Integrating HeuristicLab with Compilers and Interpreters for
Non-Functional Code Optimization

Daniel Dorfmeister
Software Competence Center Hagenberg
Hagenberg, Austria
daniel.dorfmeister@scch.at

ABSTRACT

Modern compilers and interpreters provide code optimizations dur-
ing compile and run time, simplifying the development process for
the developer and resulting in optimized software. These optimiza-
tions are often based on formal proof, or alternatively stochastic
optimizations have recovery paths as backup. The Genetic Compiler
Optimization Environment (GCE) uses a novel approach, which
utilizes genetic improvement to optimize the run-time performance
of code with stochastic machine learning techniques.

In this paper, we propose an architecture to integrate GCE, which
directly integrates with low-level interpreters and compilers, with
HeuristicLab, a high-level optimization framework that features a
wide range of heuristic and evolutionary algorithms, and a graph-
ical user interface to control and monitor the machine learning
process. The defined architecture supports parallel and distributed
execution to compensate long run times of the machine learning
process caused by abstract syntax tree (AST) transformations. The
architecture does not depend on specific operating systems, pro-
gramming languages, compilers or interpreters.

CCS CONCEPTS

+ Human-centered computing — Visualization toolkits; « Com-
puting methodologies — Machine learning algorithms; « Gen-
eral and reference — Experimentation; Performance; Evalu-
ation;

KEYWORDS

Optimization, Compiler, Interpreter, Distributed Computing, Archi-
tecture, Metaheuristics, HeuristicLab, Truffle, Graal

ACM Reference Format:

Daniel Dorfmeister and Oliver Krauss. 2020. Integrating HeuristicLab with
Compilers and Interpreters for Non-Functional Code Optimization. In Ge-
netic and Evolutionary Computation Conference Companion (GECCO °20
Companion), July 8-12, 2020, Canciin, Mexico. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3377929.3398103

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO 20, July 8-12, 2020, Cancun, Mexico

© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-7127-8/20/07...$15.00
https://doi.org/10.1145/3377929.3398103

Oliver Krauss
Johannes Kepler University Linz
Linz, Austria
University of Applied Sciences Upper Austria
Hagenberg, Austria
oliver.krauss@fh-hagenberg.at

1 INTRODUCTION

Genetic Compiler Optimization Environment (GCE) [5, 6] integrates
genetic improvement (GI) [9, 10] with execution environments, i.e.,
the Truffle interpreter [23] and Graal compiler [13]. Truffle is a
language prototyping and interpreter framework that interprets
abstract syntax trees (ASTs). Truffle already provides implementa-
tions of multiple programming languages such as Python, Ruby,
JavaScript and C. Truffle languages are compiled, optimized and
executed via the Graal compiler directly in the JVM. Thus, GCE
provides an option to generate, modify and evaluate code directly
at the interpreter and compiler level and enables research in that
area.

HeuristicLab [20-22] is an optimization framework that provides
a multitude of meta-heuristic algorithms, research problems from
literature and a graphical user interface allowing for statistical anal-
ysis by the user. HeuristicLab has support for genetic programming
(GP) used primarily for symbolic regression [4].

In this paper, we present an approach to integrate low-level exe-
cution environments with a high-level optimization framework, i.e.,
to enable integration of GCE and HeuristicLab. This allows GCE
to take advantage of the algorithms and graphical user interface
(GUI) provided by HeuristicLab, and thus an easy way to config-
ure, observe and evaluate the optimization process for the user. In
addition, HeuristicLab can integrate with execution environments
using GCE and use more complex grammars used by real-world
programming languages and their compilers. The architecture is
designed to be independent of specific programming languages and
their execution environments, and is operating system agnostic.

The primary purpose of this approach is to enable research into
code optimizations. Many of the architectural considerations deal
with the ability to distribute the executions on multiple machines,
and enable advantages available due to the direct compiler integra-
tion, such as knowledge about the code syntax, and the available
variables on stack and heap. While the approach can generally be
used for genetic programming as well as genetic improvement,
the primary target is optimizing existing code. Due to executing
compiled code as opposed to an interpreted DSL, non-functional
features — specifically run-time performance and memory usage
- can be measured and optimized while taking real-world condi-
tions, introduced by the hardware architecture and optimizations
by the compiler, into account. This is related primarily to the re-
search field of genetic improvement [9], but can also be applied
to fitness functions for generating new functionality with genetic
programming.

https://doi.org/10.1145/3377929.3398103
https://doi.org/10.1145/3377929.3398103

GECCO ’20, July 8-12, 2020, Cancun, Mexico

HeuristicLab Broker GCE
L J |
” TMQ uses
ero ¢
Truffle
Graal compiles—p languages
(e.g., MinicC)

Figure 1: Overview of the technologies used in the approach
described in this publication

The major advantages of this approach are achieved via the
combination of HeuristicLab and GCE. HeuristicLab provides a
multitude of algorithms and options to configure, monitor and eval-
uate optimization experiments not offered by GCE. GCE provides
the ability to generate and manipulate source code executed and
optimized directly in a compiler enabling research in that area, and
providing programming languages written in Truffle that have more
capabilities than achievable with the domain-specific languages
provided by HeuristicLab.

