The Genetic Programming Bibliography

http://www.cs.bham.ac.uk/~wbl/biblio/

9611 references and 9262 online publications

RSS Support available through the Collection of CS Bibliographies.

A web form for adding your entries. Co-authorship community. Downloads

A personalised list of every author’s GP publications.

blog.html

Search the GP Bibliography at http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html
Genetic Programming Conference proceedings edited by Anna Esparcia-Alcazar

Genetic Programming conference papers by Anna Esparcia-Alcazar

Click icon to load page

Author search window

Curzor tooltip gives statistics of next level
Black lines link coauthors (red dots)

Use cursor to get coauthor names (recursively)
Click flags of all nations

Flag per download

Active link
Neural Network Synthesis using Cellular Encoding and the Genetic Algorithm.

Created by W.Langdon from gp-bibliography.bib Revision:1.2601

@PhDThesis{Gruau:1994:thesis,
 author = "F. Gruau",
 title = "Neural Network Synthesis using Cellular Encoding and
 the Genetic Algorithm."
 school = "Laboratoire de l'Informatique du Parallelisme, Ecole
 Normale Superieure de Lyon",
 year = "1994",
 address = "France",
 keywords = "genetic algorithms, genetic programming",
 abstract = "Artificial neural networks used to be considered only
 as a machine that learns using small modifications of
 internal parameters. Now this is changing. Such
 learning method do not allow to generate big neural
 networks for solving real world problems. This thesis
 defends the following three points:

(1) The key word to go out of that dead-end is
 \{modularity\}. (2) The tool that can generate
 modular neural networks is cellular encoding. (3) The
 optimization algorithm adapted to the search of
 cellular codes is the genetic algorithm.

The first point is now a common idea. A modular neural
network means a neural network that is made of several
sub-networks, arranged in a hierarchical way. For
example, the same sub-network can be repeated. This
thesis encompasses two parts.

The first part demonstrates the second point. Cellular
encoding is presented as a machine language for neural
networks, with a theoretical basis (it is a parallel
graph grammar that checks a number of properties) and a
compiler of high level language. The second part of the
thesis shows the third point: Application of genetic
algorithm to the synthesis of neural networks using
cellular encoding is a new technology. This technology
can solve problems that were still unsolved with neural
networks. It can automatically and dynamically
decompose a problem into a hierarchy of sub-problems,
and generate a neural network solution to the problem.

The structure of this network is a hierarchy of
sub-networks, that reflects the structure of the..."