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ABSTRACT
Many challenges arise in the application of Genetic Improvement
(GI) of Software to improve non-functional requirements of soft-
ware such as energy use and run-time. These challenges are mainly
centred around the complexity of the search space and the esti-
mation of the desired fitness function. For example, such fitness
function are expensive, noisy and estimating them is not a straight-
forward task. In this paper, we illustrate some of the challenges in
computing such fitness functions and propose a synergy between
in-vivo evaluation and machine learning approaches to overcome
such issues.

CCS CONCEPTS
• Hardware → Batteries; • Software and its engineering →
Software maintenance tools.
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1 INTRODUCTION
The challenges of optimising non-functional requirements of soft-
ware are mainly centred around the complexity of the search space
and the estimation of the desired fitness function [8]. A large num-
ber of fitness evaluations is required to explore the interesting
regions of the search space and to find near optimal solution sets.
However, real-world applications tend to have expensive fitness
evaluations and non-monotonic search spaces [1, 2].
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In addition, software can not be evaluated in a complete isolation,
noise impacts the fitness evaluation. This means the exact fitness
can not be determined. Re-sampling requires even more evaluations
which affects the evaluation budget considerably. The rest of this
paper discuses issues involving energy optimisation of software on
smart-phones and proposes two solutions.

2 ISSUES IN COMPUTING FITNESS VALUES
Current solutions to compute software energy use are by the mean
of Hardware (HW) meters which requires in-vivo evaluation [1]
or by utilising models that abstract away the real environment of
software [7]. The use of HW meters helps the optimiser to gain
accurate measurements, evaluate the generated variants in the
real environment and helps prevent overestimating variants at
the expense of the evaluation budget. On the other hand, model-
based fitness functions can speed up the evaluation process and
reduce the effects of noisy environments. However, the behaviour of
complex systems such as PCs and smart-phones can not effectively
be reduced into a simple model that describes the environment
in terms of only one dependent variable. The problem with the
current models is their simplicity, which defies the main purpose
of evaluating the performance (run-time and energy use) of real
software in realistic scenarios. For example, Li et al. [7] used a simple
model that describes the energy usage only in terms of displayed
colours on OLED screens while visiting web-pages. During the
validation process, the authors found loading and rendering of the
optimised web-pages differed from the optimisation process, even
though their approach did not involve optimising such activities.
This indeed impacted the outcomes of the optimisation since their
fitness functions did not account for the loading and rendering
phases. It is worth mentioning that OLED screen energy use was
also found to be non-linear with respect to each pixel’s colour [4].

In addition, non-determinism in the host system in which the
software is evaluated drastically affects the obtained fitness val-
ues [9]. This means a bad solution may sometimes outperform
good ones because the current state of the system which neither of
in-vivo and simple model-based fitness evaluation can handle. For
example, Burles et al. [3] used a byte-code based model to estimate
the energy use of Google Guava software. Interestingly, their re-
sults show disabling Just-in-Time compilation during optimisation
resulted in a slight improvement compared to enabling it during the
validation. This shows that simple models failed to show how well
the created solutions performed. Moreover, other factors can cause
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Figure 1: The system stats during running Rebound library
on Nexus6 running Android 7

non-deterministic behaviours of the system such as the memory
layout [9].

To illustrate hownon-determinism greatly canmislead the search
process on smart devices, we use a Nexus 6 platform running An-
droid 7 and the Rebound animation library developed by Face-
book as a case study. In our experiment, Rebound was executed
repeatedly in two different runs. Between the runs the device was
recharged and rebooted, and both runs had the same battery budget.
Figure 1 shows (left to right) the energy use of the device, Rebound
execution time, the number of background process, and the sys-
tem memory during Rebound execution. As can be seen, there are
serious issues that can drastically affect the optimiser. The initial
state of the system varied in both runs which can give advantages
to variants in the first run when optimising for energy or memory
usage. One may argue that rebooting is not essential in optimisa-
tion. However, there exist other system states affecting the energy
use in both runs. For example, at the end of the runs energy use
plunged. The execution time was also impacted in the second run
by a rapid increase. Interestingly, there is a significant difference
between the number of processes in both runs, which affected (not
primarily) the energy use and the execution time.

3 PROPOSED SOLUTIONS
The first proposed solution is to integrate machine learning ap-
proaches with GI. This helps learning complex models that take
into consideration the complexity of the host environment and
the non-linearity in energy usage. For example, the background
processes have repeated patterns that ML can help GI to overcome
their noise. Voltage drops and spikes can divert GI from interesting
search spots, nevertheless, ML learns the impact of such variation
and compensates for GI. Although memory usage can be argue that

it has a second-order correlation with non-functional properties
such as energy and run-time, its side effect reflected by garbage
collection (GC) can be enormous. GC could stop the world in some
virtual machines used in Android [11]. ML can also play an impor-
tant role to alleviate such potential deficiencies in fitness estima-
tion since it can effectively learn non-linearity of non-functional
properties usages such as the energy use of CPU [10]. It is worth
mentioning that the use of machine learning methods to model
energy consumption and other non-functional properties has been
used in the literature, our novelty is to employ it to optimise these
properties.

Our second proposal is a synergy between learned models and
in-vivo evaluations. The result of such a synergy is adaptive models
that get re-calibrated as the optimisation proceeds. During the opti-
misation, the in-vivo evaluation takes in place to evaluate selected
solutions and their samples are used to fine-tune the model. Solu-
tions can be clustered based on their genetic materials. Representa-
tives of those clusters are selected for the in-vivo evaluation. This
step is important to maintain the accuracy of the fitness function
since the search space can be non-monotonic [1, 2], and to mitigate
uncertainties in the host system (i.e. smart-phones). In addition,
this synergy does not completely eliminate the real behaviour of
the system which can exhibit unseen states. It is worth mentioning
that meta-models or surrogate functions have been used to solve
computationally expensive optimisation problems [5, 6]. Our nov-
elty is to utilise it in the domain of GI for software non-functional
properties.
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