HeuristicLab includes several grammars for domain-specific
languages (DSLs), e.g., for symbolic regression and Robocode!,
which even uses the Java compiler for evaluation of solution can-
didates. There is no support for general purpose languages, e.g.,
C or JavaScript. As frameworks that support a wide range of real-
world programming languages already exist, e.g., Truffle [23], re-
implementing them for HeuristicLab is not reasonable. We show
how to use external language implementations in HeuristicLab
and, furthermore, how to use them for transformations of abstract
syntax trees (ASTs).

Transformation and evaluation of ASTs can be run-time inten-
sive, especially when accurately measuring run-time performance,
which makes parallel execution of the genetic operators, i.e., cre-
ation, crossover and mutation, important. We present a way to not
only execute AST transformations in parallel but also to distribute
them across multiple machines.

In summary, the contributions of this publication are:

e Integration of GCE, a low-level execution environment, with
HeuristicLab, a high-level optimization framework.

e An approach that is independent of operating systems, pro-
gramming languages and execution environments.

e Parallelism is supported for both conducting experiments
at the same time, and using several machines in one experi-
ment.

e Real-world programming languages and compilers can be
used rather than DSLs.

e AST transformations that are directly conducted and eval-
uated in the execution environment instead of a domain-
specific language implemented in the optimization frame-
work.

Daniel Dorfmeister and Oliver Krauss

2 BACKGROUND

The following section gives an overview of the HeuristicLab frame-
work, the ZeroMQ messaging library, the Graal compiler, the Truffle
interpreter, the Genetic Compiler Optimization Environment (GCE)
and the MiniC language. Figure 1 shows how these technologies
interact with each other. In the context of this work, these tech-
nologies are used as follows:

e HeuristicLab provides a wide range of heuristic and evolu-
tionary algorithms, which can be configured easily via the
provided graphical user interface (GUI).

e ZeroMQ is a light-weight messaging library used for com-
munication between HeuristicLab and GCE.

e Graal is a compiler for optimized languages. It is a highly
optimizing just-in-time (JIT) compiler that is available in
OpenJDK since Java 9 and is used to compile Truffle abstract
syntax trees (ASTs) from byte code to machine code.

o Truffle is the interpreter framework that the optimized lan-
guages are written in. It can interpret AST nodes on the JVM
without the use of Graal, albeit with a lower performance.

e The Genetic Compiler Optimization Environment (GCE) in-
tegrates with Truffle to optimize non-functional features of
a given (sub-)AST, such as run-time performance or code
size. It also supports integration with external optimization
frameworks.

e MiniC is a simple Truffle language and subset of ANSI C11
used to showcase the capabilities of GCE.

2.1 HeuristicLab

HeuristicLab [20-22] is an extensible optimization framework for
heuristic and evolutionary algorithms featuring a GUIL The GUI
is partially shown in Figure 2, where a grammar for genetic pro-
gramming and the if symbol with its allowed child symbols and
configuration options can be seen.

HeuristicLab is implemented in C# an thus requires the NET
Framework or Mono. However, HeuristicLab is able to use another
application for evaluation of solution candidates [12]. By using
the HL3 External Evaluation Java library?? in a Java application,
the evaluation of a solution candidate can be implemented easily.
This library and the ExternalEvaluationProblemin HeuristicLab
handle the inter-process communication. Though, operators beside
the evaluator, e.g., the crossover and the mutation operator, cannot
make use of the Java application.

The most flexible way to extend HeuristicLab are plugins, which
allow to add algorithms, problems, and operators. In this way, com-
munication between HeuristicLab and the Java application is possi-
ble in all operators and even before a single operator is executed,
e.g., to conduct configuration tasks. Thus, the Java application can
send a list of supported options, which can be configured by the
user before starting the algorithm. Extension via a plugin is also
the basis for our approach.

!https://robocode.sourceforge.io/
https://dev.heuristiclab.com/trac.fcgi/wiki/Documentation/Howto/
OptimizeExternal Applications
3https://dev.heuristiclab.com/trac.fegi/export/HEAD/misc/documentation/Tutorials/
OptimizingExternal ApplicationswithHeuristicLab.pdf

https://dev.heuristiclab.com/trac.fcgi/wiki/Documentation/Howto/OptimizeExternalApplications
https://dev.heuristiclab.com/trac.fcgi/wiki/Documentation/Howto/OptimizeExternalApplications
https://dev.heuristiclab.com/trac.fcgi/export/HEAD/misc/documentation/Tutorials/Optimizing External Applications with HeuristicLab.pdf
https://dev.heuristiclab.com/trac.fcgi/export/HEAD/misc/documentation/Tutorials/Optimizing External Applications with HeuristicLab.pdf

Integrating HeuristicLab with Compilers and Interpreters

Symbols

RENES
V'lg dispatch A
vig roct
[evaltoct
_..v‘ig cC
A% loop-body

Allowed Child Symbols

=] [| [¢ |

Symbol Details
Name: |if | U=

Initial frequency: | 1 |

[expr

] ""Lg allocate-amay-ocal
- A% write-amaydocal
+-[14 write-amay-global

o2 v lnmml
< >

Minimum Arity: |3 |

Maximum Arity |3 |

Enabled

Show Sample Tree

Figure 2: A part of HeuristicLab’s GUI, representing the
MiniC grammar including its symbols (left) and details of
the if symbol (right), such as allowed child symbols and a
usage frequency

HeuristicLab Hive [17] enables distributed execution of arbitrary
jobs, e.g., algorithm executions or single solution evaluations. By
installing the Hive Slave software on a computer it can be utilized to
execute Hive jobs. If external evaluation should be used, additional
setup of the application executing the evaluation is required on
every computer. In addition, the user is responsible to assign certain
jobs only to computers supporting the required functionality as the
Hive Server, which distributes the jobs to computers, does not have
a deeper understanding of the nature of the jobs. As neither of these
restrictions are feasible, HeuristicLab Hive will not be considered
henceforth.

