
Incorporating Expert Knowledge in Object-Oriented Genetic Programming

Michael Richard Medland Kyle Robert Harrison Beatrice Ombuki-Berman
Department of Computer Science, Brock University, Saint Catharines, Canada

Abstract
Genetic programming (GP) has proven to be
successful at generating programs which solve
a wide variety of problems. Object-oriented
GP (OOGP) extends traditional GP by allow-
ing the simultaneous evolution of multiple pro-
gram trees, and thus multiple functions. OOGP
has been shown to be capable of evolving more
complex structures than traditional GP. How-
ever, OOGP does not facilitate the incorpora-
tion of expert knowledge within the resulting
evolved type. This paper proposes an alter-
native OOGP methodology which does incor-
porate expert knowledge by the use of a user-
supplied, partially-implemented type definition,
i.e. an abstract class.

Background

Types of Genetic Programming
I Tree Based Genetic Programming

(Koza-Style)
I Produces Single S-Expression Trees
I Facilitates a functional-style program
I Difficult to represent a state-memory

I Linear Genetic Programming
I Captures the imperative programming paradigm
I Uses an array-based chromosome structure
I Difficult to model multiple behaviours

I Object-Oriented Genetic Programming
I Multi-tree representation
I Each tree represents a behaviour

Objective

This work proposes a novel GP paradigm which
combines the imperative style of linear GP with
the object-oriented approach of OOGP while al-
lowing the incorporation of expert knowledge
in the resulting programs. The proposed GP
system, LinkableGP, makes use of a partially-
implemented type definition, i.e., an abstract
class, to allow expert knowledge to be embed-
ded within the evolved program.

Genotype

I The Genotype of an individual consists of
a number of chromosomes determined
by the number of abstract functions in the
Phenotype Abstract Class.

I Each chromosome is an array of integers.
I Crossover consists of 2 phases

I Mating where a bitmask determines which
chromosomes are inherited by the child

I Mixing – where one point crossover operations
are performed on randomly selected
chromosome pairs

Mating

Mixing

Phenotype

Figure: Visualization of Genotype to Phenotype Mapping

I Each individual is converted from a genotype to its
phenotype by mapping each chromosome to an abstract
function.

I Each function is built using a set of functions and
terminals, called the language.

I Terminals consist of constants, input parameters, and
declared variables during the mapping of the abstract
function.

I The abstract function is mapped by selecting functions
from the language who’s arguments can be satisfied with
the terminals in the language.

I If a function has a non-void result, then a variable is either
selected from the mutable terminals with the resulting
type, or a new variable of the correct type is created.
I If the new variable is selected, then it is added to the available

terminals.

Example Phenotype Abstract Class
abstract function initializeGraph()

abstract function selectVertices(graph g, int n)

abstract function createEdge(graph g, vertex v, vertex
s)

function GeneralizedGraphModel(int t)
Result: A graph
g ← initializeGraph();
for i ∈ 1 : t do

v ← g.AddVertex(), n← selectNumber ();
S ← selectVertices(g,n);
for s ∈ S do

createEdge(g, v , s);
end

end
return g;

Experiments

Evolving Stacks and Queues
I Evolved add, remove, and peek functions
I Evaluated based on ability to mimic

behaviours (120pts)
I 30 runs performed

Table: Results for Evolving Stack and Queue Data Structures

Result Stack Queue
Number of Optimal Solutions
Found

28 19

Average Iterations to Obtain an
Optimal Solution

28.11 40.53

Average Fitness of Non-Optimal
Solutions

101.00 97.82

Conclusion
This work proposed a novel genetic program-
ming (GP) paradigm which facilitates the incor-
poration of expert knowledge within the evolved
program structure. The proposed GP sys-
tem, LinkableGP, was inspired by both linear
GP and object-oriented GP (OOGP) method-
ologies. However, the LinkableGP system
combined the benefits of each approach by
allowing the simultaneous evolution of multi-
ple, imperative-styled methods. LinkableGP
uses a representation whereby an individual is
comprised of multiple chromosomes, each of
which directly correspond to a method which
is to be evolved. Furthermore, LinkableGP
facilitates expert knowledge through partially-
implemented types, allowing the user to embed
portions of the solution known a priori within the
resulting individuals.

Addtional Information

LinkableGP is available at
http://linkablegp.sourceforge.net

Michael R. Medland . . . . . . . . . . . . . . . . . mm08sj@brocku.ca
Kyle R. Harrison . . . . . . . . . . . . . . . . . . . . . .kh08uh@brocku.ca
Beatrice Ombuki-Berman . . . . . . . . . . . bombuki@brocku.ca

Department of Computer Science Brock University WWW: http://www.cosc.brocku.ca


