryptographic Code. In CCS. 685–699.

[15] Madura A. Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus
Wagner, and Yuval Yarom. 2021. Rosita: Towards Automatic Elimination of
Power-Analysis Leakage in Ciphers. In NDSS.

	Abstract
	1 Introduction
	2 Related Work
	3 Defenses for Power Analysis
	4 Cryptographic Code Optimization
	5 Conclusions
	References