2.2 ZeroMQ

As the operations in meta-heuristic algorithms that deal with manip-
ulating ASTs and evaluating them can be seen as events, a message
queuing approach was selected as basis for communication. Ze-
roMQ [2] is a light-weight messaging library, which supports a
wide range of programming languages and operating systems. This
is the reason it was chosen as core technology for this approach.

The API of ZeroMQ uses a range of socket types, e.g., the REQ,
REP, DEALER, and ROUTER sockets. A basic pattern is the request-
reply pattern, which uses the REP and the REQ sockets. The client
uses the REQ socket to send requests to a REP socket and receive
replies in an alternating way. If a REQ socket is connected to multiple
REP sockets, round-robin scheduling is used. The DEALER/ROUTER
sockets are asynchronous versions of the REQ/REP sockets, respec-
tively, they use fair queuing for incoming messages.

The ZeroMQ socket types can be combined to form the Paranoid
Pirate pattern [2], which can be seen in Figure 3. The Paranoid
Pirate pattern can be used for robust reliable queuing. A naive
broker is introduced to manage multiple workers and perform load
balancing. New workers can register at any time. Workers send
heartbeats to the broker on a regular basis, so the broker can remove
them from the queue when they stop. The clients reconnect to the
broker and resend a request if no response was received within a

GECCO ’20, July 8-12, 2020, Cancun, Mexico

Client Client Client
Retry Retry Retry
_ REQ) | REQ J (RQ]
A y A
'_"_\

ROUTER
Queue
Heartbeat
(FOUTER_]

7'y
A\ 4 A 4 \ 4
DEALER | [DEmer | [DEALER
Heartbeat Heartbeat Heartbeat
Worker Worker Worker

Figure 3: The Paranoid Pirate pattern [2] is used for commu-
nication between the client (HeuristicLab) and the worker
(part of GCE), both connecting to the broker (center)

timeout period, which allows the broker to restart after a failure —
no messages are lost.

Due to the advantages the Paranoid Pirate pattern provides in
consideration to distributed parallel architectures and the ability to
deal with nodes that become unavailable for any reason, it is utilized
as a basis for communication in the presented architecture. In our
approach the pattern has been adapted to add logic to the broker
dealing with distribution of workloads according to the workers’
capabilities.

2.3 Graal

Graal [13] is an aggressively optimizing just-in-time (JIT) compiler.
It is written in Java as part of the OpenJDK project. It compiles
Truffle ASTs in byte code to machine code, and features several
optimizations. Some of these optimizations are speculative and
can be undone if necessary. This is called deoptimization. Graal
uses an intermediate representation (IR), which is a directed graph
containing control and data flow. The IR can be viewed using the
Ideal Graph Visualizer (IGV). Graal and IGV are open source and
provide a basis for research in compiler optimizations. [18, 19]

2.4 Truffle

Truffle [23] is an open-source self-optimizing interpreter framework
for prototyping programming languages. It uses abstract syntax
trees (ASTs), wherein language concepts (conditionals, loops, vari-
ables, ...) are represented as nodes. Truffle does not feature a lexer,
parser or linker, and only contains the options for implementing
AST nodes. These nodes can be executed in any JVM. Each node
in a Truffle language consists of a generic implementation and
specializations for every data type this node supports, enabling
dynamic typing and a self-optimization mechanism that rewrites

GECCO ’20, July 8-12, 2020, Cancun, Mexico

Root operator
(references all operators in language)

<

>

A A A l
B

I

IntLiteral If While .
depth: 1 depth: 2..* depth: 2..* . |
width: 1 width: 2-3 width: 1..*

run-time: 1 run-time: 15 run-time: 30

I M i |
I ||| ||| |
I complex.: none | | complex.: branch | | complex.: loop I
I || ||| |
I M || |

conditlori bod

VarRead

condition

IntLit. | |varRead then / else

L)L ™

Figure 4: Syntax graph. Nodes (grey) represent language con-
cepts, and contain information about them (white) utilized
in the genetic operators. The edges to child nodes represent
the syntax. [7]

these nodes using specialization and generalization. Truffle inte-
grates with Graal for high-performance compilation and execution.
As they are executed in the JVM, Truffle languages provide several
features for developers such as garbage collection. Truffle currently
provides several open and closed source guest language implemen-
tations, including Python, Ruby, JavaScript and C. [1, 24]

2.5 Genetic Compiler Optimization
Environment

The Genetic Compiler Optimization Environment (GCE) [5, 6] is
an optimizer framework that directly integrates with the Truffle
framework. GCE itself is language agnostic as well as algorithm
agnostic. GCE is designed to use genetic improvement (GI) [10] to
optimize individual AST nodes in a Truffle language. GCE analyzes
any given Truffle language, collecting the following information:

e Node classes existing in the language
o Relationships between these node classes
o Grouping node classes into terminals and non-terminals
- Non-terminals are assigned a minimal depth and width
required to create a minimally valid AST.
o Specific behaviour is analyzed as well
— Allocation, read and write access to stack or heap
— Branching behavior
Looping behavior
Calls to other functions

The above information is used to automatically create a syntax
graph that can be utilized in all major genetic operators, i.e., cre-
ation, crossover and mutation. This syntax graph (see Figure 4)
creates or selects ASTs according to a specific request (size, ex-
pected run-time performance, ...) and can only create ASTs that
can compile in the target language. Not all of these ASTs are useful
as they can still contain endless loops, dead code (i.e., code that
is never executed), and other issues. The major advantage is the
removal of uncompilable ASTs, which otherwise can amount to
80 % of generated solutions [14-16]. The syntax graph also provides
an abstraction layer of any specific Truffle language. [7]

Daniel Dorfmeister and Oliver Krauss

GCE also provides a knowledge base, storing information on
conducted experiments and executed ASTs, such as the recorded
fitness (size, run-time performance, ...) and the outcome of test cases.
This information is furthermore used in a pattern mining approach
to identify recurring AST optimizations, and automatically adapt
the syntax graph with further restrictions against execution errors.
This part of the framework is not utilized in this work. [8]

While GCE does provide an internal optimization suite with
several genetic algorithms and genetic operators, it also provides
concepts to integrate external optimization frameworks. These
concepts allow the utilization of the syntax graph in external frame-
works and a method for evaluating a given AST and fitness function
directly with Truffle and Graal. GCE was implemented primarily to
enable research into the improvement of non-functional require-
ments of software, such as run-time performance or memory use.
For this purpose it provides capabilities to accurately measure these
requirements, and utilize them in a fitness function in external
systems. This enables the utilization of the major advantages of
GCE, and provides the basis for this work.

The work presented in this publication aims to couple GCE with
HeuristicLab as GCE does not provide a user interface and the
convenience of configuration, monitoring the optimization pro-
cess and evaluating the results that are provided by HeuristicLab.
Additionally, the internal optimization suite contains only genetic
algorithms, whereas HeuristicLab provides a multitude of other
search-based algorithms and configuration options.

Accurate run-time performance measurement is quite costly as
the Graal compiler requires a warm-up of about 100.000 executions
and another 100.000 executions are needed to minimize side effects
in the run-time measurement [6]. For this reason, the architecture
presented in this publication is designed to enable distributing
experiments over multiple GCE instances at the same time.

2.6 MiniC

MiniC is a test language specifically developed to test and integrate
GCE with Truffle. It is a subset of the ANSI C11 standard of C [3].
At the time of writing it is primarily missing structs, pointers and
unsigned data types.

The language currently consists of 169 node classes of which
30 are terminals. These classes can be used as non-terminal and
terminal symbols in a GI experiment with GCE, and via the work
we present here, HeuristicLab. A Coco/R-generated parser [11] is
used to transform MiniC code into Truffle AST nodes.

In the context of this work MiniC is used to showcase the code
and ASTs that can be optimized with the architecture.

3 ARCHITECTURE

The architecture of the approach we present consists of three com-
ponents: HeuristicLab, Broker and Genetic Compiler Optimization
Environment (GCE).

Section 3.1 gives an overview of the individual components,
section 3.2 explains the broker and messaging infrastructure. Sec-
tion 3.3 describes the HeuristicLab plugin and section 3.4 shows
the integration of the Genetic Compiler Optimization Environment
(GCE) with interpreter and compiler in detail.

Integrating HeuristicLab with Compilers and Interpreters

GECCO ’20, July 8-12, 2020, Cancun, Mexico

-

Genetic Compiler Optimization Environment (GCE)

Configuration
x K
: Minic » Truffle APT
—n-| Worker i
l JavaScript Graal VM

GCE Optimizer

HeuristicLab
Plugin
Algorithm [€—— GCE Algorithm \
n,
v
1
\O)— Broker
GCE Problem
2 \ 2
Selector GCE Operators
v
i
N GCE Encoding
Knowledge
Base

Key:

Execution A pata Added
Relationship ,» Relationship | Components

Modified
Components

Unmodified
Components

Figure 5: The architecture of the approach to combine HeuristicLab and GCE comprising a HeuristicLab plugin, a broker

implemented using ZeroMQ and the worker as part of GCE

3.1 Overview

Figure 5 shows the defined architecture. The broker handles the
communication between the client, HeuristicLab, and the workers.

The code required by HeuristicLab to communicate with the
broker is contained within a plugin that extends and uses several
classes of HeuristicLab. HeuristicLab can execute multiple algo-
rithms in parallel, they can all be connected to the broker at the
same time.

The workers, which are part of GCE, also connect to the broker.
They can send configuration options to the clients, and use the GCE
Optimizer to execute AST transformations. Both the configuration
and the GCE Optimizer access Truffle languages, e.g., MiniC and
JavaScript, which rely on the Truffle API and the Graal VM.

3.2 Broker and Messaging Infrastructure

ZeroMQ [2] provides a message queue but does not require a dedi-
cated broker. Our approach introduces a light-weight broker that
considers different worker capabilities for handling distributed pro-
cessing. This could also have been done in HeuristicLab directly
but was chosen to be implemented in a standalone broker to enable
future integration with other optimization frameworks, in addition
to allowing load balancing when multiple HeuristicLab instances
run different algorithms at the same time.

Figure 6 shows the sequence flow of messages for a genetic algo-
rithm started in HeuristicLab. First, the algorithm sends messages
to initialize a worker and create and evaluate an initial population.
Second, the main loop of the genetic algorithm starts, which selects
parents that should be crossed, sends a CrossoverRequest (see
Listing 1) to the broker, which forwards the message to an appro-
priate worker based on the algorithm run identifier. The worker
looks up the parent solutions in the knowledge base, performs the
crossover and sends a CrossoverResponse message to the broker,
which forwards the message to the HeuristicLab instance that sent
the corresponding request. The mutator and evaluator, which are
also part of the main loop, send messages according to the crossover.

Finally, before the algorithm ends, it sends a StopAlgorithm mes-
sage to deinitialize the worker.

The Paranoid Pirate pattern was adapted slightly to reflect the
nature of the workers described in subsection 3.4. When a worker
registers at the broker, it also sends the programming languages it
supports and whether it supports the provision of the configuration

Genetic Algorithm Run
isti GCE S
HeuristicLab Broker Knowledge
Worker
Base
l send StartAlgorithm, Create, Evaluate messages Dﬁ
1
loop
select |\
parents
send request
(run ID, parent IDs) 1
>
select
worker
forward request ! :
P look up parent IDs;
parent trees
crossover [\
send response parent trees
\ (child ID, child tree
forward response
l send Mutate, Evaluate messages Dﬁ
T
l send StopAlgorithm message Dﬁ
o<

Figure 6: Sequence flow of messages between the compo-
nents during the run of a genetic algorithm in HeuristicLab
focusing on the crossover operator

GECCO ’20, July 8-12, 2020, Cancun, Mexico

options described in subsection 3.3. This allows the broker to route
requests to a subset of the registered workers that support the
operation requested by the client. Also, the client sends a unique
identifier with every message related to an algorithm run, as the
worker must be initialized for a specific algorithm run and must
know, which subsequent messages are associated with a specific
algorithm run as the source code is compiled specifically per run.

ZeroMQ messages consist of one or more frames. Data that is
relevant to the broker for routing is sent in individual frames. The
last frame contains a payload only relevant to the worker, which
is ignored by the broker. Thus, the broker can handle any payload
and only must be adapted when the protocol changes.

Protocol Buffers* are used for the payload of the messages, as
they are light-weight and work with most relevant programming
languages. The Any message type is used to wrap all Protocol Buffers
messages, which adds a unique identifier that can be used by the
worker to identify the type of request to handle. Listing 1 shows a
request by the crossover operator, which contains unique identifiers
for both parent solutions to crossover, and the dedicated response,
which contains a unique identifier of the child solution created by
the worker and the child solution represented by the root node of
an AST. Each node has a unique identifier, a symbol represented by
a unique identifier and a list of child nodes, which may be empty.

Listing 1: Protocol Buffers message definitions for the
crossover operator

1 syntax = "proto3";

3 message CrossoverRequest {
4 int64 parentSolutionId@

5 int64 parentSolutionIdl

6}

1; // first parent
2; // second parent

s message CrossoverResponse {
9 int64 childSolutionId = 1; // child solution

10 TreeNode childSolution = 2; // child's root node
1}

13 message TreeNode {

14 int6é4 id = 1; // the ID of the node

15 int64 symbolId = 2; // the ID of the node's symbol
16 repeated TreeNode children = 3; // child nodes
17}

3.3 HeuristicLab Plugin

HeuristicLab has out-of-the-box support for tree-based genetic
programming [4], which can be extended by creating a HeuristicLab
plugin.

As shown in Figure 5, the plugin we created for this publication
consists of four logical groups of classes, i.e., (1) an algorithm that
only handles basic communication and calls another algorithm to
perform machine learning, (2) a problem definition that retrieves
configuration options and lets the user configure operators and
further settings, (3) several operators that use GCE to perform op-
erations on solution candidates, and (4) classes to represent the
encoding of the solution candidates, i.e., symbols, trees, and gram-
mars.

“https://developers.google.com/protocol-buffers/

Daniel Dorfmeister and Oliver Krauss

Figure 7: Abstract syntax tree of the Fibonacci algorithm
as rendered by HeuristicLab (corresponding source code see
Listing 2)

When the algorithm is started, it sends a configuration and ba-
sic data about the problem that should be optimized, e.g., which
programming language is required and the source code, so a group
of workers capable of handling the problem can be identified by
the broker and selected for subsequent requests related to the same
problem. The data is also used by the workers for initialization, for
details, see subsection 3.4.

The problem definition is used by the contained algorithm to
configure itself and the utilized operators. The contained algorithm
can be one of the algorithms that comes with HeuristicLab, e.g., a
genetic algorithm or an evolution strategy, an algorithm defined in
the user interface of HeuristicLab, or an algorithm that is added by
a plugin.

When the algorithm finishes, is stopped by the user, or aborted
due to an unrecoverable error, the broker is informed. The broker
in turn messages all workers involved in the algorithm run, so they
can clear their cache of the source code and experiment context.

Listing 2: MiniC sample code that is optimized by Heuristi-
cLab and executed by GCE (corresponding AST see Figure 7)

1 int fibonacci(int n) {

2 int i, now, prev, next;
3 prev = 0;
4
5

now = 1;
i =0;
6 while (i < n) {
7 next = now + prev;
8 prev = now;
9 now = next;
10 i=1i+1;
11 }
12 return prev;

13 3}

Integrating HeuristicLab with Compilers and Interpreters

The problem definition, when created, retrieves configuration
options from a worker. These configuration options consist of the
following categories:

o A set of supported programming languages:

— Languages are represented by their grammar, the symbols
contained are grouped for clarity.

- Each symbol has a unique identifier, a name and descrip-
tion, a minimum and maximum arity and a list of possible
child symbols. Symbols with a maximum arity of zero are
terminal symbols.

— The user can configure the arity, the initial frequency on
the population, and whether a symbol should be used at
all, as shown in Figure 2.

o A set of operators per operator type:

— The user can select which operator implementation to use
for, e.g., solution creation or mutation, and configure the
parameters of the operator.

— The operators can have primitive parameters, e.g., simple
text fields for strings or integers.

— Complex parameters are also supported, where the user
can select one or more options from a predefined list of
values, which can be configurable themselves.

o Additional parameters: This works like the configuration of
operators, without the necessity of parameters being related
to an operator. These parameters can also be grouped.

When the algorithm is started, the configuration of the language,
the operators and the additional parameters are collected and sent
to the worker. The problem also defines a set of test cases, a small
program written in the selected language, together with input and
corresponding output values. Listing 2 shows an example of a test
program written in the MiniC language.

The operators are derived from the respective symbolic expres-
sion tree operator, e.g., the crossover is derived from the class
SymbolicExpressionTreeCrossover, as shown in Listing 3. The
only significant additions are a lookup parameter to determine the
identifier of the current algorithm run, which is needed by the work-
ers, and an override for the method that performs the operation:
First, the Protocol Buffers message for the request is constructed,
which may contain data about which ASTs to transform if applica-
ble. Second, the request is sent together with the current algorithm
run identifier, and the operator waits for a response. Last, the re-
sponse message is interpreted and transformed to its HeuristicLab
counterpart — Figure 7 shows an AST generated by the worker and
rendered by HeuristicLab. Hence, adding operators that may be
needed by other algorithms, e.g., particle swarm optimization, is
viable.

The classes needed to encode solution candidates, i.e., trees, are
derived from existing classes in HeuristicLab. The only addition is
the support for identifiers in symbols and trees. Symbols are distin-
guished by their name, which makes adding several symbols with
the same name but different allowed child symbols to a grammar
impossible. As this happens frequently in real world programming
languages (e.g., multiple overrides for mathematical operators de-
pending on the related data types), we had to create a new grammar
storing symbols by their identifiers.

GECCO ’20, July 8-12, 2020, Cancun, Mexico

Listing 3: Crossover that communicates with a GCE worker
using the Protocol Buffers messages from Listing 1, as im-
plemented in the HeuristicLab plugin (simplified)

1 // attributes, constructors etc. omitted

2 public class GCECrossover

3 SymbolicExpressionTreeCrossover {

4 // looks up the value of the param. in the problem
5 private readonly ILookupParameter<StringValue>

6 runIdParam;

8 public override ISymbolicExpressionTree Crossover
9 (IRandom random,

10 ISymbolicExpressionTree parento,

11 ISymbolicExpressionTree parentl) {

12 // instantiate Protocol Buffers message

13 CrossoverRequest request =

14 new CrossoverRequest {

15 ParentSolutionId® = ((GCETree) parent®).Id,
16 ParentSolutionIdl = ((GCETree) parentl1).Id
17 3

18 // Send extension method implements

19 // Paranoid Pirate pattern client

20 CrossoverResponse response =

21 request.Send<CrossoverResponse >(

22 runIdParam.ActualValue.Value);

23 // ToSymbolicExpressionTree extension method

24 // transforms Protocol Buffers message to a tree
25 GCETree child = response.ChildSolution

26 .ToSymbolicExpressionTree(

27 response.ChildSolutionId,

28 (GCEGrammar) grammar);

29 return child;

HeuristicLab allows to execute multiple algorithms at the same
time, hence serving as multiple clients from the broker’s perspective.
HeuristicLab also has a parallel engine, which can be used instead
of the default sequential engine. The parallel engine can execute
multiple operators at the same time, which typically accelerates an
algorithm run by a significant factor depending on the degree of
parallelism and available workers.

3.4 Worker

A specialized configuration worker module in GCE is responsible
for publishing available options to the broker. This concerns the
grammar of the available Truffle languages, including all informa-
tion required by the HeuristicLab problem definition, e.g., maximum
arity and allowed child symbols. It also publishes implemented oper-
ators, and their possible configuration options, which are useful to
HeuristicLab. For example, this includes different creation strategies
using the syntax graph provided by GCE.

A separate worker module in GCE connects to the broker. The
worker module publishes its available Truffle languages with an
identification matching the published languages from the configu-
ration module. The worker module passively awaits requests from
the HeuristicLab plugin. Whenever an experiment is started on the
worker, it parses the code submitted in the request, and initializes
the language and program context in Truffle.

Whenever creation, crossover or mutation requests are submit-
ted in an algorithm run, the worker module adapts the AST in
the program context according to the specifications utilizing the
GCE Optimizer. Due to this, the generated ASTs are always able
to compile, and are valid within the overall program context. This

GECCO ’20, July 8-12, 2020, Cancun, Mexico

includes access to global and local variables available outside of
the considered (sub-)AST. The worker stores generated AST nodes
in the knowledge base (see Figure 5). This allows later analysis of
node classes for modifying the occurring frequency in solutions
in HeuristicLab. Storing ASTs in the knowledge base also enables
using distributed workers without transmitting entire ASTs in the
messages between HeuristicLab and GCE.

The worker also conducts the evaluation, according to all re-
quirements of the fitness function selected in HeuristicLab. The
following features are currently provided:

Results of all defined test cases

The run-time performance benchmarked after optimization
with Graal

The estimated run-time performance as alternative to bench-
marking with Graal

The code size in Truffle (the amount of AST nodes)

4 CONCLUSION AND OUTLOOK

In this paper, we present a novel architecture to integrate low-
level execution environments, provided by GCE, with a high-level
optimization framework, i.e., HeuristicLab. This is achieved by
extending HeuristicLab with a plugin that can communicate with a
broker that is based on ZeroMQ, and by adding a worker to GCE,
which can handle the requests of the HeuristicLab plugin. The goal
is to enable research into code optimization or generation while
taking the real world behavior of a compiler into account.

This approach has the advantage that the algorithms and GUI
provided by HeuristicLab can be used while also being able to use
actual execution environments and real-world programming lan-
guages without having to re-implement them in HeuristicLab. This
also enables research into compiler and interpreter optimizations
via HeuristicLab. Because of the distributed architecture and the
resulting communication between HeuristicLab, broker and work-
ers, there is some overhead in the execution. There also is need
for specific implementation as the genetic operators provided by
HeuristicLab cannot be used and must be implemented in GCE
to utilize its syntax graph and fully utilize its functionality. The
overhead in execution time is mitigated by supporting parallel AST
transformations and distributing them across multiple machines.

The approach uses technologies that are supported on a wide
range of operating systems and programming languages, e.g., Ze-
roMQ and Protocol Buffers, thus being easy to extend to compilers
besides Graal, which should be considered in the future. Also, GCE
currently only contains genetic operators, thus only supporting
genetic algorithms. Adding support for operators required by fur-
ther algorithms implemented in HeuristicLab, e.g., particle swarm
optimization, would allow to take full advantage of the integration
with HeuristicLab.

ACKNOWLEDGEMENTS

The work described in this paper was done within the research
project Emergency Detection in Elevator Networks (EDEN), funded
by the Austrian Research Promotion Agency (FFG) under the Gen-
eral Programme, project number 866124.

Daniel Dorfmeister and Oliver Krauss

REFERENCES

[1] Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Wiirthinger, and
Hanspeter Mossenbock. 2015. High-performance Cross-language Interoper-
ability in a Multi-language Runtime. SIGPLAN Not. 51, 2 (Oct. 2015), 78-90.
https://doi.org/10.1145/2936313.2816714

[2] Pieter Hintjens. 2013. ZeroMQ (1 ed.). O’Reilly Media, Inc.

[3] ISO. 2011. ISO/IEC 9899:2011 Information technology — Programming languages
— C. International Organization for Standardization, Geneva, Switzerland. 683
(est.) pages. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=57853

[4] Michael Kommenda, Gabriel Kronberger, Stefan Wagner, Stephan Winkler, and

Michael Affenzeller. 2012. On the Architecture and Implementation of Tree-

Based Genetic Programming in HeuristicLab. In Proceedings of the 14th Annual

Conference Companion on Genetic and Evolutionary Computation (GECCO ’12).

Association for Computing Machinery, New York, NY, USA, 101-108. https:

//doi.org/10.1145/2330784.2330801

Oliver Krauss. 2017. Genetic Improvement in Code Interpreters and Compilers.

In Proceedings Companion of the 2017 ACM SIGPLAN International Conference

on Systems, Programming, Languages, and Applications: Software for Humanity

(SPLASH Companion 2017). Association for Computing Machinery, New York,

NY, USA, 7-9. https://doi.org/10.1145/3135932.3135934

Oliver Krauss. 2018. Towards a Framework for Stochastic Performance Optimiza-

tions in Compilers and Interpreters: An Architecture Overview. In Proceedings of

the 15th International Conference on Managed Languages & Runtimes (ManLang

’18). Association for Computing Machinery, New York, NY, USA, Article Article

9,7 pages. https://doi.org/10.1145/3237009.3237024

[7] Oliver Krauss, Hanspeter Mossenbock, and Michael Affenzeller. [n.d.]. Towards
Knowledge Guided Genetic Improvement. In 2020 IEEE/ACM International Work-
shop on Genetic Improvement (GI) (2020-10).

[8] O. Krauss, H. Méssenbock, and M. Affenzeller. 2019. Mining Patterns from

Genetic Improvement Experiments. In 2019 IEEE/ACM International Workshop on

Genetic Improvement (GI). 28-29.

William B. Langdon. 2015. Genetic Improvement of Software for Multiple Ob-

jectives. In Search-Based Software Engineering, Marcio Barros and Yvan Labiche

(Eds.). Springer International Publishing, Cham, 12-28.

[10] W.B.Langdon and M. Harman. 2015. Optimizing Existing Software With Genetic

Programming. IEEE Transactions on Evolutionary Computation 19, 1 (Feb 2015),

118-135. https://doi.org/10.1109/TEVC.2013.2281544

Hanspeter Méssenbock, Markus Loberbauer, Albrecht W68, and University of

Linz. 2018. The Compiler Generator Coco/R. http://www.ssw.uni-linz.ac.at/Coco/

Last Accessed - 2020-04-17.

Miguel Mujica Mota, Idalia Flores, and Daniel Guimarans. 2015. Applied

Simulation and Optimization: In Logistics, Industrial and Aeronautical Practice.

https://doi.org/10.1007/978-3-319-15033-8

Open]DK. 2020. Graal Project. http://openjdk.java.net/projects/graal/ Last

Accessed - 2020-04-17.

Michael Orlov and Moshe Sipper. 2009. Genetic Programming in the Wild:

Evolving Unrestricted Bytecode. In Proceedings of the 11th Annual Conference on

Genetic and Evolutionary Computation (GECCO "09). ACM, New York, NY, USA,

1043-1050. https://doi.org/10.1145/1569901.1570042

M. Orlov and M. Sipper. 2011. Flight of the FINCH Through the Java Wilderness.

IEEE Transactions on Evolutionary Computation 15, 2 (April 2011), 166-182. https:

//doi.org/10.1109/TEVC.2010.2052622

Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer. 2014.

Using Genetic Improvement and Code Transplants to Specialise a C++ Program

to a Problem Class. Springer Berlin Heidelberg, Berlin, Heidelberg, 137-149.

https://doi.org/10.1007/978-3-662-44303-3_12

Andreas Scheibenpflug, Stefan Wagner, Gabriel K. Kronberger, and Michael

Affenzeller. 2012. HeuristicLab Hive - An Open Source Environment for Parallel

and Distributed Execution of Heuristic Optimization Algorithms. In Ist Australian

Conference on the Applications of Systems Engineering ACASE’12, Robin Braun

and Zenon Chaczko (Eds.). Sydney, Australia, 63-65. http://research.fh-ooe.at/

en/publication/3064

[18] Doug Simon, Christian Wimmer, Bernhard Urban, Gilles Duboscq, Lukas Stadler,

and Thomas Wiirthinger. 2015. Snippets: Taking the High Road to a Low

Level. ACM Trans. Archit. Code Optim. 12, 2, Article 20 (June 2015), 20:20:1—

20:20:25 pages. https://doi.org/10.1145/2764907

Lukas Stadler, Gilles Duboscq, Hanspeter Méssenbdck, and Thomas Wiirthinger.

2012. Compilation Queuing and Graph Caching for Dynamic Compilers. In

Proceedings of the Sixth ACM Workshop on Virtual Machines and Intermediate

Languages (VMIL ’12). ACM, New York, NY, USA, 49-58. https://doi.org/10.1145/

2414740.2414750

Stefan Wagner. 2009. Heuristic Optimization Software Systems - Modeling of Heuris-

tic Optimization Algorithms in the HeuristicLab Software Environment. Doctor

Technicae. Johannes Kepler University, Linz, Austria.

S. Wagner, G. Kronberger, A. Beham, M. Kommenda, A. Scheibenpflug, E. Pitzer,

S. Vonolfen, M. Kofler, S. Winkler, V. Dorfer, and M. Affenzeller. 2014. Architecture

[5

[6

—
)

[11

[12

=
&

[14

[15

[16

[17

[19

™
=

[21

https://doi.org/10.1145/2936313.2816714
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
https://doi.org/10.1145/2330784.2330801
https://doi.org/10.1145/2330784.2330801
https://doi.org/10.1145/3135932.3135934
https://doi.org/10.1145/3237009.3237024
https://doi.org/10.1109/TEVC.2013.2281544
http://www.ssw.uni-linz.ac.at/Coco/
https://doi.org/10.1007/978-3-319-15033-8
http://openjdk.java.net/projects/graal/
https://doi.org/10.1145/1569901.1570042
https://doi.org/10.1109/TEVC.2010.2052622
https://doi.org/10.1109/TEVC.2010.2052622
https://doi.org/10.1007/978-3-662-44303-3_12
http://research.fh-ooe.at/en/publication/3064
http://research.fh-ooe.at/en/publication/3064
https://doi.org/10.1145/2764907
https://doi.org/10.1145/2414740.2414750
https://doi.org/10.1145/2414740.2414750

Integrating HeuristicLab with Compilers and Interpreters

[22

[23

]

and Design of the HeuristicLab Optimization Environment. Springer International
Publishing, Heidelberg, 197-261. https://doi.org/10.1007/978-3-319-01436-4_10
Stefan Wagner, Stephan Winkler, Erik Pitzer, Gabriel Kronberger, Andreas Beham,
Roland Braune, and Michael Affenzeller. 2007. Benefits of Plugin-Based Heuristic
Optimization Software Systems. In Computer Aided Systems Theory — EUROCAST
2007, Roberto Moreno Diaz, Franz Pichler, and Alexis Quesada Arencibia (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 747-754.

Christian Wimmer and Thomas Wiirthinger. 2012. Truffle: A Self-optimizing
Runtime System. In Proceedings of the 3rd Annual Conference on Systems, Pro-
gramming, and Applications: Software for Humanity (SPLASH ’12). ACM, New

[24]

GECCO ’20, July 8-12, 2020, Cancun, Mexico

York, NY, USA, 13-14. https://doi.org/10.1145/2384716.2384723

Thomas Wiirthinger, Christian Wimmer, Andreas W68, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to Rule Them All In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (Onward! 2013). ACM, New York, NY, USA, 187-204. https://doi.org/10.
1145/2509578.2509581

https://doi.org/10.1007/978-3-319-01436-4_10
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581

	Abstract
	1 Introduction
	2 Background
	2.1 HeuristicLab
	2.2 ZeroMQ
	2.3 Graal
	2.4 Truffle
	2.5 Genetic Compiler Optimization Environment
	2.6 MiniC

	3 Architecture
	3.1 Overview
	3.2 Broker and Messaging Infrastructure
	3.3 HeuristicLab Plugin
	3.4 Worker

	4 Conclusion and Outlook
	References

